Facies and Stratigraphy of the San Andres Formation (Mid-Permian) Petroleum Province, Northwest Shelf of the Permian Basin, West Texas: A Resurgent Play

Kevin A. Hiss David B. Williamson

The University of Texas at Dallas

GSA South-Central Section

March 9, 2020

- Environments of the San Andres formation on the Northwest Shelf in West Texas
- Complex interaction between sea level, climate, and geomorphology formed "world-class" carbonate reservoirs
- Varying targets for hydrocarbon production
- Quantitative approach to indicate the geologic history of the San Andres and effects of paleoenvironment on reservoir quality

San Andres Formation Age – Middle Permian

San Andres Reservoirs Occur on Carbonate Platforms and Shelves

Ē

San Andres production – shelf and platform carbonate reservoirs

San Andres Reservoirs – Highest Cumulative Production of Permian Basin

San Andres Northwest Shelf – Rimmed Carbonate Shelf

Rimmed Carbonate Shelf Morphology: **Broad, low relief (~0.6°)** Dominant **Dolomitized carbonates &** lithologies: anhydrites Depositional Shallow lagoon & sabkha complexes environment: **Upward-shoaling Sedimentation** prograding-aggrading pattern: sequences **Thickness:** 1,200 – 1650 ft.

Carbonate Shelf Rim Overlies a Deep-Seated Shelf Margin

Abo Reef Structure – lower Permian (Leonardian) shelf margin

San Andres Play Fairway – West Texas

Abo Reef Structure – Iower Permian (Leonardian) shelf margin

West Texas San Andres Play Fairway

Cumulative San Andres Production

West Texas San Andres (4.0 BBOE) All Other San Andres Reservoirs (6.7 BBOE)

Warming Climate and Near-Equatorial Latitude: Favorable for Sabkha Evaporites UD DALLAS

Inner-Shelf Environments and Facies Tract

Secondary Porosity Formed by Reflux Dolomitization

Porosity Occlusion by Anhydrite Cement

Hierarchy of Sea Level Fluctuations

π Marker Bed Deposited at Sea Level Lowstand

Tight Supratidal Anhydrites & High Porosity Subtidal Dolomites 🕠

(Saller, 2004; Ramondetta, 1982a; Ramondetta, 1982b)

Cyclical Stacking of Porous & Tight Facies

(Ramondetta, 1982a; Ramondetta, 1982b; Ward et al., 1986)

Thick Reservoir Facies Grade Northward to Thin Beds

(Ramondetta, 1982a; Ramondetta, 1982b)

Intercrystalline Macroporosity – Vugular Pores Increase With Depth

16186-01C 5000X

Intercrystalline macroporosity (red 16186-01D 500X arrows) and skel-moldic voids (green

16186-02E 800X

Over-sized voids (green arrows) 16186-02F 3000X suggesting the possible dissolution of precursor allochem grains

16186-03E 1300X

Oversized grainmoldic pores

(SEM images courtesy of Monadnock Resources, LLC)

Intercrystalline Macroporosity – Vugular Pores Increase With Depth

(SEM images courtesy of Monadnock Resources, LLC)

Thick Reservoir Facies Grade Northward to Discrete Beds

(Ramondetta, 1982a; Ramondetta, 1982b)

Compaction Drape and Fracturing Atop Low-Relief Structures

Ē

DALLAS

Outcrops in Guadalupe Mts. - ~150 mi. From W. Texas Reservoirs

Ē

(Kerans, 2014; Ruppel, 2019)

Progradational-Aggradational San Andres Shelf Migration

(Kerans, 2014; Ruppel, 2019)

Oil Fields Occur in Increasingly Younger Strata – Offsetting Basinward

Sabkha Evaporites Extend Southward During Mid-Permian Regression

Late Guadalupian (263 Ma)

(Blakey, 2019)

San Andres at margin of Midland Basin open marine waters

Continued sea level fall: supratidal sabkhas extend over the Midland Basin

Structure Map of the π Marker – The Base of the Reservoir Seal

Ē

(Ramondetta, 1982a; Ramondetta, 1982b)

Inner-to-Outer Shelf Reservoir Architecture

(Ebanks, 1990; Ramondetta, 1982a; Ramondetta, 1982b)

Migration and Successive Trapping in Updip Porosity Pinchouts

Ę

(Ebanks, 1990; Ramondetta, 1982a; Ramondetta, 1982b)

Oil Saturation Continues Below the Conventional Fields

Vertical Oil Saturation Profile

Goldsmith Landreth San Andres Unit, Ector Co., TX

Ector Co.

main pay zone:

vertical target – occurs on low-relief structures

Oil-water contact

transitional oil zone:

water-laden interval (decreasing oil saturation with depth & increasing water saturation)

Oil Saturation Decreases With Depth; Water Saturation Increases

Vertical Oil Saturation Profile

Ē

Goldsmith Landreth San Andres Unit, Ector Co., TX

Ector Co.

main pay zone:

vertical target – occurs on low-relief structures

Oil-water contact

transitional oil zone:

water-laden interval (decreasing oil saturation with depth & increasing water saturation)

Indication of a Larger Paleo Oil Trap and Subsequent Flushing

Vertical Oil Saturation Profile

Goldsmith Landreth San Andres Unit, Ector Co., TX

Ector Co.

main pay zone:

vertical target – occurs on low-relief structures

Oil-water contact

transitional oil zone:

water-laden interval (decreasing oil saturation with depth & increasing water saturation)

San Andres basal limestone:

Minor oil saturation indicates previous saturation to the base of the reservoir

Uplift and Exposure of Guadalupian Strata in New Mexico

Influx of Meteoric Water and Sweeping of the Lower Oil Column

Ę

(Ruppel, 2019; Trentham et al., 2015)

Flushing of the Lower Oil Column

(Trentham et al., 2015)

(Melzer, 2006)

Petrophysical Analysis Indicates Prograding-Aggrading Shelf

Ē

LLAS

Methodology:

- Calculate oil-in-place from petrophysical analyses
- Indicate the depth of most saturated 100 ft. reservoir interval
- 3. Contour similar depths

Results:

The depth of the "best 100 ft." interval indicates the depth of the restricted shelf margin.

Moving basinward (southeast), the depth of the restricted shelf margin indicates progradationalaggradational shelf migration.

Results:

The depth of the "best 100 ft." interval indicates the depth of the restricted shelf margin.

Moving basinward (southeast), the depth of the restricted shelf margin indicates progradationalaggradational shelf migration.

Core Properties Within the "Best 100 Ft." of Reservoir

Core Properties Indicate Porosity Enhancement on Paleo-Structural Highs

WASS

Core Properties Indicate Porosity Enhancement on Paleo-Structural Highs

Core Properties Indicate Porosity Enhancement on Paleo-Structural Highs

Core Properties Indicate Permeability Enhancement on Paleo-Structural Highs

"in field" reservoir facies

192

197

133

167

193

4453

[5]

153

192

138

675

San Andres Whole Core

Limits of vertical field

In Field core, n = 25 wells

with 1,285 core points

Core Properties Indicate Greater Water Saturation in "Off" Structure Reservoir

"off" structure reservoir

Reservoir Quality Diminishes Off the Flanks of Legacy Fields

- porosity enhancement by secondary dolomitization
- porosity occlusion in lagoonal or intertidal facies

 paleo-waterflood and sweeping of the lower oil column

- The San Andres Fm. on the Northwest Shelf in W. Texas represents a "worldclass" carbonate hydrocarbon reservoir – formed by the complex interactions of supratidal and subtidal environments during a hierarchy of sea-level fluctuations and increasingly arid climatic conditions
- A paleo-waterflood flushed the lower oil column of the reservoir, leaving a distribution of distinct targets for production that vary in oil-water saturation, distribution, and method of production
- Petrophysical and core analyses of these targets provide a quantitative method of analysis of the prograding-aggrading migration of shelf environments, and the diminishing reservoir quality, moving from the "in field" to "off" structure reservoir

References

- Blakey, R., n.d., Greater Permian Basin: http://deeptimemaps.com/greater-permian-basin-map-list/ (accessed October 21, 2019).
- Dutton, S.P., Kim, E.M., Broadhead, R.F., Raatz, W.D., Breton, C.L., Ruppel, S.C., and Kerans, C., 2005, Play analysis and leading-edge oil-reservoir development methods in the Permian Basin: Increased recovery through advanced technologies: AAPG Bulletin, v. 89, p. 553–576, doi: 10.1306/12070404093.
- Ebanks, W. J., 1990, Geology of the San Andres Reservoir, Mallet Lease, Slaughter Field, Hockley County, Texas: Implications for Reservoir Engineering Projects: Geologic and Engineering Approaches in Evaluation of San Andres/Grayburg Hydrocarbon Reservoirs - Permian Basin, Bureau of Economic Geology, p. 75–85.
- Kerans, C., 2014, San Andres Formation: Outcrop to Subsurface Stratigraphic Framework: SlideServe, https://www.slideserve.com/tekla/san-andres-formation-outcrop-to-subsurface-stratigraphic-framework (accessed March 2020).
- Lopez-Gamundi, C., 2019, INTEGRATED GEOCHEMISTRY AND SEDIMENTOLOGY OF THE WOLFCAMP B3 AND B2 INTERVALS, MIDLAND BASIN, TX: University of Oklahoma:
 - <https://www.researchgate.net/publication/333516360_INTEGRATED_GEOCHEMISTRY_AND_SEDIMENTOLOGY_ OF_THE_WOLFCAMP_B3_AND_B2_INTERVALS_MIDLAND_BASIN_TX> (accessed October 21, 2019).
- Melzer, S. L., 2006, Stranded Oil in the Residual Oil Zone: Advanced Resources International and U.S. Department of Energy: Office of Fossil Energy – Office of Oil and Natural Gas: http://residualoilzones.com/wpcontent/uploads/2018/02/Melzer2006.pdf (accessed November 17, 2019).

References

- Ramondetta, P.J., 1982b, Genesis and Emplacement of Oil in the San Andres Formation, Northern Shelf of the Midland Basin, Texas: Bureau of Economic Geology, The University of Texas at Austin, doi: 10.23867/ri0116d.
- Ross, C.A., and Ross, J.R.P., 1987, Late Paleozoic Sea Levels and Depositional Sequences: Cushman Foundation for Foraminiferal Research, Special Publication No. 24.
- Ruppel, S.C., 2019, Anatomy of a Paleozoic basin: the Permian Basin, USA: Austin, TX, The University of Texas at Austin, Bureau of Economic Geology, v. 1.
- Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production: Geological Society, London, Special Publications, v. 235, p. 309–323, doi: 10.1144/gsl.sp.2004.235.01.13.
- Trentham, B. L., and Melzer, S. L., 2019, A "Cookbook" Approach to Evaluating Residual Oil Zones Completed as Horizontal Depressurizing (DUROZ) Wells in the San Andres Formation: AAPG: Search and Discovery, no. 51570, doi:10.1306/51570Trentham2019.
- Trentham, B.L., Melzer, S.L., Vance, D.B., Kuuskraa, V., and Petrusak, R., 2015, Identifying and Developing Technology f or Enabling Small Producers to Pursue the Residual Oil Zone (ROZ) Fairways of the Permian Basin, San Andres: Residual Oil Zones, http://residualoilzones.com/rpsea-ii/.
- Ward, R.F., Kendall, C. G. ST., and Harris, P.M., 1986, Upper Permian (Guadalupian) Facies and Their Association with Hydrocarbons--Permian Basin, West Texas and New Mexico: AAPG Bulletin, v. 70, p. 239–262, doi: 10.1306/9488566f-1704-11d7-8645000102c1865d.