Acoustic Phonetics

How speech sounds are physically represented

Chapters 12 and 13

Sound

- Energy
- Travels through a medium to reach the ear
- Compression waves

Periodic waves

- Simple (sine; sinusoid)
- Complex (actually a composite of many overlapping simple waves)

Sinusoid waves

- Simple periodic motion from perfectly oscillating bodies
- Found in in nature (e.g., swinging pendulum, sidewinder snake trail, airflow when you whistle)
- Sinusoids sound 'cold' (e.g. flute)

Let's crank one out!

Paper being pulled

Pg. 175

Frequency - Tones

6

Simple waves - key properties

- Frequency = cycles per sec (cps) = Hz
- Amplitude measured in decibels (dB), 1/10 of a Bell
- (Note: dB is on a log scale, increases by powers of 10)

Phase

- A measure of the position along the sinusoidal vibration
- These two waveforms are slightly <u>out of phase</u> (approx. 90⁰ difference)
- Used in sound localization

Damping

• Loss of vibration due to friction

Quickie Quiz!

Q: What is the frequency of this wave? HINT: It repeats twice in 10 msec

Answer:

• 200 Hz!

(2 cycles in .01 sec = 200 cps)

Physical vs. perceptual

PHYSICAL

PERCEPTUAL

• Fundamental frequency $(F_0) \rightarrow$

"Pitch"

• Amplitude/ Intensity \rightarrow

"Loudness"

• Duration \rightarrow

"Length"

Frequency Spectrum of Familiar Sounds

Complex periodic waves

- Results from imperfectly oscillating bodies
- Demonstrate simple harmonic motion
- Examples a vibrating string, the vocal folds

Frequency – Tones/ Adding

Another example.....

Waveforms - Male Vowels

Waveforms - Female Vowels

18

Complex periodic waves - cont'd

- Consists of a fundamental (F₀) and harmonics
- Harmonics ("overtones") consist of energy at integer multiples of the fundamental (x2, x3, x4 etc...)

Harmonic series

- Imagine you pluck a guitar string and could look at it with a really precise strobe light
- Here is what its vibration will look like

From complex wave to its components... and the frequency spectrum

- Also known as a "line spectrum"
- Here, complex wave at the bottom...
- ...is broken into its component sin waves shown at the top

(complex wave)

Jean-Baptiste Joseph Fourier

1768-1830

Complex wave \rightarrow component sinusoids

Fourier analysis

Sound

Light

Review of source characteristics

- <u>Simple waves</u> are a good way to learn about basic properties of frequency, amplitude, and phase.
- Examples include whistling; not really found much in speech
- <u>Complex waves</u> are found in nature for oscillating bodies that show simple harmonic motion (e.g., the vocal folds)

Now let's look at the <u>filter</u>

- In speech, the filter is the *supralaryngeal vocal tract* (SLVT)
- The shape of the oral/pharyngeal cavity determines vowel quality
- SLVT shape is chiefly determined by tongue movement, but lips, velum and (indirectly) jaw also play a role

Resonance

- Reinforcement or shaping of frequencies as a function of the <u>boundary conditions</u> through which sound is passed
- FUN: Try producing a vowel with a paper towel roll placed over your mouth!
- The 'extra tube' changes the resonance properties

Resonance / Formants

- The SLVT can be modeled as a kind of bottle with different shapes... as sound passes through this chamber it achieves different sound qualities
- The resonant peaks of speech that relate to vowel quality are called <u>formants</u>.
- Thus, R1 = F1 ("first formant). R2 = F2 ("second formant") etc.
- F1 and F2 are critical determinants of vowel quality

Input \rightarrow SLVT \rightarrow final output

Vocal tract shape \rightarrow formant frequencies

28

Resonance – FOUR basic rules

- <u>F1 rule</u> inversely related to jaw height. As the jaw goes down, F1 goes up, etc.
- <u>F2 rule</u> directly related to tongue fronting. As the tongue moves forward, F2 increases.
- <u>F3 rule</u> F3 drops with r-coloring
- <u>Lip rounding rule</u> All formants are lowered by liprounding (because lip protrusion lengthens the vocal tract 'tube')

Examples of resonance for /i/, /a/, /u/

- /i/ is made with the tongue high (thus, low F1) and fronted (high F2)
- /a/ is made with the tongue low (high F1) and back (low F2)

Download a (free) cool, interactive demo: <u>https://www.phon.ucl.ac.uk/resource/vtdemo/</u>

American English Vowels

Table 12-1			Mean Formant Frequencies for Men									
Vowels	/i/	/1/	/e/	/ε/	/æ/	/Δ/	/3º/	/a/	/5/	/0/	/ʊ/	/u/
F3	3003	2654	2557	2643	2580	<u>2539</u>	<u>1686</u>	2468	2564	2390	2364	2321
F2	2345	1974	1 9 82	185 5	1809	145 5	1457	1214	1081	1182	1376	1373
F1	<u>300</u>	445	497	5 3 4	694	638	523	<u>754</u>	654	523	426	353

Table 1	Mean Formant Frequencies for Children											
Vowels	/i/	/1/	/e/	 ε	/æ/	/Λ/	/3º/	/a/	/5/	/0/	/ʊ/	/u/
F3	3256	2965	2990	2929	2875	2887	1870	2966	2947	2634	2734	2636
F2	<u>2588</u>	2161	2309	2144	2051	1751	1508	1273	1203	1470	1685	<u>1755</u>
F1	429	522	572	586	836	767	640	688	816	636	516	430

(Assmann & Katz, 2000)

F2 x F1 plot American English Vowels

[•] Peterson & Barney, 1952

Chap 13

• Reading a sound spectrogram

The sound spectrograph

- Invented in the 1940s
- First called 'visible speech'
- Originally thought to produce a "speech fingerprint" (?)
- We now know speech perception is far more complicated and ambiguous..

. FREQUENCY RANGE: 5Hz to 16KHz · ANALYSIS TIME: 1.3 Min.

20-2000 Hz 9.6 sec.

40.4000 Hz 4.8 sec

· RECORD TIME. 5-500 Hz 38.4 sec.

The 7029 is a new, solid-state sound spectrograph with new, extended frequency cov erage from 5 to 16000Hz, providing permanent visual records of amplitude vs frequency, amplitude vs time, and frequency vs amplitude vs time. In addition, it offers some choices of sonagram time scale, permitting expansion of shorter duration signals (or sounds) and compression of longer signals (or phrases, etc.). For example, on the 40 to 4000Hz frequency range, simple switching permits selection of sampling times (and sonagram full-scale time base) of 4.8 sec. or 1.2 sec., in addition to the usually provided 2.4 second sample.

A complete line of accessories, including the 6070A Contour Display and 6076C 10-1000 Hz 19.2 sec. Scale Magnifier Plug-ins, the 6077A time-mark generator, the large drum, and special filter plug-ins are available with the 7029A.

The new Model 7029ADC is also available for use with the 7029A. This accessory 80-8000 Hz 2.4 sec. 160-16000 Hz 1.2 sec. unit provides dual recording channels for time-synchronization of the recorded signals.

1970s

Basics of spectrogram operation

- Original systems used bandpass filters
- Accumulated energy was represented by a dark image <u>burned</u> onto specially-treated paper
- Nowadays, performed digitally using variety of algorithms (e.g., LPC = *linear predictive coding*)

Relating line spectrum to spectrogram ~ "video"

36

Sample of word "spectrogram"

Vowel basics

• Here is /i a i a / produced with level pitch

Let's find some vowels!

Here they are:

Consonants – formant transitions

An

 example of
 an F1
 transition
 for the
 syllable
 /da/

American English vowels in /b_d/ context

- TOP ROW (front vowels): "bead bid bade bed bad"
- BOTTOM ROW (back vowels) "bod bawd bode buhd booed"

Stops/ formant transitions

- Spectrograms of "<u>b</u>ab" "<u>d</u>ad" and "<u>g</u>ag"
- <u>Labials</u> F2 point down, <u>alveolars</u> F2 point to ~1700-1800 Hz, <u>velars</u> "pinch" F2 and F3 together
- Note: bottom-most fuzzy is the voice bar!

Voicing

/ba/

/da/

/ga/

(voice of WK)

Fricatives

- Top row: /f/, theta, s, esh,
- Bottom row: /v/, ethe, z, long z
- Distribution of the spectral noise is the key here!

The fricative /h/

- Commonly excites all the formant cavities
- May look slightly different in varying vowel contexts

Nasal stops

- Spectrograms of "dinner dimmer dinger"
- Marked by "zeroes" or formant regions with little energy
- Can also result in broadening of formant bandwidths (fuzzying the edges)

Approximants

/J - very low third formant, just above F2

/l/ - formants in the neighborhood of 250, 1200, and 2400 Hz; less apparent in final position.

Higher formants considerable reduced in intensity

Stops versus tap/flap

"a toe" "a doe" "otto"

- For full stops, there is about 100 ms of silence
- For tap, only about 10-30 ms

Pseudo-colored example

- Here is an American English /æ/ (male)
- "Hot" areas (in green/yellow/red) have more energy

Wavesurfer

Some "tough cases"....

а

ALS-

(Healthy male control)

Amotryophic lateral sclerosis (notice loss of formant

frequency quality)

Women and children

(High F₀ can cause problems estimating formants)