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Abstract. We describe Opti-Speech-VMT, a prototype tongue tracking
system that uses electromagnetic articulography to permit visual feed-
back during oral movements.Opti-Speech-VMT is specialized for visuo-
motor tracking (VMT) experiments in which participants follow an oscil-
lating virtual target in the oral cavity using a tongue sensor. The algo-
rithms for linear, curved, and custom trajectories are outlined, and new
functionality is briefly presented. Because latency can potentially affect
accuracy in VMT tasks, we examined system latency at both the API and
total framework levels. Using a video camera, we compared the movement
of a sensor (placed on an experimenter’s finger) against an oscillating tar-
get displayed on a computer monitor. The average total latency was 87.3
ms, with 69.8 ms attributable to the API, and 17.4 ms to Opti-Speech-
VMT. These results indicate minimal reduction in performance due to
Opti-Speech-VMT, and suggest the importance of the EMA hardware
and signal processing optimizations used.

Keywords: Speech · Tongue · Visual feedback · Electromagnetic
articulography · Avatar · 3D model · Latency

1 Introduction

In previous work, we described Opti-Speech, a technique for animating a 3D
model of the human tongue in real time [1]. The system was designed for research
and training in second language learning and for clinical applications in speech
language pathology. We used motion capture data from an electromagnetic artic-
ulography (EMA) system and an off-the-shelf 3D animation software (Maya) to
create the visual representation. The goal of the Opti-Speech project was to
create a real-time tongue representation with the necessary resolution for des-
ignating tongue shapes and positions common to a variety of speech sounds.
In our application, “joint” positions and rotations were used to drive a hierar-
chical rig of virtual joints that in turn deformed a geometric mesh of a virtual
tongue. Based on practical considerations (number of EMA sensors that can be
comfortably placed on the lingual surface) and prior research on the number of
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EMA sensors that can effectively describe speech sounds [2,3], we determined
that five markers could provide the necessary resolution for identifying tongue
shapes and positions common to a variety of speech sounds. We created a flex-
ible rig of joints in Autodesk Maya to allow the markers to drive a polygonal
tongue that was then brought into Autodesk MotionBuilder software. Through
a custom plugin for MotionBuilder, the motion data from our EMA system is
streamed in real-time and constrained to the marker setup of the rig. The result-
ing movement of the tongue mesh allows the subject to watch a 3D model of
their own tongue movements in real time (Fig. 1).

Fig. 1. A participant using the Opti-Speech system with NDI WAVE hardware.

Several studies were conducted using the first prototype system, including
training [4–6], and visuomotor tracking [7,8] paradigms. These studies revealed
the limitations of our first prototype Opti-Speech system, including an inability
to introduce moving targets and to present different trajectories for these moving
targets. These additional features are useful for studies of speech motor control,
including comparisons of speech and non-speech movements. In addition, these
features will help in clinical studies that present more sophisticated moving
target patterns for patients to emulate.

In this paper, we introduce Opti-Speech-VMT (Opti-Speech for Visual Motor
Tracking experiments) providing: (i) a variety of static and moving targets, (ii)
different trajectories for the moving target, including curved and custom tra-
jectories. Since the latency of the system could have effects on users in speech
and tracking experiments, we investigated the Opti-Speech-VMT and total sys-
tem latency periods. The results indicated that Opti-Speech-VMT contributed
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minimal latency (17.464 ms) and that total system delay was substantially
larger (87.319 ms). Most importantly, these latency periods fall below the range
reported to have potential adverse effects on speech performance.

2 Related Work

Although the effects of visual feedback on speech have been extensively reviewed
in several studies [9–18], few studies have focused on the framework used to
obtain the feedback. Most of the studies on effects of visual feedback on speech
learning have relied on ultrasound imaging [9–12]. Ultrasound (US) imaging
allows a participant to directly visualize the interior of the oral cavity as a two-
dimensional image. It comes with a few advantages: the output from an US
system doesn’t need processing to be used as visual feedback for the participant,
the detection system itself is non-intrusive, and the equipment is portable. In
addition, there have been recent developments in tongue tracking and segmen-
tation in US images. Laporte et al. (2018) [13] developed an US tongue tracking
system that uses simple tongue shape and motion models with a flexible contour
representation to estimate the shape of the tongue. Karimi et al. (2019) [14] dis-
cuss an algorithm requiring no training or manual intervention which uses image
enhancement, skeletonization and clustering to come up with a set of candidate
points that can then be used to fit an active contour to the image, subsequently
initializing a tracking algorithm. Mozaffari et al. (2020) [15] make use of Deep
Learning techniques (Encoder-decoder CNN models) for automatic tracking of
tongue contours in real-time in US images.

A disadvantage of US feedback systems is that the imaging provided is typ-
ically low-resolution, monochrome, and noisy, and therefore not very intuitive.
In addition, the visual feedback cannot be customized by the user to add func-
tionality such as interactive feedback, adding targets, manipulating input data,
etc., which limits usability for different types of speech experiments.

EMA-based systems have also been used for visual feedback studies [16–18],
although to lesser extent than US-based systems, due to their lack of portability
and high costs. Shtern et al. (2012) [16] and Tilsen et al. (2015) [17] describe
EMA real-time feedback systems for articulatory training. Real-time kinematic
data from the EMA system is used to create an interactive 3D game for speech
learning/rehabilitation, based on the Unity Game Engine.

Suemitsu et al. (2015) [18] make use of EMA hardware for real-time visual
feedback to support learning the pronunciation of a second language. Specif-
ically, they studied the production of an unfamiliar English vowel, (/æ/), by
five native Japanese speakers. An array of EMA sensors was used to obtain each
participant’s tongue and lip fleshpoint positions, and an image of the tongue sur-
face was estimated using cubit spline interpolation. Participants compared their
head-corrected, near real-time data with an/æ/target obtained from a multiple
linear regression model based on previous X-ray microbeam data and additional
EMA data.

The project that most directly relates to ours is a visual feedback framework
(Kristy et al. [19]) based on Blender, a free and open-source software for 3D



236 H. G. Kumar et al.

development. This framework is able to visualise and record data from a EMA
system or from a file. It uses NDI WAVE hardware and performs data-processing
steps (including head correction, smoothing, and transformation to local coordi-
nate system) before generating the visual feedback. A Python program is used
to fetch and process data using the NDI Wave API.

Although the EMA-based game systems mentioned above do provide the
user with visual feedback of their tongue movements, they have a near-static
environment with a minimal feature set. As such, these systems lack several
important features, including an ability to add interactive targets, easily con-
trol the visual elements on the screen, vary the sensor placement, and conduct
visuomotor tracking experiments.

3 Opti-Speech-VMT

Visuomotor tracking (VMT) tasks involve a participant following a rhythmic
external signal with a limb or speech articulator (typically the lip/jaw). It is
common to designate targets of different speeds and levels of predictability to
assess the role of feedforward/feedback processing in motor control. In addition,
the direction of movement may be of interest [5,6].

Fig. 2. A flowchart describing the workflow of the Opti-Speech-VMT system used with
NDI Wave hardware.

3.1 General Features

Opti-Speech-VMT is built using the open source software Unity (version
2020.1.12f1) in Windows 10, and is compatible with the latest version of Unity
and Windows (as of this date). Due to the application being built in Unity, which
is a cross-platform tool, it can be migrated to other Unity supported platforms
(such as Linux, MacOS, etc.) with minimal effort. Figure 3 shows the GUI of
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Opti-Speech-VMT. All the menus are collapsible, to allow a clean user interface.
Some menus have been expanded in the figure to show the available options for
the user.

Fig. 3. A screenshot of the Opti-Speech-VMT GUI showing the tongue avatar with
fully transparent skull and jaw models.

Various features offered by Opti-Speech-VMT are:

1. Data source selector: Opti-Speech-VMT supports multiple data sources
simultaneously. The Data source selector menu (highlighted in a yellow box
in Fig. 3) allows the user to select from multiple data sources that could be
connected to the system. Currently supported sources are:
(a) File reader: Allows the user to play back a recorded sweep from a file
(b) WaveFront: Allows user to stream data from NDI WAVE hardware.
(c) Carstens (under development): Allows user to stream data from Carstens

AG500 series articulography systems.
Additional data sources can be added to the application by following the
developer manual available with the project.

2. Display menu: The display menu (highlighted in a blue box in Fig. 3) allows
the user to hide, show, and control the transparency of various elements on the
screen, such as the tongue model, skull, jaws, markers, and sensors. Figure 4
shows an example with transparency for the skull and jaws set to around
50%. Users can set the values according to the participant’s preferences or
the experiment’s requirements.

3. Sensor List: The Sensors List menu (highlighted in a red box in Fig. 3) allows
the user to map the software sensor markers to physical sensors connected to
the system. This mapping can be changed in real-time, which saves the user
time and effort by not needing to ensure that the physical sensors are placed
in a particular order. The menu also allows the user to set sensor-specific
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offsets in case adjustments are needed to the positions of the virtual sensors
(without requiring the user to adjust the physical sensors).

4. Targets: The targets menu (highlighted in a green box in Fig. 3) allows the
user to add multiple targets to the scene simultaneously. The targets can be
of different types, each having their own sub-menus containing modifiable
parameters specific to the target type. Additional targets with custom tra-
jectories can also be added to the application using the guide provided in the
Developers manual.

Fig. 4. A screenshot of the Opti-Speech-VMT GUI showing the tongue avatar with
translucent skull and jaw models.

5. Sweeps: This menu (highlighted in a lime green box in Fig. 4) allows the
user to record sweeps of an experiment. The sweeps record the data of all the
objects present in the scene per timestamp. This includes status and positions
of all the sensors, and the position and parameters of the targets and markers
and other data needed by the application to replay the sweep (using the
File Reader Data Source in Data Selector menu). Since the timestamp has a
resolution of 1 millisecond, the data recorded are high resolution and allow
for a precise replay of the sweep. The data are saved in a .tsv (tab-separated
values) format, which is easy to read with any text editor or Microsoft Excel.
Audio data synchronized with the timestamps can also be saved using options
available in the menu.

6. Tongue model: The tongue model used in Opti-Speech-VMT is not rigid.
This allows the shape and size of the tongue model to automatically change
based on the positions of the physical sensors on the participant’s tongue.
While the model is not intended to be biomechanically/anatomically real-
istic for medical (e.g., surgical reconstruction planning) purposes, it closely
represents tongue surface dimensions and movements sufficient for real-time
applications.
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7. Accuracy Window: The accuracy window (highlighted in a yellow box in
Fig. 4) shows the cycle and sweep accuracies of the tongue movement with
respect to a given target. This can be used as a visible metric for the partic-
ipant to understand their performance on a per-cycle and per-sweep level.

8. Other menus: Apart from the above-mentioned menus, other menus are
mainly designed for convenience. This includes the Profiles menu (above
the Data Source Selector menu), which allows the users to save experiment
settings in a profile and quickly load them to effortlessly repeat an experiment,
the Camera menu, which has preset camera angles that help the user change
the camera view to any of the available ones with just one click, and the
Advanced menu, which allows a user to specify network settings used to
communicate with connected EMA hardware and also specify Filter Strength
to smooth out the raw sensor data incoming from the API. This can help
smooth out the ‘jittering’ of virtual sensors that can result from the hardware
being highly sensitive.

9. Documentation: Detailed documentation of the application is also available
for user reference and further development of the application. The documen-
tation is split into the “Researcher manual”, meant for users of the applica-
tion, and the “Developer manual”, meant for developers who wish to modify
or extend the functionalities of the application. The white speech bubbles
(highlighted in a red box in Fig. 4) at the top right corner of each of the
menus directly takes the user to the section of the documentation describing
the usage of that specific menu. An example of the documentation for the
Data Source selector menu is shown in Fig. 5.

3.2 Target Features

Static/Moving Targets: As in the original Opti-Speech prototype, Opti-
Speech-VMT provides a static target for tongue tracking by allowing the oper-
ator to designate a virtual sphere in the oral cavity that a participant “hits”
using a selected sensor on their tongue avatar. When the target is hit, it changes
color, providing the participant with visual feedback of accuracy. Opti-Speech-
VMT includes a “moving target” option that programs a single target to oscillate
between two positions in the oral cavity. The direction, distance traversed, speed,
and predictability of the oscillating target motion are all set by the operator dur-
ing a session. The speed is controlled by a “frequency” option available in the
menu. An option to add “randomness” to the target speed, which makes the
speed variable and unpredictable between oscillations, is also available in the
menu.

Trajectories: Target trajectories can be linear, curved, or “custom”. This
allows the experimenter to set tongue targets in linear oscillating patterns that
are traditionally reported in VMT studies, as well as curved patterns that are
more speech-like, as previous studies have reported curved (arc-like) patterns
taken by the tongue in reaching spatial endpoints [20]. The custom trajectory
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Fig. 5. An example of the documentation provided with Opti-Speech-VMT.

option can be used to create a variety of movement patterns, such as may be
required in different studies of motor control.

Linear trajectories are based on a sinusoidal function, as described in Eq. 1
and Eq. 2. We use Eq. 1 with a Linear Interpolation (Lerp) function (Eq. 2) and
user-provided start and end positions to get the position of the target at any
given time (currTime). Employing a sinusoidal function instead of a standard
linear function for linear oscillating motion allows us to generate a trajectory
that slows down the target near the start and end positions, instead of abruptly
reversing the direction of motion. This makes the trajectory closer to natural
tongue motion.

f(freq, time) =
Cos(2 ∗ π ∗ freq ∗ time/1000) + 1

2
(1)

current position = Lerp(startPosition, endPosition, f(freq, time)) (2)

Where,

– freq = frequency of oscillation (oscillations/second).
– nRebounds = number of times the target has changed directions till now.
– startPosition = User defined start position of the target.
– currPosition = current position of the target at the given time.
– pauseTime = User defined time to pause after reaching start/end position (in

ms).
– time = Current timestamp from the application
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Curved trajectories are implemented using an ellipse equation, as shown in
(Eq. 3). The trajectory is currently restricted to the YZ plane only. Apart from
the frequency of oscillation, this equation also needs the major and minor axis of
the ellipse as user inputs. To emulate a more natural tongue movement, we add
a small user-defined pause towards the end and start positions of the trajectory.
The adding of a pause time makes the algorithm significantly more complicated.

currPosition = (c.x, c.y + r.y ∗ Sin(angle), c.z + r.z ∗ Cos(angle)) (3)
if tempAngle >= 90, angle = tempAngle, else angle = 180 − tempAngle

(4)

tempAngle = (freq ∗ 180 ∗ localT ime/1000) mod 180 (5)
localT ime = time − nRebounds ∗ pauseT ime (6)

c = startPosition − r (7)

Where,

– c = 3D coordinates of the center of the ellipse.
– r = User defined 3D vector with the radius of the ellipse along each axis.
– freq = frequency of oscillation (oscillations/second).
– nRebounds = number of time the target has changed directions till now.
– startPosition = User defined start position of the target.
– currPosition = current position of the target at the given time.
– pauseTime = User defined time to pause after reaching start/end position (in

ms).
– time = Current timestamp from the application

The curved trajectories are currently limited to the YZ plane (Y axis being verti-
cal and Z axis being horizontal with respect to the oral cavity) for simplicity and
since most common 2D tongue motions are restricted to the YZ (mid-sagittal)
plane.

Custom motion trajectories replicate a prerecorded tongue movement. Tongue
movement can be recorded using the ‘Record Sweep’ functionality offered by the
application. The menu allows the Target to replicate the movements of any of
the sensors recorded in the sweep. This can be used to have the patient emulate
pronunciation of a particular syllable/word. All the trajectories that cannot be
described by a simple mathematical equation can be recorded by the user in a
sweep and replicated by this function for experiments and/or training.

4 Measurement of Latency

For a visual feedback system, latency is an important metric. A significant lag
between the tongue’s motion and the visual feedback on the screen can have
significant effects on the subject’s experience and response as well as on the
experimental results [21–23].
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For instance, studies of the effects of visual and/or auditory feedback on
pointing and steering tasks (Friston et al. [22]), sequence reproduction on a
keyboard (Kulpa et al. [21]), and sentence repetition (Chesters et al. [23]) report
a broad range at which latencies affect motor behavior, ranging from 16–400
ms. Friston et al. [22] also note that measurement of latencies below 50 ms,
in tasks that involve indirect physical interaction, has only recently become
possible due to advancements in technology. Regarding tongue visual feedback,
Suemitsu et al. [18] describe “no perceptually apparent latency between sensor
motion and its visualization” for their system based on a Carstens AG500 EMA
system. While perceptual benchmarks are important, it would also be useful to
have measurements of the latency of visual feedback frameworks to help further
studies in this domain. We therefore designed an experiment to measure the
latency of the Opti-Speech framework at different levels.

4.1 Visual Feedback Task

The experiment makes use of a camera to monitor the real sensor and the com-
puter screen (60 Hz refresh rate) showing the API and Opti-Speech-VMT sen-
sors. The camera records a video of the sensor moving in an oscillating trajectory
in the plane of observation of the camera. The perspectives of the camera in the
rendering software (API and Opti-Speech-VMT) are adjusted to match that
of the camera recording the experiment, such that they have the same plane
of observation. A tripod-mounted phone camera (Samsung Galaxy S20FE) was
used in 1920 × 1080 60 FPS video recording mode, with all other video settings
set to auto. Video was recorded in a well-lit environment to facilitate color-based
tracking.

We directly measured two types of latency periods: the latency at the API
level (API Latency), which is the time taken by the EMA hardware to process
raw signals from the sensors into sensor positions, and latency at the framework
level (total latency), which is the total time taken for a change in real sensor
position to reflect in Opti-Speech-VMT’s visual tongue avatar. We use these
latency values to compute Opti-Speech-VMT latency (Eq. 8), which is the time
taken by Opti-Speech-VMT to get the sensor positions from the API and render
the scene with the tongue avatar.

OptiSpeechV MT latency = total latency − API latency (8)

As we cannot directly compare the raw displacement values between the sensor,
the API, and Opti-Speech-VMT, since the sensors are not calibrated, we use an
oscillating trajectory, normalize the amplitudes of the trajectories, and plot them
(Fig. 6). Next, we measure the latency at points in the trajectory where there is
a change in direction (peaks and valleys of the oscillating trajectory). Since the
oscillating movement of the real sensor is done by hand, the trajectories aren’t
perfectly sinusoidal. We process the video recording in Python frame-by-frame
and use OpenCV [24] to track the trajectories of the sensors based on color.

Since the monitor displaying the API and Opti-Speech-VMT sensors and
the camera have a refresh rate 60 Hz, the lowest latency we can measure is
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Fig. 6. Normalized amplitude of the trajectory of the Real sensor, API sensor and Opti-
Speech-VMT sensor plotted against the frame number. The graph has been magnified
to focus on a few periods of the oscillation to better show the temporal differences
between the trajectories. (Color figure online)

1/60 s, which is 16.67 ms. The latency is directly measured in frames, and then
converted to milliseconds based on the frame time (16.67 ms) (Eq. 9). We average
the latency measurements from 42 samples taken at the peaks and valleys of the
trajectories.

latency in ms = number of frames ∗ 16.67 (9)

4.2 Results

The results in Table 1 show a total latency of 5.238 frames (87.318 ms), out of
which the API latency is responsible for 4.19 frames (69.855 ms) while Opti-
Speech-VMT accounts for 1.048 frames (17.464 ms).

Table 1. Latency test results.

Avg. total
latency

Avg. API
latency

Avg. Opti-
Speech-VMT latency

Latency (Frames) 5.238 4.19 1.048

Latency (ms) 87.319 69.855 17.464
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These data are shown graphically in Fig. 6, where one can observe that the
major lag between the sensor signal (red dot-dash line) and the Opti-Speech-
VMT signal (blue solid line) is due to the API signal (green dotted line). The
measurements also suggest the possibility of Opti-Speech-VMT latency being
less than 1 frame time, since we are limited to a resolution of 1 frame with our
measurements.

4.3 Conclusion

With these results, we conclude that a major portion of the total latency is
due to the signal processing hardware of the EMA system being used, in this
case NDI Wavefront. Opti-Speech-VMT has minimal latency implications on
the system, contributing only 17.46 ms out of 87.31 ms of total latency, barely
measurable with our experimental setup. Although the refresh rate of the camera
and monitor limit the resolution of latency we can measure, it is sufficient for us
to arrive at this conclusion.

5 Future Work

Studies on the effects of latency on visual-feedback systems suggest that the
minimum latency that can adversely effect human performance can greatly
differ based on the nature of the task [21–23]. Although studies such as the
one by Chesters et al. [23] investigate the effects of delayed visual feedback on
speech experiments, the values of delays tested in such research are significantly
higher than ours. Thus, a more comprehensive study into the effect of latency in
speech visual- feedback systems in specific scenarios/speech experiments would
be needed to evaluate the potential impact of Opti-Speech latencies across a
variety of experimental settings.

Our findings suggest the total latency can be improved based on the EMA
hardware being used or signal processing optimizations by the hardware man-
ufacturers. At the time of this writing, the NDI WAVE system is no longer in
production, with its support ending soon. Opti-Speech-VMT, while capable of
receiving input from NDI WAVE, is being optimized for input from Carstens
AG500 series articulography systems. These devices are more accurate, with
measured dynamic accuracy of 0.3 mm during speech recording [25,26], and pro-
viding sampling rates as high as 1250 samples/sec. Such instrumentation, along
with a faster API, should greatly reduce potential accuracy problems resulting
from system latency lags.

A concomitant improvement we are working on is to devise a means of calibra-
tion to map distances between the real world and the virtual scene, as distances
for the oscillating targets are currently estimated through approximation. We
have had some success with this in a recent study [27] by scaling talker’s vocal
tract size as a function of maximum tongue displacement. We plan to expand
these efforts to provide more effective target placement in Opti-Speech-VMT.
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