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Depression is one of the most common psychiatric conditions in individuals with chronic 
traumatic brain injury (TBI). Though depression has detrimental effects in TBI and net-
work dysfunction is a “hallmark” of TBI and depression, there have not been any prior 
investigations of connectivity-based neuroimaging biomarkers for comorbid depression 
in TBI. We utilized resting-state functional magnetic resonance imaging to identify altered 
amygdala connectivity in individuals with chronic TBI (8 years post-injury on average) 
exhibiting comorbid depressive symptoms (N = 31), relative to chronic TBI individuals 
having minimal depressive symptoms (N = 23). Connectivity analysis of these participant 
sub-groups revealed that the TBI-plus-depressive symptoms group showed relative 
increases in amygdala connectivity primarily in the regions that are part of the salience, 
somatomotor, dorsal attention, and visual networks (pvoxel  <  0.01, pcluster  <  0.025). 
Relative increases in amygdala connectivity in the TBI-plus-depressive symptoms group 
were also observed within areas of the limbic–cortical mood-regulating circuit (the left 
dorsomedial and right dorsolateral prefrontal cortices and thalamus) and the brainstem. 
Further analysis revealed that spatially dissociable patterns of correlation between 
amygdala connectivity and symptom severity according to subtypes (Cognitive and 
Affective) of depressive symptoms (pvoxel < 0.01, pcluster < 0.025). Taken together, these 
results suggest that amygdala connectivity may be a potentially effective neuroimaging 
biomarker for comorbid depressive symptoms in chronic TBI.

Keywords: TBi, depression, functional connectivity, fMri, amygdala, resting-state, BDi, beck depression 
inventory-ii

inTrODUcTiOn

Depression is one of the most common psychiatric conditions among individuals with traumatic 
brain injury (TBI) (1–5). For example, a recent study with large sample size (N  =  559) showed 
that 53.1% met criteria for major depressive disorder during the first year following the occurrence 
of a TBI (6). The comorbidity of depression in TBI is associated with poorer cognitive function 
(7–9), reduced health-related quality of life (6, 10, 11), greater functional disability (3, 12), increased 
suicide attempts (13), greater sexual dysfunction (14), less social and recreational activity (15), 
and poorer recovery (16). Given the significant effects of comorbid depression on individuals with 
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TBI, it is important to better understand the underlying neural 
mechanisms of depression in the context of TBI.

Structural and functional connectivity utilizing advanced 
neuroimaging techniques, such as diffusion tensor imaging (DTI) 
and functional magnetic resonance imaging (fMRI), revealed 
that network dysfunction is a hallmark of TBI, particularly mild 
TBI [see Sharp et al. (17) for a review]. For example, resting-state 
functional connectivity MRI has been used to identify alterations 
in the default mode network (DMN) (18, 19), executive network 
(19), inter-hemispheric connectivity (20), thalamic connectivity 
(21), small-worldness (22, 23), and modular organization (24) of 
individuals with TBI. The primary injury mechanism responsible 
for such network dysfunction following TBI is diffuse axonal 
injury (DAI) (25). Since DAI occurs at multiple white matter 
pathways connecting distributed regions across the brain, the 
effects of DAI are complex. Furthermore, DAI may interact with 
pathology associated with complications arising late in life after 
TBI such as Alzheimer’s disease or chronic traumatic encepha-
lopathy (17). Thus, connectivity-based assessments of individuals 
with TBI may continue to provide valuable information for us 
to better understand the complex nature of clinical outcomes 
following TBI.

Depression is currently viewed as a system-level disorder 
that affects (1) integrated pathways linking limbic, cortical, and 
subcortical brain regions (26) and (2) neurotransmitter activity 
related to these regions (27). Since depression is fundamentally 
a mood disorder, investigating neural processes occurring over 
extended periods of time (minutes or hours) rather than brief 
periods of time (such as individual trials lasting only seconds in 
a task-based fMRI session) may be more relevant to our under-
standing of depression (28). Thus, the research community has 
increasingly relied upon resting-state fMRI (rsfMRI) to investi-
gate neural function in individuals diagnosed with depression 
[see Dutta et al. (29), Hamilton et al. (28), Northoff et al. (30), and 
Wang et al. (31) for a review]. For example, previous resting-state 
fMRI studies of depression have revealed increased DMN con-
nectivity in the subgenual anterior cingulate cortex and thalamus 
(32), reduced frontoparietal control network (FPCN) (33) con-
nectivity (34), reduced salience network (SN) (35) connectivity 
involving the anterior insula (36), and elevated connectivity of 
the dorsomedial prefrontal cortex (DMPFC) to the DMN, cogni-
tive control, and affective networks (ANs) (37) in individuals 
with depression. These reductions and increases in connectivity 
related to depression provide a complex picture at the present 
time. The directionality of altered connectivity may depend upon 
a variety of factors, including brain regions involved, age, and 
comorbid conditions.

Given the central role of the amygdala in both bottom-up 
and top-down emotional processes (38), the amygdala and its 
connecting regions have been widely studied in the depression 
literature (39–48). From a network perspective, the amygdala has 
connections with the cortical–striatal–pallidal–thalamic circuit, 
which is often considered to be the core neural system in mood 
disorders (49). More specifically, the amygdala connects (1) the 
medial prefrontal cortex, a part of the DMN (50), and (2) anterior 
insula and hypothalamus, both of which are parts of the SN (35). 
Since alterations in the DMN and SN of individuals TBI have 

been previously reported (18, 19, 51), it is important to investigate 
whether amygdala connectivity can be a potential neuroimaging 
biomarker for comorbid depression among individuals at the 
chronic phase of a TBI.

Though two separate lines of research in (1) TBI without 
depression and (2) depression without TBI have both demon-
strated marked network dysfunction of those individuals, there 
have been no functional or structural connectivity studies in 
individuals with both TBI and depression. As such, most of 
the studies of neuroimaging biomarkers for comorbid depres-
sion among individuals with TBI have been limited to regional 
assessments of brain structure and function, including regional 
gray matter volume (8, 52–55), white mater integrity (56–58), 
presence of microbleeds (31), and regional brain activity (40, 41, 
59–61). Thus, connectivity-based studies in TBI with comorbid 
depressive symptoms can contribute to this body of literature and 
are well suited to capturing the larger-scale network interactions 
associated with depressive symptoms in this population.

Depression is a psychological construct comprised of several 
factors (62). Previous investigations of the neural correlates of 
depression severity in TBI (41, 52, 54, 56) did not specifically 
characterize the neural correlates in accordance with subtypes 
of depressive symptoms [see Strain et al. (58) for an exception]. 
Given the heterogeneity of both depressive symptoms and TBI, 
several studies attempted to identify the underlying factor struc-
ture of depressive symptoms among TBI individuals (63–65). 
Thus, identifying neural correlates of these underlying factors will 
be useful for assessment, diagnosis, and characterization of often 
heterogeneous TBI population (66).

Here, we utilized resting-state fMRI to identify altered amyg-
dala connectivity within individuals with chronic TBI and comor-
bid depressive symptoms. Based on previous findings reporting 
abnormal amygdala connectivity in depression and aberrant con-
nectivity in TBI, we hypothesized that the amygdala connectivity 
of TBI individuals with comorbid depressive symptoms would be 
altered, relative to TBI individuals exhibiting minimal depressive 
symptoms. We also predicted that amygdala connectivity would 
be characterized by abnormal spatial patterns associated with dif-
ferent subtypes of depressive symptoms according to the Buckley 
categories of items from the Beck Depression Inventory (BDI), 
which classifies depression into separable constructs representing 
cognitive, somatic, and emotional symptoms (62, 67).

MaTerials anD MeThODs

Participants
The data used for this analysis are part of an ongoing study 
(68). We analyzed 54 chronic TBI individuals who ranged from 
lower moderate disability to lower good recovery [age 20–60; 
>6 months post-injury; 5–7 on the extended Glasgow outcome 
scale (GOS-E)] (69), who completed MRI scans and whose 
MRI scans passed quality assurance (QA) procedures described 
below. We recruited these participants from the Dallas–Ft. Worth 
community and screened by a phone interview before inclusion 
in the study. The primary causes of TBIs are blasts, blunt force 
trauma, falls, athletic impacts, vehicle accidents, or combinations 
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thereof. Note that, at several years post-injury time, it was not 
feasible to obtain all participants’ clinical information on initial 
injury characteristics such as Glasgow coma scale (GCS) (70) or 
the duration of loss of consciousness (LOC) from the inpatient, 
acute-care facilities where they were hospitalized multiple years 
ago (see the limitation section regarding limited clinical informa-
tion on initial injury). Therefore, injury severity and the duration 
of LOC at the time of injury were estimated utilizing the Ohio 
State University TBI identification (OSU TBI-ID) method (71). 
The OSU TBI-ID method is a structured interview developed 
to incorporate recommendations from the Centers for Disease 
Control and Prevention (CDC) for the detection of TBI history. 
The OSU TBI-ID first elicits recall of all possible head or neck 
injuries receiving medical attention, or that should have received 
medical attention. The elicitation method subsequently focuses 
on any injuries involving a blow to the head or neck, fall, blast 
exposure, or vehicle accident that can cause an injury to the 
brain. For these injuries, the occurrence and nature of altered 
consciousness and treatment received are probed. Using the 
OSU TBI-ID, various pieces of information on injury history 
are available, including injury severity, the number of injuries, 
worst injury, age at injury, and time since the most recent injury. 
Bogner and Corrigan (72) and Corrigan and Bogner (71) showed 
that the OSU TBI-ID method had good inter-rater reliability and 
test–retest reliability. Previous studies (71, 72) demonstrated the 
validity of summary indices driven from the OSU TBI-ID to 
predict TBI-related cognitive and behavioral deficits. Note that 
the OSU TBI-ID method estimates initial injury severity based 
on the duration of LOC and the CDC guidelines for the con-
ceptual definition and identification of TBI (73, 74). Specifically, 
the TBI participants whose duration of LOC <30 min, <24 h, or 
>24 h were considered to be probable mild, probable moderate, 
or probable severe TBI, respectively. The participants included 
both civilians and veterans (see Table 1 for demographics). No 
participants had a history of any significant, clinically diagnosed 
neurological or psychiatric comorbidities. Participants also had 
no history of depressive symptoms prior to their TBI or TBIs. 
We also confirmed that all participants’ brains were free of vis-
ible focal lesions, contusions, mass shifting, or extreme cortical 
thinning on structural MRI scans. This confirmation should 
rule out potential effects of such macro structural injuries on 
fMRI preprocessing steps, including registration and subsequent 
functional connectivity analyses. All participants provided writ-
ten informed consent. This study was conducted in compliance 
with the declaration of Helsinki. The study was approved by the 
Institutional Review Boards of the University of Texas at Dallas 
and University of Texas Southwestern Medical Center.

assessment of Depressive symptoms
Depressive symptom severity was quantified using the Beck 
Depression Inventory-II (BDI-II) (75). In the development of the 
BDI test, Beck et al. (75) showed that the BDI-II had excellent 
internal consistency for the 500 psychiatric outpatients (α = 0.92) 
and the 120 college students (α = 0.93) and a robust 1-week test–
retest correlation (r = 0.93). They also reported highly convergent 
and discriminant validity of the BDI-II with respect to clinically 
rated depression and anxiety such as the Revised Hamilton 

Psychiatric Rating Scale for Depression (76) and the Revised 
Hamilton Anxiety Rating Scale (77). According to suggested total 
BDI score guidelines for the diagnosis of major depression (75), 
we subdivided the TBI participants into two groups: a TBI with 
minimal depressive symptom group (N = 23; 0–13) and a TBI with 
mild to severe depressive symptom group (N = 31; 14–63). Due 
to a previous report detailing altered amygdala connectivity in 
post-traumatic stress disorder (PTSD) (78, 79), we also measured 
PTSD symptom severity of the TBI participants enrolled in this 
study using the PTSD Check List Stressor-specific (PCL-S) (80) 
for the forth edition of the American Psychiatric Association’s 
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).

neuropsychological assessments
We administered neuropsychological tests on the participants to 
characterize the TBI sub-groups in a variety of domains. These 
tests include similarities, matrix reasoning, and full scale intelli-
gent quotient-2 (FSIQ-2) from the Wechsler Abbreviated Scale of 
Intelligence (WASI) for estimated current IQ (81), FSIQ from the 
Wechsler Test of Adult Reading (WTAR) for estimated premor-
bid IQ (82), digit span forward and backward from the Wechsler 
Adult Intelligence Scale-Third Edition (WAIS-III) for working 
memory (83), color-word, verbal fluency, card sorting, trail mak-
ing from the Delis–Kaplan Executive Function System (D–KEFS) 
for inhibitory control, switching, verbal fluency, processing speed 
and problem solving (84), immediate recall and delayed recall 
from the Wechsler Memory Scale-Fourth Edition (WMS-IV) for 
memory and recall (85), verbal problem solving assessment (S. B. 
Chapman, unpublished data), and visual selective learning task 
adapted from Hanten et  al. (86). We also assessed satisfaction 
with life scale (87) for the participants to measure global cognitive 
judgments of their life satisfaction.

Mri Data acquisition
The participants underwent MRI scanning on a Philips Achieva 
3  T scanner (Philips Medical Systems, Netherlands) at the 
Advanced Imaging Research Center at the University of Texas 
Southwestern Medical Center. In each imaging session, one or 
two 416-s runs of rsfMRI were acquired using a standard 32-chan-
nel head coil with T2*-weighted image sequence (repetition time 
(TR)/echo time (TE) = 2000/30 ms; flip angle (FA) = 80°; field 
of view (FOV) = 22.0 cm × 22.0 cm; matrix = 64 × 64; 37 slices, 
4.0 mm thick). During rsfMRI acquisition, the participants were 
asked to remain still with their eyes closed. For rsfMRI alignment, 
we obtained one high-resolution T1-weighted image of the whole 
brain (TR/TE = 8.2/3.8 ms; FA = 12°; FOV = 25.6 cm × 25.6 cm; 
matrix = 256 × 256; 160 slices, 1.0 mm thick) for each participant 
using the same head coil.

Mri Preprocessing
Resting-state fMRI data were preprocessed with standard 
methods using a modified version of a shell script generated by 
http://afni_proc.py1 from AFNI (88). Each subject’s whole-brain 
structural images were first skull-stripped and registered (affine 

1 http://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html
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transform with 12 parameters) to the Montreal Neurological 
Institute (MNI) space (89). For each rsfMRI run, the initial 
four time points were discarded to allow T1 magnetization 
saturation. Standard preprocessing methods were then applied, 
including despiking, slice timing correction, motion correction, 
coregistration to the structural images in the MNI space using a 
single affine transform with spatial resampling (4 mm isotropic), 
normalization to whole-brain mode of 1000, band-pass filtering 
(0.009 < f < 0.08 Hz), and linear regression. At the motion cor-
rection stage, the six rigid body motion profiles were obtained 
for the linear regression. In the linear regression, the rsfMRI time 
series were third order detrended, and several sources of signal 
fluctuation unlikely to be of neuronal origin were regressed out 
as nuisance variables: (1) six parameters for the rigid body head 
motion acquired from the motion correction (90), (2) the signal 
averaged over the lateral ventricles (91), (3) the signal averaged 
over a region centered in the deep cerebral white matter (91), 
and (4) the first temporal derivatives of aforementioned param-
eters. Note that we did not apply global signal regression in this 
procedure since global signal regression could arguably generate 
difficulties in interpreting group comparisons (92–96). After the 
linear regression, motion “scrubbing” (97) was performed with 
a framewise displacement (FD) of 0.5  mm and a standardized 
DVARS2 of 1.8 to prevent potential motion artifacts (97–99). A 
standardized DVARS of 1.8 corresponds to the median plus 1.5 
times interquartile range of the standardized DVARS data across 
all frames and runs. The remaining rsfMRI signals were spatially 

2 http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/
scripts/fsl/DVARS.sh

blurred with 6-mm full-width-at-half-maximum (FWHM) 
Gaussian kernel. For participants on whom two runs of rsfMRI 
scans were acquired, the two preprocessed rsfMRI runs were 
temporally concatenated. To account for the differences in total 
number of frames (subsequently different degrees of freedom for 
correlation coefficients) after motion scrubbing across rsfMRI 
scans, all remaining frames were trimmed to the minimum 
length (121 frames; 242 s) across all rsfMRI scans as suggested 
in Power et al. (100).

Quality assurance
We visually inspected all structural MRI scans to ensure that 
subjects had no significant brain atrophy. In rsfMRI preprocess-
ing, the quality of the preprocessed data was visually inspected at 
each step. After motion “scrubbing,” we confirmed that the total 
time duration of remaining frames after the “scrubbing” exceeded 
4 min, the minimum length required to reliably estimate func-
tional connectivity (101).

Whole-Brain seed-Based connectivity 
analysis
For each participant, amygdala connectivity was identified by 
seeding the center of mass (L: −24, −1, −16; R: 26, 1, −18) of the 
amygdala labels in the automated anatomical label (AAL) atlas 
(102) with 5-mm radius spheres, respectively. Pearson correlation 
maps were then Fisher’s Z-transformed to ensure the normality of 
correlations, followed by conversions to z-scores (i.e., normal dis-
tributions with zero mean and unit variance). To identify patterns 
of group differences in amygdala connectivity, we performed the 
general linear model (GLM) analysis at each of the voxels with 
regressors of group memberships, age, PCL-S scores, age by 

TaBle 1 | Demographics.

Demographics TBi-plus-depressive 
symptomsa

TBi-onlyb stat DF p-valuec ci es

Number of participants 31 23 – – – – –

Age (years)d 38.8 ± 11.2 39.0 ± 11.7 −0.1 46.3 0.96 (−6.5, 6.2) −0.01

Education (years)d 15.9 ± 2.9 15.7 ± 1.8 0.3 51.1 0.77 (−1.1, 1.5) 0.08

Gender (males, females) 19, 12 14, 9 1.0 – 1.00 (0.3, 3.0) 0.98

Civilians, veterans 19, 12 16, 7 1.4 – 0.58 (0.5, 4.5) 1.44

Post-injury time (years)d 8.9 ± 10.0 7.6 ± 6.3 883 – 0.74 (−3.4, 2.3) 0.05

Estimated injury severity (mild, moderate, severe)e 21, 4, 6 17, 3, 3 0.4 2 0.82 – 0.08

Primary cause of injury (blast, blunt force trauma,  
fall, athletic impacts, vehicle accidents, combined)

3, 4, 6, 3, 8, 7 2, 4, 2, 3, 5, 7 1.7 5 0.88 – 0.18

Estimated LOC (<30 min, <1 day, >1 day) 21, 4, 6 17, 3, 3 0.4 2 0.82 – 0.08

PCL-Sd 50.1 ± 15.4 31.7 ± 12.5 5.0 51.5 <10−5 (11.6, 26.9) 1.33

BDI-II totald 22.4 ± 6.4 7.3 ± 4.1 – – – – –

BDI-II Buckley cognitived 8.3 ± 3.5 1.6 ± 1.6 9.4 44.4 <10−11 (5.2, 8.1) 2.30

BDI-II Buckley affectived 4.7 ± 2.2 1.9 ± 1.6 5.5 52.0 <10−5 (1.8, 3.9) 1.42

BDI-II Buckley somaticd 9.4 ± 3.8 3.7 ± 2.4 6.7 51.2 <10−7 (4.0, 7.4) 1.72

Motion-censored volumes (%)d 16.6 ± 13.5 12.0 ± 8.5 911 – 0.31 (−2.5, 7.7) −0.14

FD after censoring and trimming (mm)d 0.17 ± 0.05 0.15 ± 0.04 1.6 49.1 0.11 (<−0.1, <0.1) 0.43

LOC, loss of consciousness; PCL-S, Post-traumatic Stress Disorder Check List Stressor-specific; BDI-II, Beck Depression Inventory-II; FD, framewise displacement; Stat, statistical 
value; DF, degrees of freedom; CI, confidence interval; ES, effect size.
aBDI-II of 14–63.
bBDI-II of 0–13.
cBold face indicates p < 0.05. 
dMean and SD values were reported.
eBased on the OSU TBI screening form (71).
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TaBle 2 | Buckley BDi-ii factor structure.

# Factora Test item

1 Cognitive (1) Sadness

2 Cognitive (2) Pessimism

3 Cognitive (3) Past failure

4 Cognitive (5) Guilty feelings

5 Cognitive (6) Punishment feelings

6 Cognitive (7) Self-dislike

7 Cognitive (8) Self-criticalness

8 Cognitive (9) Suicidal thoughts or wishes

9 Cognitive (14) Worthlessness

10 Affective (4) Loss of pleasure

11 Affective (10) Crying

12 Affective (12) Loss of interest

13 Affective (13) Indecisiveness

14 Somatic (11) Agitation

15 Somatic (15) Loss of energy

16 Somatic (16) Changes in sleeping pattern

17 Somatic (17) Irritability

18 Somatic (18) Changes in appetite

19 Somatic (19) Concentration difficulty

20 Somatic (20) Tiredness or fatigue

21 Somatic (21) Loss of interest in sex

aThe Buckley three-factor model (67).
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PCL-S score interactions, and FD after censoring and trimming. 
Specifically, connectivity strength for the participants at each of 
the voxels was modeled as follows:

 

y I a I p I p
I a p I a p f e

= + + +
+ + + +
β β ⋅ β ⋅ β ⋅ ⋅ β ⋅ ⋅
β ⋅ ⋅ ⋅ β ⋅ ⋅ ⋅ β ⋅

2 3 4 5

6 7 8

1 D C D

C D

+

 

where vectors a, p, and f are age, PCL-S scores, and FD after 
censoring and trimming for the participants, IC and ID are group 
indicator vectors for the controls and depressive symptoms 
group, and e is a normally distributed vector with zero mean, 
respectively. The age values were included in this model because 
of reports of significant age effects on amygdala connectivity in 
healthy individuals (103), and the PCL-S scores were included 
to account for potential effects of PTSD on amygdala connectiv-
ity (78, 79). FD after censoring and trimming was included to 
account for potential effects of trends in higher FD in TBI-plus-
depressive symptoms group. To construct covariate regressors, 
the age and FD values were centered at the global mean over the 
two groups after confirming no statistically significant group dif-
ferences whereas the PCL-S scores were within-group centered to 
interpret the between-group differences in amygdala connectivity 
at their respective average PCL-S scores. The reason for applying 
within-group centering to the PCL-S scores was due to reported 
comorbidities between depression and PTSD in TBI (104) and 
statistically significant group differences in the PCL-S scores for 
our groups (see Table 1 and limitations relevant to comorbidity 
between depression and PTSD in TBI). Statistically significant 
group differences in amygdala connectivity at the whole-brain 
level were identified at pvoxel < 0.01, correcting for multiple com-
parisons across voxels by cluster size using AFNI’s AlphaSim and 
across the number of amygdala seeds by additional Bonferroni 
correction at pcluster < 0.05/2 (20 voxels; 1,280 mm3).

conjunction analysis
To identify regions showing consistent group differences in both 
left and right amygdala connectivity, we performed a conjunction 
analysis. This was performed in accordance with the conjunction 
inference procedure described by Nichols et al. (105). We took 
minimum statistics over the group comparison maps for left and 
right amygdala connectivity at each of the voxels then thresholded 
the minimum statistic map over the whole brain at pvoxel < 0.01 
and pcluster  <  0.025. We identified peak foci of the conjunction 
map as follows. First, we generated local peaks within the given 
cluster with >8 mm apart. Next, we selected a local peak closest 
to the center of mass for the cluster as a focus of the cluster. To 
elucidate spatial patterns of altered amygdala connectivity at the 
large-scale network level, we also overlaid the conjunction map 
onto network-based parcelation maps of the cerebral cortex and 
cerebellum (106, 107).

correlation analysis
We performed a correlation analysis to identify spatial patterns of 
amygdala connectivity associated with sub-factors of depressive 
symptoms within the TBI-plus-depressive symptoms group. We 
first obtained participants’ BDI-II sub-factor scores using the 
Buckley three-factor model (67). The Buckley three-factor model 

decomposes the total BDI-II scores into cognitive, affective, and 
somatic symptoms (see Table  2). The cognitive factor includes 
items regarding sadness, pessimism, past failure, guilty feelings, 
punishment feelings, self-dislike, self-criticalness, suicidal idea-
tion, and worthlessness. The affective factor includes items prob-
ing loss of pleasure, crying, loss of interest, and indecisiveness. 
The somatic factor includes the agitation, loss of energy, sleep 
disturbance, irritability, appetite disturbance, concentration dif-
ficulty, fatigue, and loss of sexual interest test items. The Buckley 
factor model was originally proposed for treatment-seeking sub-
stance abuser (67). The Buckley factor model has been reported to 
provide a better characterization of depressive symptom severity 
of psychiatric patients over alternative models (108) and served 
as the best model for veterans with polytrauma (63). Regions 
with statistically significant correlation between amygdala con-
nectivity and each of the Buckley BDI-II sub-scores were then 
identified at pvoxel < 0.01, correcting for multiple comparisons by 
cluster size using AFNI’s AlphaSim and the number of amygdala 
seeds (Bonferroni) at pcluster < 0.05/2 (20 voxels; 1,280 mm3).

Data-Driven connectivity analysis Over 
268 Putative Functional nodes
To identify (1) if the amygdala is the most important driver of 
observed group differences in connectivity strength and the 
patterns of correlation with the Buckley BDI factor scores or, 
alternatively, (2) if these effects can be better represented via 
other components of the distributed network, we assessed group 
differences in connectivity strength and correlation coefficients 
over 268 putative functional nodes. As in Cao et al. (109), the 268 
nodes were obtained by combining 264 nodes reported by Power 
et al. (110), the hippocampi (L: −30, −13, −12; R: 30, −4, −12) 
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from Bilek et al. (111) and the amygdalae. For the defined regions, 
we constructed a Fisher’s Z-transformed connectivity matrix fol-
lowed by a Z-score (zero mean and unit variance) conversion. 
For group comparisons, we performed the GLM analysis at each 
pair of the normalized (Z-scored) connectivity matrix elements. 
Subsequently, we obtained average group differences in connec-
tivity strength for a node (seed) by taking average absolute values 
of Z-statistics for connections between the given node and the 
other 267 nodes. For correlations between connectivity and the 
Buckley BDI factor scores, we obtained Fisher’s Z-transformed 
and normalized (Z-scored) correlation coefficients for each pair of 
nodes. Subsequently, we calculated average correlations between 
BDI factors scores and connectivity strength with a node by tak-
ing average absolutes values of normalized correlation coefficients 
for connections between the given node and the other 267 nodes.

statistical analyses
All statistical analyses were carried out in MATLAB R2013a. 
First, we performed the Shapiro–Wilk test at α = 0.05 to assess 
the normality of age, years of education, post-injury time, PCL-S 
total scores, BDI-II total scores, Buckley BDI factor scores, 
percentage of motion-censored volumes, and average FD after 
motion censoring and trimming within each of the groups. Post-
injury time and percentage of motion-censored volumes did not 
pass Shapiro–Wilk normality test. Thus, the Wilcoxon rank-sum 
test was used to compare these measures between the groups. 
Two sample t-tests were used to compare age, years of educa-
tion, PCL-S total scores, BDI-II total, and Buckley BDI-II factor 
scores between the groups. The Fisher’s exact test was used to 
compare the gender distributions and proportion of civilians and 
veterans between the groups. The likelihood ratio chi-square test 
was used to compare the distribution of primary cause of injury 
between the groups. We performed linear regression analysis on 
neuropsychological measures with age and education covariates.

In these statistical tests, 95% confidence intervals were also 
obtained as follows: mean of group differences for the t-test, 
median of group differences for the Wilcoxon rank-sum test, 
odds ratio for the Fisher’s exact test, and group contrasts for the 
regression analysis. Effect sizes were also obtained for each type of 
test: Hedge’s g for the t-test, W for the first group for the Wilcoxon 
rank-sum test, odds ratio for the Fisher’s exact test, Cramer’s V 
for the chi-square test, and ηp

2 for the linear regression analysis. 
To identify if group differences in amygdala connectivity in the 
GLM analysis have sufficient power, we obtained observed power 
at each of the voxels and thresholded at 0.8.

control analyses
Somatomotor Connectivity
To ensure data quality of resting-state functional connectivity of 
the TBI sub-groups, we obtained the somatomotor connectivity 
by seeding at somatomotor cortices (L: −41, −18, 59; R: 46, −19, 
54) with a 5-mm radius sphere. The seed locations were obtained 
after converting Talairach coordinates reported by Fox et al. (112) 
to MNI coordinates using “tal2icbm” program3 (113).

3 http://www.brainmap.org/icbm2tal/

Group Comparisons with Healthy Individuals
To confirm that the TBI participants had residual TBI-related 
deficits in neuropsychological behavior, we compared neuropsy-
chological assessment results of each of the TBI sub-groups with 
those of 17 healthy individuals whose MRI scans were acquired 
from the same MRI scanner and same imaging parameters as 
those of the TBI sub-groups (see Table S1 in Supplementary 
Material for demographics of the healthy individuals). In addi-
tion, we obtained connectivity in the three groups by seeding 
the posterior cingulate cortex [PCC; L: −7, −55, 27; R: 8, −48, 
31; Power et al. (110)] and anterior prefrontal cortex [aPFC; L: 
−36, 57, 9; R: 34, 52, 10; Vincent et al. (33)] with a 5-mm radius 
sphere, respectively, which are parts of the DMN (50) and FPCN 
(33). We expected that DMN and FPCN would be likely to show 
alterations in the TBI sub-groups relative to the healthy group 
(18, 19, 114). Furthermore, to observe amygdala connectivity of 
the TBI sub-groups in the context of healthy individuals, we per-
formed the GLM analysis with the three groups without PCL-S 
score covariates. Note that, in these group comparisons of the 
neuropsychological test performance and connectivity measures, 
we excluded older TBI participants to match their age with the 
healthy individuals at α = 0.05 as there were statistically signifi-
cant group differences in age with the full TBI samples at α = 0.05 
(see Table S1 in Supplementary Material for the sample sizes of 
the age-matched TBI sub-groups). We further confirmed that 
there were no statistically significant effects of age on any of the 
neuropsychological assessment scores or any of the connectivity 
measures for the age-matched TBI sub-groups and the healthy 
group even though there were still trends that the age-matched 
TBI sub-groups were older than the healthy group (see Table S1 
in Supplementary Material).

Assessment of Amygdala Connectivity in Civilians 
Versus Veterans Within the TBI-Plus-Depressive 
Symptoms Group
To identify if mixed veterans and civilians within the TBI-plus-
depressive symptoms group systematically affected the correlation 
analysis results, we further subdivided the TBI-plus-depressive 
symptoms group into civilians and veterans, then we compared 
their respective amygdala connectivity at peak locations within 
the regions showing statistically significant correlations between 
amygdala connectivity and the BDI sub-scores.

Assessment of the Effects of Comorbid PTSD 
Symptom Severity on Amygdala Connectivity
To assess the effects of comorbid PTSD symptom severity on 
group comparison results for amygdala connectivity in the GLM 
analysis, we also obtained color maps for these covariates at 
pvoxel < 0.01 and pcluster < 0.025.

Assessment of the Effects of Estimated Injury 
Severity on Depressive Symptom Severity and 
Amygdala Connectivity
To identify if there were systematic effects of estimated injury 
severity on our findings, we assessed the BDI-II total scores 
and amygdala connectivity of the TBI sub-groups according 
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to estimated injury severity, and we repeated group analyses of 
amygdala connectivity with probable mild TBI participants only 
(N = 21 for the TBI-plus-depressive symptoms group and N = 17 
for the TBI-only group). Furthermore, we performed group 
analyses of amygdala connectivity by excluding probable mild 
TBI participants while matching the sample sizes for each of the 
newly formed TBI sub-groups with those of the sub-groups of 
participants with mild TBI only. The goal of this analysis was to 
test whether the probable moderate and severe participants con-
tributed more to the amygdala connectivity differences than the 
probable mild TBI participants. To achieve this goal, we utilized 
a resampling method, conceptually similar to the resampling 
procedure described in Han and Talavage (115). Specifically, we 
resampled the TBI sub-groups by excluding 10 (out of 21) and 6 
(out of 17) probable mild TBI participants from the original TBI-
plus-depressive symptoms and TBI-only groups, respectively, in 
a pseudo-random fashion. Then, we performed group analyses 
of amygdala connectivity in the resampled TBI sub-groups. We 
repeated this resampling procedure 5,000 times. Subsequently, we 
defined the magnitude of overall group differences in amygdala 
connectivity by taking average absolute values of Z-statistics 
for the group comparison test over the whole brain. Finally, 
to determine if the magnitude of overall group differences in 
amygdala connectivity of the probable mild TBI participants only 
groups was “significantly” different than those of the resampled 
TBI sub-group (i.e., higher proportions of probable moderate and 
severe TBI participants than the original TBI groups), we assessed 
whether the magnitude of overall group differences in amygdala 
connectivity of the probable mild TBI sub-groups fell outside 
the intervals of 2.5–97.5th percentile (similar to 95% confidence 
intervals for Z-statistics) for group differences, obtained from 
5,000 resampled groups.

Visualization
The thresholded volumetric statistical results for group differ-
ences in amygdala connectivity and correlation analysis were 
surface-projected onto the cortical surface of the population-
averaged landmark- and surface-based (PALS-B12) atlas (116) 
using a multi-fiducial mapping that avoids the biases of choosing 
a cortical surface from a single-individual as an atlas target, 
implemented in Caret Software (117).

resUlTs

Demographics
The TBI participants were in the long-term chronic phase of 
TBI (approximately 8 years post-injury time on average). There 
were no statistically significant group differences in age, educa-
tion, gender, proportion of civilians and veterans, post-injury 
time, distributions of estimated injury severity or primary 
injury types, percentage of motion-censored volumes, or gen-
der (Table  1). The TBI-plus-depressive symptoms group had 
statistically significant higher scores on the PCL-S and Buckley 
BDI factors over the TBI-only group. The finding of higher 
PTSD symptom severity in the TBI-plus-depressive symptoms 
group is consistent with findings reported by Hibbard et  al. 

(4) and Levin et al. (104). We also observed a trend in which 
the TBI-plus-depressive symptoms group had higher FD after 
censoring and trimming than the TBI-only group. Thus, FD 
after censoring and trimming was included as a covariate in all 
subsequent analyses.

neuropsychological Measures
There were no statistically significant group differences in 
estimated premorbid IQ, but group differences in current IQ 
showed marginal statistical significance (Table  3). The TBI-
plus-depressive symptoms group showed poorer performance in 
immediate and delayed recall, consistent with previously reported 
on memory deficits among depressive TBI individuals (9, 60). 
Group analyses of neuropsychological measures also revealed 
group differences in category fluency scores of the verbal fluency 
test. Relatively poor performance in these neuropsychological 
measures of the TBI-plus-depressive symptoms group indicates 
that there were adverse effects of depressive symptoms likely 
influencing cognitive function among individuals with chronic 
TBI. We also observed relatively lower satisfaction with life scale 
in the TBI-plus-depressive symptoms group, suggesting the 
presence of adverse effects of depressive symptoms on global 
cognitive judgments of life satisfaction among individuals with 
chronic TBI.

group Differences in amygdala 
connectivity
Group analysis revealed enhanced bilateral amygdala connectiv-
ity for the TBI-plus-depressive symptoms group relative to the 
TBI-only group across multiple regions except left amygdala 
connectivity with the left superior parietal lobule (SPL), right 
insula and right thalamus and right amygdala connectivity with 
the right thalamus at pvoxel < 0.01 and pcluster < 0.025 (Figure 1). 
Spatial patterns of relatively enhanced amygdala connectivity of 
the TBI-plus-depressive symptoms group were fairly consistent 
over both amygdala connectivities though right amygdala con-
nectivity showed stronger increases in the TBI-plus-depressive 
symptoms group over the TBI-only group. Conjunction analysis 
results (Figure  2) highlighted brain regions with consistently 
increased bilateral amygdala connectivity of the TBI-plus-
depressive symptoms group over the TBI-only group. The regions 
showing increased connectivity for both left and right amygdala 
include the bilateral posterior midcingulate cortex, marginal 
sulcus, paracentral sulcus, precentral gyrus; the left SPL; the right 
dorsolateral prefrontal cortex (DLPFC), central sulcus, postcen-
tral gyrus, and insula. Local peak coordinates of these regions and 
their Z-scores were listed in Table 4. Group comparison maps, 
including a network-based parcelation (Figure 3), revealed that 
alterations in amygdala connectivity of the TBI-plus-depressive 
symptoms group primarily occurred in the areas originally 
reported by Biswal et al. (118) and later labeled the somatomo-
tor network (SMN) (119), the dorsal attention network (DAN) 
(112, 120), SN (35), and visual network (VN) (121). Relative 
increases in amygdala connectivity of the TBI group with depres-
sive symptoms also occurred within areas of the limbic–cortical 
mood-regulating circuit (45), including the left DMPFC and right 
DLPFC and right thalamus (Figures 1–3).
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association of amygdala connectivity 
with the Buckley BDi Factors of the  
TBi-Plus-Depressive symptoms group
Voxel-wise correlation analysis of amygdala connectivity with 
each of the Buckley BDI factors (i.e., cognitive, affective, and 
somatic) exhibited dissociable spatial patterns over the whole 
brain within the TBI-plus-depressive symptoms group (Figure 4). 
Overall, only cognitive and affective factors were associated with 
amygdala connectivity among the TBI individuals with depres-
sive symptoms (pvoxel < 0.01; pcluster < 0.025), and such statistically 
significant correlations occurred in the regions that are part of 
the DMN, DAN, SN, SMN, FPCN, and VN. Specifically, the 
cognitive factor was negatively correlated with right amygdala 
connectivity in the bilateral aPFC and anterior medial prefrontal 
cortices (amPFC); left superior central sulcus. The affective fac-
tor was negatively correlated with left amygdala connectivity in 
the bilateral lingual gyri, subcentral cortices, superior temporal 
cortices, middle temporal complexes, marginal sulci and dorsal 
anterior cingulate cortices; left insula and SPL; right precentral 
sulcus and DLPFC. Negative association between the affective 
factor and left amygdala connectivity was also occurred in the 
cerebellar lobule VI Vermis and bilateral cerebellar lobules VI 
(hemisphere). Scatter plots for BDI factors versus amygdala 

TaBle 3 | neuropsychological assessment results.

neuropsychological measurea TBi-plus-depressive 
symptoms

TBi-only T DF p-valueb ci ηp
2

Similarities 37.7 ± 3.9 38.5 ± 3.7 0.4 50 0.41 (−3.0, 1.2) 0.01

Matrix reasoning 27.7 ± 4.2 28.5 ± 3.9 −0.8 50 0.43 (−3.0, 1.3) 0.01

WASI FSIQ-2 (current IQ) 108.6 ± 10.3 113.7 ± 9.7 −2.1 50 0.04 (−11.0, −0.2) 0.08

WTAR FSIQ (premorbid IQ) 109.4 ± 8.2 111.1 ± 7.9 −1.1 50 0.28 (−6.4, 1.9) 0.02

Digit span forward 10.6 ± 2.1 10.8 ± 2.2 −0.3 50 0.75 (−1.4, 1.0) <0.01

Digit span backward 7.0 ± 2.2 7.5 ± 2.1 −0.9 50 0.36 (−1.7, 0.6) 0.02

Color-word: color naming (s) 30.4 ± 7.7 29.3 ± 5.0 0.6 50 0.55 (−2.6, 4.9) 0.01

Color-word: word reading (s) 24.3 ± 6.9 22.3 ± 5.2 1.3 50 0.20 (−1.2, 5.7) 0.03

Color-word: inhibition (s) 59.0 ± 14.6 53.6 ± 11.5 1.6 50 0.11 (−1.4, 13.0) 0.05

Color-word: inhibition/switching (s) 67.3 ± 15.7 60.0 ± 13.7 2.0 50 0.06 (−0.2, 16.0) 0.07

Verbal fluency: letter fluency, total correct 39.9 ± 9.1 42.1 ± 10.6 −0.9 50 0.35 (−7.9, 2.9) 0.02

Verbal fluency: category fluency, total correct 38.9 ± 8.3 46.4 ± 8.3 −3.3 50 0.002 (−12.3, −2.9) 0.18

Verbal fluency: category switching, total correct 14.7 ± 2.6 14.7 ± 2.9 −0.0 50 0.98 (−1.5, 1.5) <0.01

Verbal fluency: category switching, total switching accuracy 13.7 ± 2.8 13.9 ± 2.8 −0.2 50 0.81 (−1.7, 1.3) <0.01

Sorting: free sorting, confirmed correct sorts 9.3 ± 2.3 9.7 ± 2.6 −0.8 50 0.41 (−1.7, 0.7) 0.01

Sorting: free sorting, description score 35.7 ± 9.7 37.4 ± 10.5 −0.9 50 0.39 (−7.6, 3.0) 0.02

Sorting: sort recognition, description score 36.8 ± 11.1 34.7 ± 12.5 0.6 50 0.58 (−4.7, 8.3) 0.01

Sorting: combined description score 72.5 ± 19.2 72.1 ± 21.4 −0.1 50 0.93 (−11.5, 10.5) <0.01

Trail making: visual scanning (s) 18.9 ± 4.7 17.7 ± 5.6 1.0 50 0.33 (−1.4, 4.2) 0.02

Trail making: number sequencing (s) 28.5 ± 8.7 28.0 ± 10.2 0.2 50 0.84 (−4.6, 5.7) <0.01

Trail making: letter switching (s) 27.9 ± 7.6 25.6 ± 8.2 1.1 50 0.30 (−2.1, 6.7) 0.02

Trail making: number-letter switching (s) 72.9 ± 26.0 65.0 ± 20.2 1.3 50 0.19 (−4.5, 21.8) 0.04

Trail making: motor speed (s) 21.1 ± 8.3 20.1 ± 7.6 0.4 50 0.66 (−3.5, 5.5) <0.01

Logical memory I: immediate recall 12.1 ± 4.2 14.6 ± 3.8 −2.7 50 0.01 (−4.8, −0.7) 0.13

Logical memory II: delayed recall 9.9 ± 5.0 12.9 ± 4.3 −2.8 50 0.006 (−5.7, −1.0) 0.14

Satisfaction with life scale 13.5 ± 6.3 22.6 ± 7.3 −4.9 50 <10−4 (−12.4, −5.2) 0.33

Verbal problem solving 11.6 ± 1.6 12.4 ± 1.6 −1.9 47 0.06 (−1.8, 0.1) 0.07

Visual selective learning task 113.0 ± 34.6 113.1 ± 35.4 −0.2 50 0.88 (−20.2, 17.3) <0.01

WASI, Wechsler Abbreviated Scale of Intelligence; FSIQ, full scale intelligent quotient; WTAR, Wechsler Test of Adult Reading. See Table 1 for other abbreviations.
aMean and SD values were reported.
bp-values were obtained with age and years of education covariates. Bold face indicates p < 0.05.

connectivity controlled for age, PCL-S, and FD at selected nine 
local peak coordinates in Table  5 confirmed that statistically 
significant correlations did not erroneously occur by outliers 
(Figure 5).

connectivity Over 268 Putative  
Functional nodes
Bar graphs for average group differences in connectivity and 
correlations between connectivity and BDI sub-factors over the 
rest of the putative functional nodes were obtained by seeding 
each of the 268 putative functional nodes. This analysis revealed 
that the amygdala seed connectivity showed pronounced average 
group differences relative to other seeds (Figure 6). However, the 
right amygdala seed was not an important driver of correlations 
with the BDI cognitive factor and correlations with the BDI affec-
tive factor can be better represented via other seeds (e.g., the left 
precuneus).

Power analysis results
The power analyses demonstrated that our findings have suffi-
ciently reached both statistical significance and statistical power 
(Figures  7 and 8). The effect size maps for group differences 
in amygdala connectivity (Figure  7) revealed that the patterns 
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of voxels whose group differences in amygdala connectivity 
accounted for more than 10% of total variance were similar to 
those of statistical significance at pvoxel < 0.01 and pcluster < 0.025 
(Figure 1). Again, the patterns of observed power values at >0.8 
for group comparisons of left and right amygdala connectivity 
(Figure  8) were similar to those of statistical significance at 
pvoxel < 0.01 and pcluster < 0.025 (Figure 1).

control analysis results
Somatomotor Connectivity
Somatomotor connectivity maps for the TBI-plus-depressive 
symptoms and TBI-only groups (Figure S1 in Supplementary 
Material) showed that both groups had strong somatomotor con-
nectivity in the bilateral somatomotor cortices and supplementary 
motor cortex, which was similar to somatomotor connectivity of 
healthy individuals (118, 119).

Group Comparisons with Healthy Individuals
Relative to the healthy individuals, the age-matched TBI indi-
viduals had higher depressive symptom severity (Table S1 in 
Supplementary Material), lower satisfaction with life scale scores 
and poorer performance on multiple neuropsychological assess-
ments (Table S2 in Supplementary Material). Group comparisons 
of PCC and aPFC connectivity measures with those of healthy 
individuals revealed that both the TBI-plus-depressive symp-
toms and TBI-only groups showed relative reductions in PCC 
and aPFC connectivity (Figure S2 in Supplementary Material). 

FigUre 1 | group comparison maps of amygdala connectivity.

There were no statistically significant group differences in PCC 
or aPFC connectivity between the TBI sub-groups at pvoxel < 0.01 
and pcluster < 0.025. Group comparisons of amygdala connectiv-
ity in the age-matched TBI sub-groups with the healthy group 
demonstrated that both groups showed relative reductions in 
amygdala connectivity with more pronounced reductions in the 
TBI-only group (Figure S3 in Supplementary Material). Note that, 
in these group comparisons with the healthy group, there were 
no statistically significant effects of age on any of the assessed 
neuropsychological test scores at p < 0.05 or any of the obtained 
connectivity measures at pvoxel < 0.01 and pcluster < 0.025.

Amygdala Connectivity in Civilians Versus Veterans 
Within the TBI-Plus-Depressive Symptoms Group
Civilian versus veteran group comparisons of amygdala con-
nectivity were adjusted to control for age, PCL-S, and FD (Figure 
S4 in Supplementary Material) and did not show statistically 
significant differences between civilians and veterans within the 
TBI-plus-depressive symptoms group at p < 0.05 in each of the 
selected nine regions in Figure 4.

Effects of Comorbid PTSD Symptom Severity on 
Amygdala Connectivity
Statistically significant (pvoxel < 0.01 and pcluster < 0.025) effects of 
PTSD-related covariates occurred by the PCL-S scores and age 
by PCL-S interaction in the TBI-plus-depressive symptom group 
for right amygdala connectivity (Figure S5 in Supplementary 
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Material). However, the spatial extent of these PTSD-related 
effects was small compared to the group differences in amygdala 
connectivity demonstrated in Figures 1–3.

Effects of Estimated Injury Severity on Depressive 
Symptom Severity and Amygdala Connectivity
There were no systematic effects of estimated injury severity 
on the TBI participants’ BDI-II total scores and amygdala con-
nectivity  at selected four regions from Table  4 (Figure S6 in 
Supplementary Material). Group comparison maps for amygdala 
connectivity of the TBI participants with probable mild TBI only 

were essentially similar to results for the full TBI participants 
at pvoxel < 0.01 and pcluster < 0.025 (Figure S7A in Supplementary 
Material). Again, group comparison maps for amygdala con-
nectivity of the resampled TBI sub-groups, whose overall group 
differences magnitude in amygdala connectivity corresponded 
to the median value among those of the entire resampled pool, 
essentially replicated the patterns of amygdala connectivity 
differences for the full TBI participants at pvoxel < 0.01 and pclus-

ter < 0.025 (Figure S7B in Supplementary Material). The magni-
tude of overall group differences in amygdala connectivity of the 
probable mild TBI sub-groups did not fall outside the 2.5–97.5th 
percentile intervals of group differences obtained from 5,000 
resampled groups, suggesting that there were no “significant” 
effects of estimated injury severity on the amount of overall group 
differences in amygdala connectivity.

DiscUssiOn

In summary, we confirmed that depressive symptoms altered 
amygdala connectivity in the individuals with TBI over multiple 
brain regions and networks. Relative increases in amygdala con-
nectivity within the TBI group with depressive symptoms primar-
ily occurred in the regions that are part of the SN, SMN, DAN, 
and VN. Alterations in amygdala connectivity also occurred 
within the areas of the limbic–cortical mood-regulating circuit 
(45) that includes the DMPFC, DLPFC, and thalamus. Amygdala 
connectivity also revealed spatially dissociable patterns of cor-
relation with symptom severity according to the Buckley subtypes 
(Cognitive and Affective) of depressive symptoms (67), further 
indicating the utility of network-based rsfMRI as a sensitive 
tool for assessing the relationships between brain networks and 
depressive symptoms in TBI individuals.

advantages of large-scale network 
approaches to comorbid Depressive 
symptoms in TBi
This is the first study that identified a connectivity-based bio-
marker for depressive symptoms among TBI individuals. We 
characterized the spatial patterns of altered amygdala connectivity 
among TBI individuals with depressive symptoms in the context 
of large-scale networks such as the DAN, DMN, SN, SMN, and 
VN. Large-scale network approaches to TBI studies have been 
increasingly favored because one of the primary injury mecha-
nisms for TBI is DAI and DAI disrupts structural and functional 
connectivity [see Sharp et al. (17) for a review]. Recently, large-
scale network approaches have also been appearing with greater 
frequency in the depression literature (28, 29, 31, 34, 37, 122, 
123). The utility of large-scale network approaches for evaluating 
depression is promising because depression is well known for its 
heterogeneity of symptoms, systems, regions, and biochemical 
influences (30). Prior attempts to identify localized brain regions 
responsible for depressive symptoms have met with limited  
success. Based on previous demonstrations of the utility of 
applying large-scale network approaches in TBI and depres-
sion studies, our findings demonstrated potential advantages of 
large-scale network approaches to the evaluation of comorbid 
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TaBle 4 | regions showing statistically significant group differences in both left and right amygdala connectivity (TBi-plus-depressive symptoms  
> TBi-only; pvoxel < 0.01; pcluster < 0.025).

# region Major cluster Za xb yb zb

1 R Superior precentral sulcus 1 (298 voxels) 3.8 14 −14 66
2 Paracentral sulcus 3.7 2 −24 52
3 R Marginal sulcus 3.4 14 −46 58
4 Posterior midcingulate cortex 3.2 6 −22 42
5 L Precentral gyrus 3.1 −38 −10 62
6 R Postcentral gyrus 2 (106 voxels) 3.4 54 −14 54
7 R Central sulcus 3.3 38 −14 54
8 R Postcentral sulcus 3.2 54 −18 42
9 R Precental gyrus 3.1 50 2 46
10 L Marginal sulcus 3 (84 voxels) 3.7 −10 −42 58
11 L Superior parietal lobule 2.8 −22 −42 62
12 R Insula 4 (26 voxels) 2.8 40 −2 −2
13 R Dorsolateral prefrontal cortex 5 (24 voxels) 3.2 30 30 46

L, Left; R, Right.
aLocal maximum whose coordinate was closest to the center of mass.
b The Montreal Neurological Institute (MNI) space (89).
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depressive symptoms among TBI individuals. As demonstrated 
in Figure 3, the patterns of widely spread alterations in amygdala 
connectivity of the TBI individuals with comorbid depressive 
symptoms were more precisely characterized when we compared 
the group comparison maps (Figures 1 and 2) with functional 

FigUre 3 | group comparison maps overlaid on network-based parcelation (106, 107). (a) Left amygdala connectivity, (B) right amygdala connectivity,  
(c) network-based parcellation. Note that we renamed the ventral attention network (VAN) in Buckner et al. (106) and Yeo et al. (107) as the salience network (SN) 
since (1) the VAN in Buckner et al. (106) and Yeo et al. (107) is an aggregate of multiple networks, including the SN and (2) most of the corresponding regions in the 
conjunction map fell onto the SN (35).

connectivity-based parcelation maps of the healthy brain (106, 
107). Thus, we suggest that taking a large-scale network perspec-
tive, as opposed to region-by-region assessments, can augment 
the ability to understand altered patterns of connectivity in future 
studies of both civilians and veterans with TBI and comorbid 
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TaBle 5 | selected regions from the maps for correlations between amygdala connectivity and the Buckley BDi factors (pvoxel < 0.01; pcluster < 0.025).

# seed Factor region Za xb yb zb

1 L amygdala Affective Lobule VI Vermis 4.3 2 −70 −14
2 L amygdala Affective L Insula −4.2 −38 2 6
3 L amygdala Affective R Subcentral gyrus −3.8 70 −10 14
4 L amygdala Affective R Precentral sulcus −3.6 42 −2 46
5 L amygdala Affective L Superior parietal sulcus −3.5 −34 −58 62
6 R amygdala Cognitive R Anterior prefrontal cortex −3.6 22 50 6
7 R amygdala Cognitive L Anterior medial prefrontal cortex −4.2 −10 50 22
8 R amygdala Cognitive L Superior central sulcus −3.7 −14 −30 70
9 R amygdala Cognitive L Anterior prefrontal cortex −3.7 −10 58 2

L, Left; R, Right.
aMinimum Z-statistic values of the regions.
b The Montreal Neurological Institute (MNI) space (89).

FigUre 4 | correlation maps of amygdala connectivity and the Buckley BDi factors within the TBi group with depressive symptoms.
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depression. Furthermore, utilizing graph theory to assess the 
brain network topology of these TBI individuals with depressive 
symptoms may also be of great interest and may further enhance 
our understanding of network alterations among these partici-
pants, since our findings suggest that depressive symptoms may 
disrupt information processing between the amygdala and other 
brain networks.

Findings in relation to Previous studies
Patterns of Altered Amygdala Connectivity
The amygdala is densely interconnected with the rest of the brain 
(49). Previous resting-state functional connectivity in healthy 
individuals has demonstrated rich connections from several 
brain areas with the amygdala (124). Specifically, the amygdala 
is functionally connected with the cingulate gyrus, precuneus, 
superior, middle and inferior frontal gyri, superior, middle and 
inferior temporal gyri, precentral gyrus, superior and inferior 
parietal lobules, angular gyrus, lateral occipital lobe, lingual 
gyrus, fusiform gyrus, insula, hippocampus, caudate, thalamus, 
brain stem, pons, and cerebellum during the rest-state in healthy 
individuals. Amygdala connectivity in depressed individuals is 
altered in a variety of brain regions (29, 31). Thus, it was not 

surprising that alterations in the amygdala connectivity among 
TBI individuals with depressive symptoms occurred over multiple 
brain regions affiliated with the SN, DAN, SMN, and VN as well 
as the limbic–cortical mood-regulating network. It is, however, a 
novel finding and the specific areas involved were not previously 
identified in this population.

Alterations with the Salience Network
The SN (35), comprising the dorsal anterior cingulate cortex, 
anterior insula, temporal pole, presupplementary motor area, 
amygdala, putaman, periaqueductal gray, substantia nigra, ven-
tral tegmental area, dorsomedial thalamus, and hypothalamus, 
is involved in filtering information to support behavior choice. 
In the depression literature, the SN has also been described 
as the AN because of the large overlapping regions between 
these networks. The AN consists of the anterior cingulate 
cortex, amygdala, hypothalamus, entorhinal cortex, nucleus 
accumbens, and other limbic structures, and the AN involved 
in emotion regulation and processing emotional stimuli. (125). 
An extensive literature describes alterations in AN activity in 
depression [see Johansen-Berg et al. (126) and Price and Drevets 
(127) for a review], and some previous studies have directly 
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FigUre 5 | scatter plots for correlation between amygdala connectivity and the Buckley BDi factors within the TBi group with depressive symptoms 
at each of the selected nine local peaks in Figure 4. (a–e) The Affective factor versus left amygdala connectivity in the cerebellar lobule VI vermis (a), left insula 
(B), right subcentral gyrus (c), right precentral sulcus (D), and left superior parietal lobule (e), respectively. (F–i) The Cognitive factor versus right amygdala 
connectivity in the right anterior prefrontal cortex (F), left anterior medial prefrontal cortex (g), left superior central sulcus (h), and left anterior prefrontal cortex (i), 
respectively.
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examined the AN in depression at rest (37, 128). Among the 
altered regions in the SN, the insula and the dorsal anterior 
cingulate cortex are of particular interest. Task activation stud-
ies demonstrated that the insula is associated with emotional 
responses to interoceptive sensory stimuli (129) and the dorsal 
anterior cingulate is involved in cognition, emotion regulation, 
and attention (130).

Alterations with the Dorsal Attention Network
The DAN is comprised of the superior parietal lobule, the middle 
temporal complex, and the frontal eye field (120). The DAN is 
involved in top-down control of attention in that it is associated 

with the control of spatial attention through selecting sensory 
stimuli according to internal goals or expectations and apply-
ing these toward making appropriate motor responses (131). 
No prior studies had directly investigated the DAN in depression 
at rest. However, previous studies in healthy individuals reported 
increased connectivity within the DAN and between the DAN 
and VN when the participants engaged in the reappraisal task 
relative to maintaining emotional responses, suggesting that 
the DAN may be critical in volitional emotion regulation (132). 
Furthermore, recent functional neuroimaging research revealed 
that enhanced sensory responses to emotional stimuli can gain 
prioritized access to awareness after competing for attentional 
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FigUre 6 | Bar graphs for average group differences (a) and average correlation between connectivity strength and the Buckley BDi sub-scores 
(B-D) over 268 putative functional nodes. Only top 20 nodes for each of the measures were shown. See Cao et al. (109) for abbreviations for node names.
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resources (133). In this “emotional attention” process, the amyg-
dala plays a crucial role by providing both direct and indirect top-
down signals on sensory pathways (133, 134). Taken together, the 
altered amygdala connectivity with the DAN suggests that the 
interaction of emotion and attention was altered among the TBI 
individuals with depressive symptoms (134).

Alterations with the Somatomotor Network
Altered amygdala connectivity also occurred in the primary 
motor cortex, primary somatosensory cortex, and supplemen-
tary motor area (SMA) within the SMN in Yeo et  al. (107). 
Though there are no prior reports of depression studies that 
investigated the SMN connectivity with the amygdala, a relevant 
animal study demonstrated that direct electrical stimulation of 
the amygdala can interrupt ongoing motor behaviors (135). In 
humans, the amygdala is functionally connected with the SMN 
(124, 136). Utilizing an emotional version of the stop-signal 

fMRI task, Sagaspe et  al. (137) revealed that the amygdala 
involves motor inhibition by emotional signals through inter-
action with the SMA. Thus, altered amygdala connectivity with 
the SMN among TBI individuals with depressive symptoms may 
be associated with disrupted motor inhibition in response to 
emotional stimuli. Future task connectivity studies are required 
to support this possibility. Among the altered regions in the 
SMN, the SMA is of particular interest. The SMA was strongly 
altered along the midline in our study (Figures 1–3). Within 
the complex network perspective, the SMA together with the 
PCC serve as functional core hubs that balance segregation 
and integration of local brain systems to maintain the small-
world architecture (136). In this vein, it would be interesting to 
assess if altered amygdala connectivity with the SMA leads to 
imbalance between segregation and integration associated with 
among TBI individuals with depressive symptoms in future 
studies.
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FigUre 7 | effect size maps for group differences in amygdala connectivity.
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Alterations with the Visual Network
Within the VN, the parieto-occipital sulcus and lingual gyrus 
were altered (Figures  1–3). The amygdala is extensively con-
nected with VN both structurally (138) and functionally (124). 
Previous depression studies also demonstrated abnormal con-
nectivity in brain regions within the VN (46, 122, 139, 140). Based 
on an extensive supporting literature, Pessoa and Adolphs (141) 
proposed that affective visual signals flow not only through fast 
and automatic pathway from the visual cortex to the amygdala, 
but also through slow, diverse pathways from the pulvinar to the 
amygdala and back to the pulvinar via distributed cortical regions. 
Furthermore, previous connectivity studies in depression that 
reported abnormalities in the visual cortex have also revealed 
abnormalities in both the amygdala and other brain regions (46, 
122, 140). Thus, altered amygdala connectivity within the VN in 
concert with other resting-state networks suggests that depressive 
symptoms in TBI may disrupt a modulatory role of the amygdala 
in evaluating affective visual stimuli such as salience, significance, 
ambiguity, and unpredictability (142–145) via a wide array of 
networks. Future studies utilizing task-state functional connec-
tivity and behavioral assessment will be required to confirm this 
hypothesis.

Alterations with the Other Networks
Altered amygdala connectivity also occurred in the regions 
within the DMN (the left DMPFC), the FPCN (the right 
DLPFC), and the thalamus (Figures  1, 3, 7–8). The DMPFC, 

which is structurally connected with the amygdala (49), may 
mediate the alterations of amygdala connectivity with the DMN 
and FPCN in our study since Sheline et al. (37) demonstrated 
that connectivity increases in the DMN, FPCN, and AN overlap 
within the DMPFC. In the broader context of the depression 
literature, the amygdala, DLPFC, and thalamus serve as parts of 
the limbic–cortical mood-regulating network where the coordi-
nated interactions within the limbic–cortical network are critical 
to the integration of mood regulation and mood-related motor, 
cognitive and somatic behaviors (45).

Alterations with the Cerebellum
Depressive symptoms in TBI also altered amygdala connectivity 
with the cerebellum (Figures 1–3). Traditionally, the cerebellum 
was thought to involve in motor coordination. However, con-
verging, recent evidence has also suggested that the cerebellum 
may also be important in both emotion and cognition (146, 
147). Furthermore, recent resting-state functional connectivity 
evaluated in healthy individuals has demonstrated interactions 
of the cerebellum with entire resting-state networks within the 
cerebral cortex (106). Indeed, previous resting-state fMRI studies 
in depression have revealed abnormalities in the cerebellum (46, 
139, 140, 148–152). Alterations in amygdala connectivity with 
the cerebellum among individuals with depression also have been 
reported (46, 140). A novel finding on altered amygdala connec-
tivity with the cerebellum in our study is that cerebellar regions 
that showed altered amygdala connectivity fell onto the DAN, 
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FigUre 8 | Observed power for group differences in amygdala connectivity.
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SMN, and SN which showed alterations in the cerebral cortex. 
This consistency between the cerebellum and cerebral cortex in 
altered networks with amygdala connectivity in TBI with depres-
sive symptoms reinforces the idea that depressive symptoms in 
TBI disrupt coordinating roles of the amygdala with multiple 
resting-state networks over the whole brain.

Elevated Amygdala Connectivity in TBI Individuals with 
Depressive Symptoms
Relative increases in amygdala connectivity among TBI indi-
viduals with depressive symptoms indicate that depressive 
symptoms in TBI may increase neural resource recruitment 
relevant to information processing between the amygdala 
and other brain regions in emotion responses. Future task-
state functional connectivity and metabolism studies may 
confirm this hypothesis. Increases in amygdala connectivity 
in TBI with depressive symptoms appear to be inconsistent 
with findings from previous resting-state amygdala con-
nectivity studies in major depressive disorder (40, 43, 46, 
48, 122). Such discrepancies might be attributed to potential 
effects of interactions between other pathology (TBI in this 
study) and depressive symptoms on resting-state functional 
connectivity. For example, depressed individuals with 
Parkinson’s disease showed increased amygdala connectiv-
ity over non-depressed individuals with Parkinson’s disease 
whereas depressed individuals with Parkinson’s disease 

showed both increased and decreased amygdala connectiv-
ity over healthy individuals (153). Furthermore, Maller and 
colleagues (54, 56) demonstrated that cortical volumes and 
DTI measures were different among individuals with TBI-
depression, TBI-no-depression, and no-TBI-depression, 
suggesting the effects of interactions between depression and 
TBI on the brain.

Correlations of Amygdala Connectivity with 
Subtypes of Depressive Symptoms
Correlation analysis of amygdala connectivity and the Buckley 
BDI-II factors exhibited spatial patterns of amygdala connectivity 
specific to cognitive and affective factors of depressive symptoms 
(Figures  4 and 5). Our correlation analysis results support 
potential utility of amygdala connectivity for TBI individuals 
with depressive symptoms in a clinical standpoint. Depression is 
a complex psychiatric disorder, and individuals with depression 
show heterogeneous symptoms ranging from somatic symptoms, 
panic attacks, obsessive behavior, ruminations, poor concentra-
tion to suicidal thoughts (154). Thus, stratifying individuals with 
heterogeneous depressive symptoms in an objective fashion 
based on amygdala connectivity may be useful for clinicians to 
plan more effective and individualized treatments for these het-
erogeneous patients. In this vein, our findings in Figures 4 and 5 
further extended previous studies on neuroimaging correlates of 
total depressive symptom severity in TBI (40, 41, 52, 54, 56, 59).
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We were also able to identify sensitive neuroimaging bio-
marker for subtypes of depressive symptoms with greater regional 
specificity than previous DTI study (58). In contrast to Strain et al. 
(58) that showed spatially overlapped correlation patterns across 
subtypes of depressive symptoms in concussion, our study dem-
onstrated spatially dissociable patterns of amygdala connectivity 
according to subtypes of depressive symptoms. Specifically, the 
cognitive factor was correlated with right amygdala connectivity 
in the aPFC, amPFC, and left superior central sulcus of the DMN 
and SMN (Figure 4). The affective factor was correlated with left 
amygdala connectivity in the cerebral areas of the SN, DAN, VN, 
SMN, and FPCN and the cerebellum area of the SMN, FPCN, 
and SN (Figure 4).

One could wonder why statistically significant correlations 
between the Buckley cognitive factor and amygdala connectivity 
occurred in the areas of the SMN. Note that the Buckley BDI-II 
cognitive factor includes test items for sadness, pessimism, past 
failure, guilty feelings, punishment feelings, self-dislike, self-
criticalness, suicidal thoughts, and worthless (Table 2). Thus, we 
should not confuse the Buckley cognitive factor with executive 
function, working memory, or reasoning in the context of cogni-
tive neuroscience.

Amygdala connectivity was associated with only the Buckley 
cognitive and affective factors. This finding may be explained by 
differences in sensitivity to depressive severity over the Buckley 
factors. A previous study that investigated optimal BDI items for 
discriminating depressive severity in 335 medical patients, 16% 
of whom were neurologically impaired, identified that the items 
related to past failure, self-dissatisfaction, punishment feelings, 
suicidal thoughts, crying, loss of social interest, and indecisive-
ness well discriminated depressive severity in the medical patients 
(155). Three of these seven items are related to the Buckley 
BDI-II cognitive factor and the other four items are related to 
the Buckley BDI-II affective factor. Thus, cognitive and affective 
factors might have sufficient sensitivity to depressive symptom 
severity that enables to yield statistically significant correlations 
with amygdala connectivity across our TBI participants with 
depressive symptoms.

Although our findings of relationships between amygdala 
connectivity and the Buckley BDI sub-scores were interesting, the 
data-driven connectivity analysis over 268 nodes revealed that 
these relationships could be better represented via other seeds 
(Figure 6; Figure S8 in Supplementary Material). Furthermore, 
we observed positive associations between the Buckley BDI 
cognitive factor and connectivity with most of the other seeds 
than the amygdala (Figure S8 in Supplementary Material). These 
results demonstrates limitations of seed-based approaches that 
warrant complex network approaches in future directions to 
more comprehensively characterize the relationships between 
network topology and the BDI sub-scores in chronic TBI.

limitations and Future research
The present study has several limitations. First, we assessed 
depressive symptom severity based on self-reports from the 
TBI participants. Although the BDI-II is one of the most widely 
used measures for depressive symptoms and shows good reli-
ability (62), frequent impairments in self-awareness among 

TBI individuals could bias the reported depressive symptoms 
obtained in the BDI-II questionnaire (156). Thus, our findings 
should be interpreted with caution due to this limitation and 
clinical diagnosis for depression should not be made based 
exclusively on participants’ BDI-II total scores. Second, similar 
to the first limitation, we retrospectively identified the existence 
of brain injury, and estimated initial injury severity and the dura-
tion of LOC from the OSU TBI screening form (71), as opposed 
to reporting the gold standard measure for initial injury severity 
(i.e., GCS) and other clinical information from the acute-care, 
inpatient facilities where they were hospitalized sometimes 
multiple years ago. Thus, our study participants may be best char-
acterized as individuals with a self-identified, probable history 
of TBI. Although we made our best efforts to identify TBI and 
estimate the clinical information at the acute stage such as initial 
injury severity and the duration of LOC utilizing the OSU TBI-ID 
method, whose validity and reliability have been demonstrated 
(71, 72), our findings should be interpreted within this limitation. 
Third, our TBI groups are a mixture of individuals with probable 
mild, probable moderate, and probable severe TBI, which may 
not be ideal, particularly for studies in sub-acute (3–6 months 
post-injury) and short-term chronic (6  months–2  years post-
injury) stages of TBI. However, at the long-term chronic stage 
of TBI (>2 years post-injury), initial injury severity often plays 
less critical role in characterizing TBI individuals at the time 
of study (157, 158) and chronic TBI studies occasionally have 
reported with a mixture of different injury severity (10, 12, 13, 
15, 19, 55, 158). In our case, there were no systematic effects of 
estimated injury severity on the BDI-II total scores or amygdala 
connectivity (Figures S6 and S7 in Supplementary Material). 
Nonetheless, care should be taken in the interpretations of our 
findings as injury severity was retrospectively estimated. Fourth, 
we discussed our findings in the context of previous resting-
state functional connectivity studies in depressive individuals 
without other comorbid neurological conditions because no 
previous resting-state functional connectivity studies in TBI with 
comorbid depressive symptoms were reported. We do not know 
whether the patterns of altered amygdala in TBI individuals with 
comorbid depressive symptoms are similar to those of depressed 
individuals without TBI. This is a complex issue, due to the differ-
ences that likely exist between depressive symptoms in uninjured 
individuals and those who suffer from TBI-related symptoms. It 
may be possible that future studies that include additional groups 
of healthy individuals and individuals with depressive symptoms 
but without TBI would be required to address this concern. Fifth, 
one could argue that our findings may be driven by the effects 
of PTSD symptom severity on amygdala connectivity because 
of the frequently linked comorbidity of depression and PTSD 
in TBI (104) and statistically significant group differences in 
PTSD symptom severity in our groups. However, we included 
PTSD symptom severity and its interactions with other factors 
as covariates. Furthermore, (1) spatial extent of the regions that 
showed statistically significant effects of these covariates and 
(2) overlaps between these regions and the regions that showed 
group differences in amygdala connectivity were minimal (Figure 
S5 in Supplementary Material). Thus, our findings on altered 
amygdala connectivity in the TBI-plus-depressive symptoms 
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group were primarily associated with depressive symptom 
severity rather than PTSD symptom severity. Sixth, we were 
not able to measure other potential confounding factors such 
as genetic predisposition, environment, other anxiety disorders, 
and chronic pain levels present in the participants. Especially 
in future amygdala connectivity studies in TBI with depressive 
symptoms, gene, and environment should be measured because 
of reported influences of genes and environment on amygdala 
connectivity in depression (159). Seventh, we investigated amyg-
dala connectivity with the amygdala as a single entity. In fact, the 
amygdala consists of structurally and functionally distinct nuclei. 
For example, laterobasal, centromedial, and superficial amygdala 
subdivisions have different functional connectivity patterns in 
healthy individuals (124). Future amygdala connectivity studies 
with amygdala subdivisions may be further elucidate alteration 
patterns in TBI with depressive symptoms. Lastly, our sample 
consisted of individuals who were often multiple years post-TBI, 
and individuals who had experienced multiple TBI incidents. 
This leads to the possibility that connectivity alterations may be 
different in individuals who are evaluated closer in time to their 
TBI incident.

Our future studies include an assessment of if and how altered 
amygdala connectivity in chronic TBI with comorbid depressive 
symptoms may be reorganized following rehabilitation. We will 
also further identify alteration patterns utilizing graph theory. 
Finally, we will address concerns discussed above in our future 
communications.

cOnclUsiOn

In conclusion, we demonstrated pronounced, widespread altera-
tions in amygdala connectivity among chronic TBI individuals 
with comorbid depressive symptoms. Such widespread alterations 
in amygdala connectivity indicate alterations in modularity roles 

of the amygdala in emotion processes among TBI individuals 
with depressive symptoms. Amygdala connectivity also showed 
spatially dissociable patterns of correlation with symptoms sever-
ity according to different subtypes of depressive symptoms. Taken 
together, our findings suggest that amygdala connectivity may be 
a potentially effective neuroimaging biomarker for comorbid 
depressive symptoms among individuals with chronic TBI.
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