
SSPRL - UTD

 1

USER GUIDE FOR

TWO MICROPHONE DIRECTION OF ARRIVAL

ESTIMATION ON ANDROID SMARTPHONE

 FOR HEARING AID APPLICATIONS

Anshuman Ganguly, Abdullah Kucuk, Yiya Hao,

Dr. Issa M.S. Panahi

STATISTICAL SIGNAL PROCESSING LABORATORY (SSPRL)
UNIVERSITY OF TEXAS AT DALLAS

MAY 2018

This work was supported by the National Institute of the Deafness and Other Communication

Disorders (NIDCD) of the National Institutes of Health (NIH) under the award number

1R01DC015430-01. The content is solely the responsibility of the authors and does not necessarily

represent the official views of the NIH.

http://www.utdallas.edu/ssprl/

SSPRL - UTD

 2

Table of Contents

INTRODUCTION ... 3

1. SOFTWARE TOOLS ... 4

2. BUILD AN ANDROID APP 5

2.1 Programming Language ... 5
2.2 Creating Android Apps .. 5
2.3 Adding C File .. 7

3. STEREO MICROPHONE ACCESS 10

4. TWO MIC DIRECTION OF ARRIVAL (DOA)

ESTIMATION APPLICATION 12

SSPRL - UTD

 3

INTRODUCTION

The ‘Two Microphone Direction of Arrival (DOA) Estimation’ app is designed for estimation of

the speaker direction for hearing aid users in real time direction on a graphical user interface (GUI).

The application is trained to perform in noisy conditions as well. The contents of this user guide

gives you the steps to implement the ‘Two Microphone Direction of Arrival (DOA) Estimation’

algorithms on Android devices (that have two microphones) and the steps to be followed after

installing the app on the smartphone. This app will be an open source and portable research

platform for hearing improvement studies.

This user guide covers the software tools required for implementing the algorithm, how to run C

codes on Android devices and usage of other tools that are quite helpful in creating audio apps for

audio playback in real time.

The MATLAB and C codes used for the ‘Two Microphone Direction of Arrival (DOA)

Estimation’ algorithm are made available publicly on the following website:

http://www.utdallas.edu/ssprl/hearing-aid-project/. The codes can be

accessed and used with proper consent of the author for further

improvements in research activities related to hearing aids.

The screenshot of the first look of our app is as shown in Figure 1.

Figure 1

http://www.utdallas.edu/ssprl/hearing-aid-project/

SSPRL - UTD

 4

1. SOFTWARE TOOLS

Android is an open-source operating system developed by Google for mobile phones and tablets.

The Android apps are usually coded in Java. In this section, it is shown how to set up the Android

Studio IDE (Integrated Development Environment) for developing Android apps.

Android Studio IDE requires either Windows Operating System or Apple Operating System.

Android Studio IDE can directly build and upload source codes into Android smartphone or

generate a APK file which can be downloaded and installed on the Android smartphone.

To download the latest version of Android Studio

1. Open the Android Studio website to download.

(https://developer.android.com/studio/index.html)

2. Click Download Android Studio Button (Figure 2).

3. Install the execution file after download.

Figure 2

https://developer.android.com/studio/index.html

SSPRL - UTD

 5

2. BUILD AN ANDROID APP

2.1 Programming Language
For creating Android apps, Java is used to create the required shell. The Java Development Kit

(JDK) needs to be firstly installed on your computer. This link contains the latest version of JDK:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2.2 Creating Android Apps

After installations of Android Studio and JDK completed, android apps can be created using

Android Studio.

1. Open Android Studio.

2. Under the "Quick Start" menu, select "Start a new Android Studio project." (Figure 3)

3. On the "Create New Project" window that opens, name your project "HelloWorld".(Figure 4)

4. If you choose to, set the company name as desired*.

5. Note where the project file location is and change it if desired.

6. Click "Next."

7. Make sure on that "Phone and Tablet" is the only box that is checked. (Figure 4)

8. If you are planning to test the app on your phone, make sure the minimum SDK is below

your phone's operating system level.

9. Click "Next."

10. Select "Blank Activity." (Figure 4)

11. Click "Next."

12. Leave all of the Activity name fields as they are. (Figure 4)

13. Click "Finish."

http://www.oracle.com/technetwork/java/javase/downloads/index.html

SSPRL - UTD

 6

Figure 3

Figure 4

SSPRL - UTD

 7

2.3 Adding C File

Android apps are typically written in Java, with its elegant object-oriented design. However, at

times, you need to overcome the limitations of Java, such as memory management and

performance, by programming directly into Android native interface. Android provides Native

Development Kit (NDK) to support native development in C/C++, besides the Android Software

Development Kit (Android SDK) which supports Java.

2.3.1 Installing the Native Development Kit (NDK)

1. Menu "Tools" > "Android" > "SDK Manager" (Figure 5)

2. Select tab "SDK Tools"

3. Check "Android NDK"[or "NDK"] if it is not checked

4. Sync and re-build the project.

Figure 5

SSPRL - UTD

 8

2.3.2 Writing a Hello-World Android NDK Program

Creating a new project with support for native code is similar to creating any other Android

Studio project, but there are a few additional steps:

1. In the Configure your new project section of the wizard, check the Include C++

Support checkbox.

2. Click Next.

3. Complete all other fields and the next few sections of the wizard as normal.

4. In the Customize C++ Support section of the wizard, you can customize your project with the

following options:

o C++ Standard: use the drop-down list to select which standardization of C++ you want to

use. Selecting Toolchain Default uses the default CMake setting.

o Exceptions Support: check this box if you want to enable support for C++ exception

handling. If enabled, Android Studio adds the -fexceptionsflag to cppFlags in your

module-level build.gradle file, which Gradle passes to CMake.

o Runtime Type Information Support: check this box if you want support for RTTI. If

enabled, Android Studio adds the -frtti flag to cppFlags in your module-

level build.gradle file, which Gradle passes to CMake.

5. Click Finish.

After Android Studio finishes creating your new project, open the Project pane from the left side

of the IDE and select the Android view. As shown in figure 6, Android Studio adds

the cpp and External Build Files groups:

https://developer.android.com/studio/projects/create-project.html
https://developer.android.com/studio/projects/create-project.html

SSPRL - UTD

 9

1. The cpp group is where you can find all the native source files, headers, and prebuilt

libraries that are a part of your project. For new projects, Android Studio creates a sample

C++ source file, native-lib.cpp, and places it in the src/main/cpp/ directory of your app

module. This sample code provides a simple C++ function, stringFromJNI(), that returns the

string “Hello from C++”.

2. The External Build Files group is where you can find build scripts for CMake or ndk-build.

Similar to how build.gradle files tell Gradle how to build your app, CMake and ndk-build

require a build script to know how to build your native library. For new projects, Android

Studio creates a CMake build script, CMakeLists.txt, and places it in your module’s root

directory.

Figure 6

SSPRL - UTD

 10

3. STEREO MICROPHONE ACCESS

Accessing two microphones for Android devices is done by rooting smartphone in previous

version. This problem is solved for with this version using proposed framework for audio signal

processing [1]. One of these libraries and classes is AudioRecord class which administer the audio

sources for recording audio from built-in microphones of the platform [2]. We use Android

libraries for accessing two mics at the same. A few parameters have critical importance for signal

capture. These are explained as follows.

• Audio Source = AudioRecord class allows us to select an audio source of recording.

Although there are many options to choose a source, it is recommended that MIC and

CAMCORDER. MIC denotes for the bottom microphone of the smartphone and

CAMCORDER is used for microphone audio source which is near to the camera.

• Sampling Frequency = It is used for determining the sampling rate of recording. According

to the developer of Android operating system, 44.1 kHz or 48 kHz is suggested as a

sampling frequency for modern Android smartphones. These sampling rates provide high

quality and minimum audio latency [3].

• Channel Configuration = Number of audio channel is defined via channel configuration

parameter. Stereo channel can be selected at max. However, Android doesn't guarantee

two-channel recording for all Android phones. Google Pixel 2 XL, Google Pixel, and

Samsung Galaxy S7 are tested, and it has seen that two-channel recording is possible for

these phones.

• Audio Format = The audio data is represented by ENCODING_PCM_16BIT. Each sample

is denoted by 16 bit, and Pulse Code Modulation is used for the data.

• Buffer Size = The size of recorder buffer is crucial. Since we don`t desire to lose any data

when capturing signal. Hence, getminbufsize() function is used for determining buffer size.

In order to avoid any data losing while signal capturing, function getminbufsize() has been

used for determining the minimal buffer size. The return value from the function above is

assigned to Buffer Size.

We have used three different smartphones which is shown Figure 7 for real time Direction of

Arrival Estimation applications.

SSPRL - UTD

 11

Figure 7

Mic 1(bottom)

Mic 2(top)

𝑑=13cm

Google Pixel

Mic 1(bottom)

Mic 2(top)

𝑑=13cm

Samsung Galaxy S7

Mic 1(bottom)

Mic 2(top)

𝑑=16cm

Google Pixel 2 XL

SSPRL - UTD

 12

4. TWO MIC DIRECTION OF ARRIVAL (DOA)

ESTIMATION APPLICATION
4.1 DOA ESTIMATION APPLICATION 1

The algorithm is developed for providing the hearing-impaired user with an estimate of the speaker

direction on a graphical user interface (GUI). The application is trained to perform in noisy

conditions as well. See Figure 8 for a screenshot of the Android application.

Figure 6

Following are the key things to keep in mind while using the application:

• Before starting the application, please make sure the Smartphone is placed on an elevated

surface (so that the microphones are not covered). The GUI should still be fully visible to

the user.

• A new button, “Enhanced”, is added with new version. When the button is red, the app will

operate like version 1. If the button is green, pre-filtering will be enabled and the app will

estimate better than version 1.

Start

Stop

Settings:
• Threshold Time (ms): 10 (default)

• Duration: 2 (default)

Estimated Angle
(numeric value) Calibrated Threshold

Estimated Angle
(graphical display)

Blue marker

Pre-filtering in the
processing

SSPRL - UTD

 13

• Press the ‘Start’ button to start the application. The algorithm assumes that the first few

frames are silence/noise only. Threshold Time specifies this duration (which can be

modified using the ‘Settings’ button).

• After the initial few frames, the ‘Calibrated Threshold’ display will stop at a fixed value.

Now the application is ready and you may start speaking.

• The application will receive the microphone signals and indicate the direction of the

speaker using numeric values as well as using graphical marker.

• The behavior of the application can be modified using ‘Settings’ button. Increasing the

‘Threshold time’ will allow the algorithm to be more noise-robust. Increasing the

‘Duration’ will make the DOA estimation marker more stable and change less rapidly.

• In presence of speech, the blue marker will continuously follow the speaker in all

directions. In absence of speech, the blue maker will point to the last estimated speaker

location, even with a high-energy noise source present in the room (such as Vacuum

cleaner or coffee machine).

To learn more about the application, please refer to our video demos on

http://www.utdallas.edu/ssprl/hearing-aid-project/.

Figure 9 Video screenshots for Demo videos

http://www.utdallas.edu/ssprl/hearing-aid-project/

SSPRL - UTD

 14

4.2 DOA ESTIMATION APPLICATION 2
The algorithm is developed for providing the hearing-impaired user with an estimate of the speaker

direction on a graphical user interface (GUI). The application is trained to perform in noisy

conditions as well. See Figure 10 for a screenshot of the Android application.

Figure 10

Following are the key things to keep in mind while using the application:

• Before starting the application, please make sure the Smartphone is placed on an elevated

surface (so that the microphones are not covered). The GUI should still be fully visible to

the user.

• A new screen is designed for Settings. Preferences can be tuned used this screen before

beginning the application.

• Press the ‘Start’ button to start the application. You can start speaking immediately, you

don’t need wait a few frames like previous app.

• The application will receive the microphone signals and indicate the direction of the

speaker using numeric values as well as using graphical marker.

Tuning Parameters

Blue Markers

Start

Stop

DOA (𝜃෠)

SSPRL - UTD

 15

• The behavior of the application can be modified using ‘Settings’ button. Increasing the

‘Thresholding Level’ will make the DOA estimation marker more stable and change less

rapidly.

• In presence of speech, the blue marker will continuously follow the speaker in all

directions. In absence of speech, the blue maker will point to the last estimated speaker

location, even with a high-energy noise source present in the room (such as Vacuum

cleaner or coffee machine).

To learn more about the application, please refer to our video demos on

http://www.utdallas.edu/ssprl/hearing-aid-project/.

Figure 11 Video screenshots for Demo videos

http://www.utdallas.edu/ssprl/hearing-aid-project/

SSPRL - UTD

 16

5. REFERENCES

[1] Abdullah Küçük, Yiya Hao, Anshuman Ganguly, Issa Panahi, “Stereo I/O Framework for

Audio Signal Processing on Android Platforms”, Proceedings of Meetings on Acoustics,

Acoustic Society of America (ASA 2018), Minneapolis, MN, May 2018.

[2] https://developer.android.com/reference/android/media/AudioRecord.html

[3] https://developer.android.com/ndk/guides/audio/sampling-audio.html

