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Figure 5. a) Topographical distribution maps of correlation between absolute ERP amplitudes and the mag-
nitudes of vocal motor adaptation responses to pitch-shifted auditory feedback in 100 ms time bins within a 
window from 100 ms before to 500 ms after the onset of vocalization. b) The trend line plots of the signi�cant 
correlation results in representative contacts before and after the onset of vocalization. 

 

Background

Speech production is mediated by a series of motor movements 
developed for communicative intent. Vocal production is an im-
portant subcomponent of speech that enables individuals to con-
trol the pitch and loudness of their voice through controlling the 
movement of respiratory and laryngeal muscles. Recent models of 
the vocal system have emphasized the role of auditory and soma-
tosensory feedback mechanisms in motor control of vocalization 
[e.g., 1, 2, 3]. Evidence from previous studies has supported the 
notion that motor behaviors can be shaped temporarily with cor-
rective intent (adaptive behaviors) and new behaviors can be de-
veloped with lasting e�ects (learned behaviors) following changes 
in sensory feedback stimuli [4, 5].   

Objective
 

The present study investigated the underlying neural mechanisms 
of behavioral responses involved in sensorimotor adaptation to 
pitch-shifted auditory feedback.
     

Behavioral vocal responses

Vocal pitch output during baseline condition was relatively stable. Downward pitch 
shifts in auditory feedback were compensated for with a progressive change in voice 
pitch in the upward direction during adaptation that was maintained during washout. 
    

On average, subjects compensated for 60.9% of pitch shifts in the auditory feedback 
during adaptation onset and 73.5% during adaptation o�set. Vocal pitch output re-
mained at 57.2% above baseline level during washout.

Figure 1. Results of the behavioral vocal response analysis: a) trial-by-trial pro�le of the grand-average (n=13) vocal 
responses during baseline, adaptation onset, adaptation o�set and washout conditions. b) Bar plot representation of 
the statistical analysis for the di�erences between the mean of the grand-average vocal responses during baseline, ad-
aptation onset, adaptation o�set and washout conditions (** p<0.01). 
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Experimental task
 

12 healthy subjects with no reported history of voice or musical train-
ing (2 males, age range: 22–27 years, mean age: 24.8 years) repeatedly 
produced steady vocalizations of the vowel sound /a/ while receiving 
voice auditory feedback across four vocalization phases: 

1) Baseline: Voice auditory feedback not altered
2) Adaptation (onset): Auditory feedback pitch shifted by -100 cents 
3) Adaptation (o�set): Continuation of the previous adaptation phase 
4) Washout: Auditory feedback returned to baseline (no alteration)

EEG recording
 

EEG signals were sampled at 1 kHz and recorded by 64 electrodes.

Behavioral vocal response
Vocal responses to pitch shift stimuli were calculated by extracting and 
averaging the pitch frequency contours (in cents) across all trials.

Figure 3. a) Pro�le of the grand-average (n=12) ERP responses in CPz (centro-parietal) electrode 
from -200 ms before to 500 ms after the onset vocalization overlaid across baseline, adaptation 
onset, adaptation o�set and washout conditions. b and c) Bar plot representation of the post-hoc 
statistical analysis for the di�erences between grand-average ERP activities across all conditions in 
100 ms time bins within a window from 100 ms before to 500 ms after the onset of vocalization. (* 
p<0.05) 

Figure 2. Topographical distribution maps of the ERP activity during baseline, adaptation onset, adaptation o�set and 
washout conditions in 100 ms time bins within a window from 100 ms before to 500 ms after the onset of vocalization.

Discussion
We propose that our �ndings support the following:

 

ERP responses

During baseline trials, a left-lateralized ERP component over the temporal area was 
elicited in a time window from -100 ms to 200 ms after vocalization onset. This activ-
ity was diminished during adaptation and washout.

Pre-vocalization ERP activity was elicited from -100 to 0 ms prior to the onset of vocal 
production with centro-parietal distribution. 

Post-vocalization ERP activity was elicited within 0-100 ms  with parietal distribution 
and within 100-200 ms with central distribution after voice onset. ERP activities were 
of larger amplitude during adaptation onset.

Post-vocalization ERP activity was also elicited with fronto-central distribution from 
200-500 ms with no signi�cant di�erence in amplitude among all conditions.
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Figure 4. a) Pro�le of the grand-average (n=12) ERP responses in TP7 (left temporo-parietal) and 
TP8 (right temporo-parietal) electrodes from -200 ms before to 500 ms after the onset vocalization 
overlaid across baseline, adaptation onset, adaptation o�set and washout conditions. b) Bar plot 
representation of the post-hoc statistical analysis for the di�erences between grand-average ERP 
activities in the left and right hemispheres and across all conditions in time windows from 0-100 ms 
and 100-200 ms after the onset of vocalization. (* p<0.05) 

Results (cont.)

[text]

 

Correlation analysis
Distinct ERP response patterns that signi�cantl correlated with the magn-
tiude of vocal motor adaptation pre- and post-vocalization.

Early stages of sensorimotor adaptation to pitch-shifted feedback in-
volves increased contribution of the parietal cortex to incorporate audi-
tory feedback for error detection and remapping of feedforward motor 
commands for error correction. However, as learning proceeds the error 
correction is internalized within the feedforward motor mechanisms of 
the frontal cortex and the contribution of the auditory feedback, and 
subsequently the interfacing parietal cortical mechanisms, are declined 
during vocal motor adaptation. Furthermore, we suggest that the proc-
ess of error internalization is mediated by establishing an updated map 
of feedforward motor commands in the cortical motor areas of the left 
hemisphere.

Distinct neural substrates in the auditory (temporal), motor 
(central), and sensorimotor (parietal) cortical areas are involved in 
motor adaptation during vocal production under pitch-shifted 
auditory feedback.

This is consistent with previous studies on altered auditory feedback 
[e.g., 4 - 10]. Moreover, modulation of ERP activity supports that:

Figure 5. a) Topographical distribution maps of correlation between absolute ERP amplitudes and the mag-
nitudes of vocal motor adaptation responses to pitch-shifted auditory feedback in 100 ms time bins within a 
window from 100 ms before to 500 ms after the onset of vocalization. b) The trend line plots of the signi�cant 
correlation results in representative contacts before and after the onset of vocalization. 
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movement of respiratory and laryngeal muscles. Recent models of 
the vocal system have emphasized the role of auditory and soma-
tosensory feedback mechanisms in motor control of vocalization 
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Experimental task
 

12 healthy subjects with no reported history of voice or musical train-
ing (2 males, age range: 22–27 years, mean age: 24.8 years) repeatedly 
produced steady vocalizations of the vowel sound /a/ while receiving 
voice auditory feedback across four vocalization phases: 

1) Baseline: Voice auditory feedback not altered
2) Adaptation (onset): Auditory feedback pitch shifted by -100 cents 
3) Adaptation (o�set): Continuation of the previous adaptation phase 
4) Washout: Auditory feedback returned to baseline (no alteration)

EEG recording
 

EEG signals were sampled at 1 kHz and recorded by 64 electrodes.

Behavioral vocal response
Vocal responses to pitch shift stimuli were calculated by extracting and 
averaging the pitch frequency contours (in cents) across all trials.

Figure 3. a) Pro�le of the grand-average (n=12) ERP responses in CPz (centro-parietal) electrode 
from -200 ms before to 500 ms after the onset vocalization overlaid across baseline, adaptation 
onset, adaptation o�set and washout conditions. b and c) Bar plot representation of the post-hoc 
statistical analysis for the di�erences between grand-average ERP activities across all conditions in 
100 ms time bins within a window from 100 ms before to 500 ms after the onset of vocalization. (* 
p<0.05) 

Figure 2. Topographical distribution maps of the ERP activity during baseline, adaptation onset, adaptation o�set and 
washout conditions in 100 ms time bins within a window from 100 ms before to 500 ms after the onset of vocalization.

Discussion
We propose that our �ndings support the following:

 

ERP responses

During baseline trials, a left-lateralized ERP component over the temporal area was 
elicited in a time window from -100 ms to 200 ms after vocalization onset. This activ-
ity was diminished during adaptation and washout.

Pre-vocalization ERP activity was elicited from -100 to 0 ms prior to the onset of vocal 
production with centro-parietal distribution. 

Post-vocalization ERP activity was elicited within 0-100 ms  with parietal distribution 
and within 100-200 ms with central distribution after voice onset. ERP activities were 
of larger amplitude during adaptation onset.

Post-vocalization ERP activity was also elicited with fronto-central distribution from 
200-500 ms with no signi�cant di�erence in amplitude among all conditions.
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Figure 4. a) Pro�le of the grand-average (n=12) ERP responses in TP7 (left temporo-parietal) and 
TP8 (right temporo-parietal) electrodes from -200 ms before to 500 ms after the onset vocalization 
overlaid across baseline, adaptation onset, adaptation o�set and washout conditions. b) Bar plot 
representation of the post-hoc statistical analysis for the di�erences between grand-average ERP 
activities in the left and right hemispheres and across all conditions in time windows from 0-100 ms 
and 100-200 ms after the onset of vocalization. (* p<0.05) 
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Correlation analysis
Distinct ERP response patterns that signi�cantl correlated with the magn-
tiude of vocal motor adaptation pre- and post-vocalization.

Early stages of sensorimotor adaptation to pitch-shifted feedback in-
volves increased contribution of the parietal cortex to incorporate audi-
tory feedback for error detection and remapping of feedforward motor 
commands for error correction. However, as learning proceeds the error 
correction is internalized within the feedforward motor mechanisms of 
the frontal cortex and the contribution of the auditory feedback, and 
subsequently the interfacing parietal cortical mechanisms, are declined 
during vocal motor adaptation. Furthermore, we suggest that the proc-
ess of error internalization is mediated by establishing an updated map 
of feedforward motor commands in the cortical motor areas of the left 
hemisphere.

Distinct neural substrates in the auditory (temporal), motor 
(central), and sensorimotor (parietal) cortical areas are involved in 
motor adaptation during vocal production under pitch-shifted 
auditory feedback.

This is consistent with previous studies on altered auditory feedback 
[e.g., 4 - 10]. Moreover, modulation of ERP activity supports that:


