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Introduction

Environments of the San Andres formation on the Northwest Shelf
In West Texas

Complex interaction between sea level, climate, and
geomorphology formed “world-class” carbonate reservoirs

Varying targets for hydrocarbon production

Quantitative approach to indicate the geologic history of the San
Andres and effects of paleoenvironment on reservoir quality



San Andres Formation Age — Middle Permian
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Presenter
Presentation Notes
The middle-Permian San Andres Fm. ranges in age from the uppermost North American Leonardian stage through the lower Guadalupian. Although, precise chronostratigraphic boundaries for the stratotype can’t be constrained. 


San Andres Reservoirs Occur on Carbonate Platforms and Shelves
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Presenter
Presentation Notes
This map shows the locations of San Andres oil & gas production (in blue). The largest reservoirs rim the Midland and Delaware Basins – occurring in shelf and platform carbonates.
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San Andres Reservoirs — Highest Cumulative Production of Permian Basin
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Presenter
Presentation Notes
The San Andres has the highest cumulative production of any formation in the Permian Basin. More than 10.7 BBOE have been produced from the San Andres, accounting for ~50% of the conventionally-produced oil in the entire oil province. Notice that there is a clear trend in production on the shelves and platforms along the margin of the Midland Basin. These are “world-class” carbonate reservoirs. San Andres reservoirs on the Northwest Shelf, in particular, are some of the most productive in the Permian Basin. So, what were the geologic and geomorphic controls that formed this uniquely prolific oil province?


San Andres Northwest Shelf — Rimmed Carbonate Shelf
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Presenter
Presentation Notes
On the Northwest Shelf, the San Andres represents a broad, low relief, rimmed carbonate shelf. The predominant lithologies are dolomitized carbonates and anhydrites that were precipitated in shallow lagoon and sabkha complexes. A hierarchy of sea level fluctuations during an overall middle Permian regression resulted in cyclical stacking of upward-shoaling progradational-to-aggradational carbonate sequences. In the San Andres play fairway of W. Texas, the formation ranges from 1,200 – 1,650 ft. thick.


Carbonate Shelf Rim Overlies a Deep-Seated Shelf Margin
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Presenter
Presentation Notes
Oil fields in the San Andres occur where low relief structures overlie deep-seated paleo topographic highs. On these structures, stratigraphically thicker sections of highly porous and permeable carbonates are prominent. The most prominent structural feature trends along the southern margin of the Northwest Shelf (in purple). This structural trend overlies a lower Permian shelf margin, atop the deep-seated lower-Leonardian stage Abo Reef structure.
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San Andres Play Fairway — West Texas
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Presenter
Presentation Notes
The most prolific San Andres oil fields are situated in W. Texas, spanning Yoakum, Cochran, W. Hockley, and N.W. Terry Counties (in yellow). Cumulative production from this region is ~4.0 BBOE – nearly 40% of the cumulative total produced from the San Andres in the entire Permian Basin. 


San Andres Play Fairway — West Texas
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Presenter
Presentation Notes
In this region, the San Andres play fairway extends southward to the Abo Reef trend. Vertical migration of hydrocarbons through underlying strata – from source rocks of the northern Midland Basin facilitated accumulation in legacy fields along this trend. Traps along the Abo trend filled-to-spill, and lateral migration continued updip (northward), where successive trapping occurred in updip porosity-pinchouts. Reservoir facies grade shelfward into sabkha evaporites and terrigenous continental deposits and terminate along the Matador Uplift (in blue), at the southern margin of the Palo Duro Basin.


@\/arming Climate and Near-Equatorial Latitude: Favorable for Sabkha Evaporites
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Presenter
Presentation Notes
Waning-stage glaciation during the early and middle Permian and the shift from an icehouse to a greenhouse climate, coupled with the near-equatorial latitude of the Guadalupian stage Permian Basin, facilitated an increasingly arid climate. At the landward margins of the basin’s shelves and platforms, conditions were favorable for precipitation of sabkha evaporites and thick carbonate successions.


Inner-Shelf Environments and Facies Tract
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Presenter
Presentation Notes
This model shows a typical San Andres shelf facies tract. Supratidal environments were dominantly sabkha anhydrites. The intertidal zones are tidal flat environments - these are mainly mudstones and packstones. Subtidal environments range from a broad, shallow, subtidal lagoon – with lime-rich mudstones in the deeper lagoonal facies, and oolitic packstones and grainstones in the shallower shoal zone. 


Secondary Porosity Formed by Reflux Dolomitization
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Presenter
Presentation Notes
Shelf rims facilitated the restriction of inner-shelf environments during sea level lows, creating hypersaline and schizohaline conditions, which were favorable for reflux dolomitization and formation of secondary porosity in inner-shelf carbonates (in blue). During sea level lows, subaerially exposed low-relief structures at the shelf rim were prone to enhanced porosity development due to refluxing of brines during base sea level fluctuations. These high-porosity structures (in yellow) are the primary target for conventional development in the San Andres.


Porosity Occlusion by Anhydrite Cement
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Presenter
Presentation Notes
Dissolution of carbonates in supersaturated brines can also facilitate precipitation of anhydrite cement in the porous dolomitized carbonates. Because dolomitization and anhydrite plugging occur in similar conditions – at sea level lows – the occurrence of pore occlusion can be highly variable over short distances - complicating the distribution of porous reservoir facies in “off structure” targets.


Hierarchy of Sea Level Fluctuations
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Presenter
Presentation Notes
An overall middle Permian sea level regression was punctuated by short-term transgressive pulses during San Andres time. 
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Presenter
Presentation Notes
A regionally ubiquitious time-stratigraphic supratidal marker bed, known regionally as the Pi marker, was deposited across the San Andres shelf during the sea level lowstand – this marks the boundary between the Lower and Upper San Andres. 


High-Frequency Transgressive-Regressive Cycles
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Presenter
Presentation Notes
Contributing further to the hierarchy of sea level fluctuations during San Andres time, higher-frequency transgressive-regressive cycles are well-defined by facies offset in the San Andres, and facilitate cyclical stacking of porous subtidal, and tight supratidal facies.
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Presenter
Presentation Notes
Subtidal shoals were more prone to porosity enhancement by reflux dolomitization. Lagoonal and intertidal facies are increasingly tight and commonly have a highly variable porosity distribution – due to anhydrite-plugging of porous dolomite facies in dolomite-saturated hypersaline waters. Supratidal sabkha evaporites (anhydrites) are impermeable. Anhydrites and anhydritic dolomites in the Upper San Andres form an impenetrable seal, which helped to make Lower San Andres carbonates “world-class” reservoirs. 



Cyclical Stacking of Porous & Tight Facies
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Presenter
Presentation Notes
This model shows how the hierarchy of sea level fluctuations affected San Andres stratigraphic architecture. High frequency transgressive-regressive cycles facilitated the cyclical stacking of porous and tight lithofacies. As you can see, topographically high shoals become deep-seated structures – influencing the placement and morphology of overlying structures. An overall sea level regression during the middle-Permian, coupled with intermediate transgressive-regressive cycles throughout the Guadalupian, caused an overall upward-shoaling, progradational-to-aggradational, migration of shelf facies. 
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Presenter
Presentation Notes
The relationship between land and subsea facies greatly affected the distribution of San Andres reservoirs. The thickest porous zones, in the southernmost section of the play fairway, grade northward into interbedded anhydrites and dolomites. At the basinward section of the play fairway, subtidal environments were dominant, these fields in have thick, high-porosity pay zones – formed atop deep-seated paleo structures, such as the Abo Reef. 


Intercrystalline Macroporosity — Vugular Pores Increase With Depth
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Presenter
Presentation Notes
These photomicrographs, courtesy of Monadnock Resources, are from vertical pilot wells in the San Andres. The red arrows show the typical intercrystalline pore structure in San Andres reservoirs.


Intercrystalline Macroporosity — Vugular Pores Increase With Depth
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Presenter
Presentation Notes
The green arrows show oversized voids. These grain-moldic pores increase with depth, and are, therefore, more common in the thicker reservoir sections, especially along the southern margin of the play fairway.
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Presenter
Presentation Notes
In the northernmost section of the play fairway, cyclical stacking of intertidal and supratidal facies created thinner, discrete, porous pay zones, separated by anhydrite seals and anhydritic dolostones.
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Presenter
Presentation Notes
Successive deposition and burial of carbonates and mudstones atop, and on the margins of, the low relief shelf rim – also known as the Abo Trend – facilitated vertical fracturing along the crest of these structures. Continued burial and compaction facilitated the deepening of fractures. Dolomitizing waters were able to permeate through these fractures – further enhancing porosity and creating a migration pathway for hydrocarbon expulsion into the reservoir.
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Presenter
Presentation Notes
Dr. Charles Kerans modeled San Andres stratigraphy from outcrop in the Guadalupe Mountains, north of the Delaware Basin (~150 miles from the study area) and used that model to describe the stratigraphic position of oil fields north of the Midland Basin.



Progradational-Aggradational San Andres Shelf Migration
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Presentation Notes
Notice the prograding-aggrading nature of shelf environments in response to sea-level changes as the Permian carbonate margin stepped basinward. The best reservoir facies were deposited along the restricted shelf (in orange).
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Presenter
Presentation Notes
Oil fields in this region, according to Kerans’ model, occur in increasingly younger strata – offsetting basinward. 
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Sabkha Evaporites Extend Southward During Mid-Permian Regression
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Presenter
Presentation Notes
During San Andres time, this region extended along the northern margin of the open marine waters of the Midland Basin. As the middle-Permian eustatic regression continued, supratidal sabkha evaporites continued to extend basinward, sealing Permian Basin reservoirs. In the San Andres, however, the reservoir seal occurs at the Pi Marker – the boundary between the Upper and Lower San Andres.


Structure Map of the . Marker — The Base of the Reservoir Seal
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Presentation Notes
The contours show shelf structure at the time-stratigraphic Pi Marker. All San Andres reservoirs occur below this stratigraphic level. Above the Pi Marker, anhydrites and anhydritic dolomites of the Upper San Andres provide the seal for the reservoir. As you would expect, the shelf position of structural highs (circled in red) correspond with legacy oil fields. 
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Presentation Notes
The simplified cross section (left) shows the San Andres reservoir architecture – from north to south. The shelf dips gently (~0.5°) toward the basin. Because of the continuous forward-and-backstepping of shelf environments, successive stratigraphic traps were established in the form of updip porosity pinchouts. The red arrows correlate with structural highs circled along the cross-section line (right).


Migration and Successive Trapping in Updip Porosity Pinchouts
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Presentation Notes
Hydrocarbons migrated vertically, through the Abo Trend – at the southern margin of the play fairway. Once they encountered the Upper San Andres seal, they continued updip, and filled-to-spill the structurally low-relief reservoirs. Migration and filling of the Lower San Andres reservoirs is thought to have continued – forming a, once, much larger paleo oil reservoir.


Qil Saturation Continues Below the Conventional Fields
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Presentation Notes
The diagram shows the oil saturation profile in the San Andres Fm. for a well in Ector Co., TX. The main pay zone is the target for vertical development in legacy fields. As you would expect, this interval has the highest oil saturation. However, saturation continues below the oil-water contact – into the transitional oil zone.
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Presentation Notes
Below the oil-water contact - as depth increases, water saturation increases, with a proportionate decrease in oil saturation. 


Indication of a Larger Paleo Oil Trap and Subsequent Flushing
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Presentation Notes
Interestingly, there is minor oil saturation in the basal limestone – indicating that this reservoir was once saturated all the way down to the base of the porous dolomite facies. So, what happened?


Uplift and Exposure of Guadalupian Strata in New Mexico
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Presentation Notes
Uplift in New Mexico - associated with Laramide Orogeny tectonism – exposed Guadalupian strata. Creating an avenue for an influx of meteoric water into the San Andres reservoir.



Influx of Meteoric Water and Sweeping of the Lower Qil Column
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Presentation Notes
On the left is a map of “fairways of sweep” throughout the San Andres reservoirs in the Permian Basin. The proposed pathways for water migration are shown in blue and San Andres oil fields are in shown green. 


Flushing of the Lower Qil Column
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Presentation Notes
In this region, the lower oil column was flushed in the southeast direction – following the dip of San Andres shelf.
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Resurgent Play Extends Beyond the Flanks of Legacy Fields
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Presentation Notes
Legacy oil fields have a main pay zone. In other words – an economic conventional target for production via vertical wells. Beyond the flanks of legacy fields, the transitional oil zone - a 150-300 ft. thick interval that contains primary oil – or oil that is mobile and can be produced without secondary or tertiary recovery methods – is the target for the resurgent San Andres play. Although the transition zone has lower oil saturations, it’s still an economic target for horizontal drilling operations. Below the transitional zone, the residual oil zone has no mobile oil and is not a target for primary recovery.


Petrophysical Analysis Indicates Prograding-Aggrading Shelf
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Presenter
Presentation Notes
Contrary to the typical approach of studying sedimentary facies and stratigraphy to identify drilling targets, this study utilized whole-core and petrophysical data from San Andres wells to confirm the progradational-aggradational nature of San Andres shelf strata. The map (left) shows a 431 sq. mi. area within Yoakum Co. Detailed petrophysical analyses were conducted for 73 wells (in blue). Dark red lines note the limits of vertical production (i.e., all wells outside of these fields are penetrating “off structure” strata).


Petrophysical Analysis Indicates Prograding-Aggrading Shelf

-------
-----

-1400 [
-----
-----
1475 [

I 1300 | ¥ i g 5 b L e e P g | i N -
''''' ‘ ‘N1 Methodologyv:
] e H i

00000

& 1. Calculate oil-in-place
T T e e I\ from petrophysical

—————
—————
77777

1rmncegsee); 228 analyses

—————
00000

2. Indicate the depth of
most saturated 100 ft.
reservoir interval

& P
| et e | T
'ﬂﬂbﬁwﬁh £ ‘ ~;}E San An Petrophysics

/"“’.‘%E!‘%!ﬁ umisofverticalfield] 3 Contour similar depths

vl . A Petrophysical
WM analysis, n =73 wells

Sl

| £
| /3
A L

/|

75

—_—
2

a1

7

[ |
%

7
PF =
= =

| 1 facet



Presenter
Presentation Notes
For each well, total oil in place was calculated from petrophysical analyses. The interval with the best 100 ft. of reservoir (i.e., the interval with the highest calculated oil in place) was plotted. The depth of the interval with the “best 100 ft.” is indicated by the contours. The sub sea-level depth is represented by the scaled color scheme.
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Presentation Notes
Keeping in mind that the best reservoirs occur on the basinward margins of the restricted shelf, it’s clear that the data confirms the progradational-aggradational migration of shelf facies. 
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Presentation Notes
Moving from shelf-to-basin (northwest-to-southeast), the progradational and aggradational migration of the shelf margin is clear. Where the contours are more widely distributed, it’s an indication of shelf environments stepping toward the basin. Where they’re closer together, it’s an indicator of a more aggradational movement.
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Presentation Notes
The grid on the right is of the same area. This map shows the distribution of wells with “whole core” data. Shown in blue are 25 “on structure” wells (i.e., wells within vertical fields). From these wells, 1,285 data points fall within the “best 100 ft.” of reservoir. 41 wells penetrating “off structure” targets (i.e., targets of the resurgent San Andres play) beyond the flanks of vertical fields contained data within the “best 100 ft.” interval. This study includes a comparative analysis of reservoir properties within the “best 100 ft.” interval in both targets.


®)

Core Properties Indicate Porosity Enhancement on Paleo-Structural Highs
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Presenter
Presentation Notes
The “probability of exceedance” curve (left) indicates the “degree of certainty” for porosity values at any given point within the best 100 ft. of reservoir. The blue line represents porosity values for “in field” reservoir, and the orange line represents “off structure” reservoir. 
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Presentation Notes
For example, the curve shows that, of our 1,285 “in field” core points, there was a 90% certainty that the porosity value of any particular point would be higher than 3.3%. Likewise, there was 10% certainty that the porosity would be greater than 13.3%. 
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Presentation Notes
More importantly, the data clearly indicates that “in field” reservoir facies have enhanced porosity relative to “off structure” targets.
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Presentation Notes
Likewise, the data for permeability shows the same trend – with “in field” reservoir facies showing enhanced permeability relative to “off structure” targets.
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Presentation Notes
Core analyses also indicate higher water saturation in “off structure” strata.


Reservoir Quality Diminishes Off the Flanks of Legacy Fields
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Presentation Notes
From this data, it’s clear that reservoir quality diminishes off the flanks of legacy fields. For producers, this is an indicator of why it’s necessary to pursue the resurgent San Andres target with unconventional drilling methods. From a purely geological standpoint, this is a more quantitative depiction of the effects of porosity enhancement by secondary dolomitization on structural highs. Or porosity occlusion in lagoonal or intertidal facies – due to precipitation of anhydrite cement in hypersaline environments. The contrasts in water saturation are also a clear indication of which intervals of the reservoir were more thoroughly flushed during the paleo-waterflood.


Takeaways

 The San Andres Fm. on the Northwest Shelf in W. Texas represents a “world-
class” carbonate hydrocarbon reservoir — formed by the complex
interactions of supratidal and subtidal environments during a hierarchy of
sea-level fluctuations and increasingly arid climatic conditions

* A paleo-waterflood flushed the lower oil column of the reservoir, leaving a
distribution of distinct targets for production that vary in oil-water
saturation, distribution, and method of production

* Petrophysical and core analyses of these targets provide a quantitative
method of analysis of the prograding-aggrading migration of shelf
environments, and the diminishing reservoir quality, moving from the
“in field” to “off” structure reservoir
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