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Stratigraphic framework of Wolfcamp – Spraberry:
Objectives

• Review the tectono-stratigraphic framework of the Wolfcamp and Spraberry deep-water units of 
the Midland Basin, west Texas  

Note: although not specifically addressed, the framework outlined here is applicable
to the Delaware Basin

• Briefly discuss the facies/characteristics of these rocks

• Highlight the differences between the Wolfcamp shale (A – D) and Spraberry depositional systems
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Permian Basin Stratigraphy and Tectonic History
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(maps: Ron Blakey, NAU/Colorado 
Plateau Geosystems)

Late Pennsylvanian 
• Icehouse climate; PB in humid-tropical setting (abundant rainfall)
• Numerous high-freq., high-amplitude sea-level changes
• Expansion of Penn seaway (long-term rise); stratified water columns
• Continued tectonism in west Texas (Marathon-Ouachita FTB, rise of ARM)

A very dynamic time in 

Earth history, especially in 

west Texas

Wolfcampian – Early Leonardian
• Waning icehouse, transition to greenhouse
• Northward drift of Pangea
• Increasing aridity & expansion of continental desert in western U.S.
• Cratonic emergence / contraction of seaway (onset of long-term SL fall)
• Culmination of tectonic pulses in W. TX (mid WC); Pacific arc volcanism (Late WC-Leon.);

PB enters rapid subsidence phase (Dean - Spraberry)

LATE PENNSYLVANIAN – EARLY PERMIAN EVOLUTION OF WESTERN PANGEA
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Numerous 3rd- and higher-order 
cycles of sea-level change 
organized into larger 2nd-order 
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Stratigraphic framework,
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Lower Strawn Limestone and
Wolfcamp D (Cline)
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Lower Desmoinesian Facies (Lower Strawn Limestone)

• Shallow water platform carbonate 
facies extend across entire Midland 
Basin and Eastern Shelf region

• Lower Strawn Limestone is generally 
< 200 ft. thick in Midland Basin

(Wright, 2011) 

• Core analyses indicate typical Penn 
shelf cyclothem deposits: burrowed 
skeletal wackestones grading 
upward into phylloid algal 
packstones and skeletal grainstones, 
capped by exposure surfaces

• Pre-dates drowning of Midland, 
Delaware basins



Wolfcamp D (Canyon – Cisco) facies

(Ewing, 2016)

Organic-rich Wolfcamp D (Canyon – Cisco)

black shales in core from the center of Midland Basin

(Saller et al., 1999)

Photomicrographs of

highly porous limestones

of the Horseshoe Atoll

reef complex

2 in.

• Drowning of basins and backstepping of 
surrounding shelfal regions
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Wolfcamp C



• Westward progradation of Eastern Shelf delta 
systems and platform margins (100 -150 km)

Preliminary correlation of 
MB tops to Eastern Shelf

• Initial development of Glasscock Nose during  WFMP C1 time

(Sinclair et al., 2018)

Wolfcamp C

• Uplift of CBP structural blocks and development of mid-Wolfcamp unconformity 



Progradation of Wolfcamp C shelf delta systems across the Eastern Shelf



(Sinclair et al., 2017)

(Sinclair et al., 2017)

SW

Sequential development of the Glasscock Nose
prograding, mounded deep-water carb. flows

Possible analog: carbonate delta drift

Indian Ocean/Maldives 
seismic line



(Reed, 2014)

mid-Wolfcamp unconformity on the CBP

• note diachronous 
nature of unconformity 
across Permian Basin 
region

• last major tectonic 
pulse prior to middle –
late Permian 
subsidence phase



Wolfcamp A - B
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(Sinclair et al., 2018)

• 700+ ft. of organic-rich, silica- and 
calcareous-rich mudstone punctuated by 
numerous density flows (carb. turbidites
and debris flows)

• Aggradation of carbonate margins during 
second-order highstand increase percentage 
of CaCO3 into basin during WFMP A time

Wolfcamp  A - B

• Interval currently resides in peak oil window 
in Midland Basin; remains a main horizontal 
drilling target

• Six operational sub-units:

• A1

• A2

• A3

• B1

• B2

• B3

L. Leonard Shale

Dean

Wolfcamp B

XRD analyses from core
(n = 476)

• WC B are predominantly siliceous 
mudstones

• WC A are mixed carb-silica mudstones

Wolfcamp A

(Mzee, 2018)



Calcareous mudstone

Wolfcamp B2 Wolfcamp A3

(Murphy, 2105)



Wolfcamp carbonate debris flows

• Flows are thickest and coarsest near the shelf margins; distal 
portions of flows are thinner and finer grained

• Geometries include sheet-like fans and highly channelized flows



Spraberry - Dean
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• 1st major incursion of submarine fans

• Equivalent to 3rd Bone Spring Ss
Dean

Lower
Leonard Sh.

• organic-rich siliceous shales

Jo Mill • 2nd major incursion of submarine fans
• Equivalent to 2nd Bone Spring Ss

L. Spraberry • siliceous shales, minor fans

M. Spraberry • silty, shales; minor fan complex

U. Spraberry
• 2 major submarine fan complexes

(Floyd and Driver fans)
• Equivalent to 1st Bone Spring Ss

whole-rock
mineralogy,
Dean Ss

(Mzee, 2018)

Qtz
45%

Clay
22%

Dolomite
17%

Dean – Spraberry units of the Midland Basin



• Main facies:

• Massive f.g. sandstones (“Bouma A”)
• Laminated siltstones / shales
• Burrowed siltstones / shales (O2)

• Black shale (thin caps)

• Provenance? (north vs. south)
Depositional model ?

• All fans (Dean, Jo Mill, Middle & Upper 
Spraberry) are similar in appearance

(a) Porous
sandstone

(b) Sandstone
cemented w/
ferroan
dolomite

(Hamlin and Baumgardner, 2012)
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(Waite et al., in press)

ZIRCON U-Pb RADIOMETRIC AGE SPECTRA
(DEAN – SPRABERRY, CENTRAL & SOUTHERN 
MIDLAND BASIN)

• Strong age signal (“peaks”)

• Grenville province (1100 Ma)

• Gondwana (600 Ma)

• Appalachia (400 Ma)

• Intermediate signal 

• Granite-Rhyolite province (1400 Ma)

• Yavapai – Mazatzal province (1700 Ma)

Strong age signals are from southern-located 
provinces, indicating a southern source land for 
Dean – Spraberry sands in central & southern 
Midland Basin (currently accepted view: all sands 
were from a northern source)

• Weak signal 



Gravity Flow Deposits
Low Sea Level

Lowstand  and ensuing transgression–
• Shelf exposed

• Clastics move across shelf via wind and in wadis

• Clastic gravity flow deposits bypass shelf during

lowstand and are cannabalized during early transgression

Carbonate 

Debris Flows
Basinal ShalesHigh Sea Level

Highstand –
• Shelf submerged

• Carbonates on shelf

• Carbonate gravity flow deposits and organic-rich

shales in basin

Dean

N S

Wolfcamp A

Shelf Edge

L. Spraberry

Shelf Edge
M. Spraberry

Shelf Edge

Spraberry and shelf equivalents are alternating sand-rich and organic 

shale/carbonate-rich packages deposited during alternating high and low sea levels.

Sands are very fine-grained turbidites with partial Bouma sequences

Organic-rich shales highly laminated and not bioturbated; Organic-poor shales bioturbated

Thin dolomitic hard grounds observed in sands and shales

Spraberry & Dean (Bone Spring) Depositional Model
Early Permian

(based on Hanford, 1981)



Possible modern analog for Dean - Spraberry:
Offshore Mauritania, African Sahara

core
sample

Core data (Zuhlsdorff et al., 2008)



Summary and Conclusions

• The Wolfcamp – Spraberry interval of the Midland Basin consists of a series of 
lithologically- and mineralogically-complex facies; each interval is unique

• Wolfcamp A - B: Silty, calcareous terrigenous shales; carbonate % increases upward 

• Dean - Spraberry: Argillaceous siltstones, punctuated by numerous submarine-fan 
complexes (massive & laminated sandstones) 

• Wolfcamp D: basinal cyclothems

• Wolfcamp C: clay-rich shales

• Complexity of these rocks reflects changing/evolving  geologic conditions 
(eustasy, climate, tectonics, sediment supply, biota, etc.) along the SW margin of 
western Pangea during Late Pennsylvanian – early Permian time

• Geologists must work closely with drilling, completion, and reservoir engineers to fully communicate the 
complexity and uniqueness of each unit / horizontal zone

“Not all shales are created equal”

(Hamlin and Baumgardner, 2012)


