Publications

2023

Zuppichini, M. D., Sivakolundu, D. K., West, K. L., Okuda, D. T., & Rypma, B. (2023). Investigating the Link Between Regional Oxygen Metabolism and Cognitive Speed in Multiple Sclerosis: Implications for Fatigue. Multiple Sclerosis and Related Disorders, 105074.

Zhang, H., Di, X., Rypma, B., Yang, H., Meng, C., & Biswal, B. (2023). Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology. Neuroscience Bulletin, 39(4), 631–644.

2022

Turner, M. P., Zhao, Y., Abdelkarim, D., Liu, P., Spence, J. S., Hutchison, J. L., Sivakolundu, D. K., Thomas, B. P., Hubbard, N. A., Xu, C., Taneja, K., Lu, H., & Rypma, B. (2022). Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cerebral Cortex (New York, N.Y. : 1991), 33(1), 135–151.

Klugah-Brown, B., Yu, Y., Hu, P., Agoalikum, E., Liu, C., Liu, X., Yang, X., Zeng, Y., Zhou, X., Yu, X., Rypma, B., Michael, A. M., Li, X., Becker, B., & Biswal, B. (2022). Effect of surgical mask on fMRI signals during task and rest. Communications Biology, 5(1), 1004.

2021

Fabiani, M., Rypma, B., & Gratton, G. (2021). Aging and cerebrovascular health: Structural, functional, cognitive, and methodological implications. Psychophysiology, 58(7), e13842.

Hubbard, N. A., Turner, M. P., Sitek, K. R., West, K. L., Kaczmarzyk, J. R., Himes, L., Thomas, B. P., Lu, H., & Rypma, B. (2021). Resting cerebral oxygen metabolism exhibits archetypal network features. Human Brain Mapping, 42(7), 1952–1968.

Shokri-Kojori, E., Bennett, I. J., Tomeldan, Z. A., Krawczyk, D. C., & Rypma, B. (2021). Estimates of brain age for gray matter and white matter in younger and older adults: Insights into human intelligence. Brain Research, 1763, 147431.

Yabluchanskiy, A., Nyul-Toth, A., Csiszar, A., Gulej, R., Saunders, D., Towner, R., Turner, M., Zhao, Y., Abdelkari, D., Rypma, B., & Tarantini, S. (2021). Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology, 58(7), e13718.

Zhao, Y., Liu, P., Turner, M. P., Abdelkarim, D., Lu, H., & Rypma, B. (2021). The neural-vascular basis of age-related processing speed decline. Psychophysiology, 58(7), e13845.

Zimmerman, B., Rypma, B., Gratton, G., & Fabiani, M. (2021). Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology, 58(7), e13796.

Himes, L., Hubbard, N. A., Maruthy, G. B., Gallagher, J., Turner, M. P., & Rypma, B. (2021). The relationship between trait mindfulness and emotional reactivity following mood manipulationMindfulness, 12(1), 170-185.

2020

Hubbard, NA, Turner, MP, Sitek, KR, et al. Resting cerebral oxygen metabolism exhibits archetypal network features. Hum Brain Mapp. 2021; 42: 1952–1968.

Taneja, K., Liu, P., Xu, C., Turner, M., Zhao, Y., Abdelkarim, D., Thomas, B. P., Rypma, B., & Lu, H. (2020). Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison Between Phase-Contrast and Arterial Spin Labeling MRI. Frontiers in neurology, 11, 758.

Sivakolundu, D.K., West, K.L., Zuppichini, M.D., Wilson, A., Moog, T.M., Blinn, A.P., & Newton, B.D., Wang, Y., Stanley, T., Guo, X., Rypma, B. and Okuda, D.T. (2020). BOLD signal within and around white matter lesions distinguishes multiple sclerosis and non-specific white matter disease: A three-dimensional approach. Journal of Neurology.

West, K.L., Sivakolundu, D.K., Maruthy, G.B., Zuppichini, M.D., Liu, P., Thomas, B.P., Spence, J.S., Lu, H., Okuda, D.T. and Rypma, B. (2020). Baseline cerebral metabolism predicts fatigue and cognition in Multiple Sclerosis patientsNeuroimage: Clinical.

Sivakolundu, D.K., West, K.L., Zuppichini, M.D., Abdelkarim, D.A., Turner, M.P., Zhao, Y., Spence, J., Lu, H., Okuda, D.T. and Rypma, B. (2020). The neural-vascular basis of processing speed differences in humans: A model-systems approach using multiple sclerosis. Neuroimage, 215, 116812.

Thomas, B., Takashi, T., Sheng, M., Tseng, B., Womack, K., Cullum, M.C., Rypma, B., Zhang, R. and Lu, H. (2020). Brain perfusion change in patients with mild cognitive impairment after 12 months of aerobic exercise trainingJournal of Alzheimer’s Disease.

West, K.L., Sivakolundu, D.K., Zuppichini, M.D., Turner, M.T., Spence, J.S., Lu, H., Okuda, D.T. and Rypma B. (2020). Altered Task-Induced Cerebral Blood Flow and Oxygen Metabolism Underlies Motor Impairment in Multiple Sclerosis. Journal of Cerebral Blood Flow and Metabolism.

Turner, M.P., Fischer, H., Sivakolundu, D.K., Hubbard, N.A., Zhao, Y., and Rypma, B. and Bäckman, L. (2020). Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performanceNeuroImage, 206, 116232.

2019

Abdelkarim, D., Zhao, Y., Turner, M.P., Sivakolundu, D.K., Lu, H. and Rypma, B. (2019). A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neuroscience and Biobehavioral Reviews, 107, 927-944.

Sivakolundu, D.K., West, K.L., Maruthy, G.B., Zuppichini, M., Turner, M.P., Abdelkarim, D., Zhao, Y., Spence, J.S., Lu, H., Okuda, D.T. and Rypma, B. (2019). Reduced arterial compliance along the cerebrovascular tree predicts cognitive slowing in Multiple Sclerosis: Evidence for a neural-vascular uncoupling hypothesis. Multiple Sclerosis Journal.

Sivakolundu, D. K.; Hansen, M. R.; West, K. L.; Wang, Y.; Stanley, T.; Wilson, A.; McCreary, M.; Turner, M. P.; Pinho, M. C.; Newton, B. D.; Guo, X.; Rypma, B.; Okuda, D. T. (2019) Three‐Dimensional Lesion Phenotyping and Physiologic Characterization Inform Remyelination Ability in Multiple Sclerosis. Journal of neuroimaging: official journal of the American Society of Neuroimaging.

West, K.L., Zuppichini, M.D., Turner, M.P., Sivakolundu, D.K., Zhao, Y., Abdelkarim, D., Spence, J.S., and Rypma, B. (2019). BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage, 188, 198-207.

2018

Motes, M.A., Yezhuvath, U.S., Aslan, S., Spence, J.S., Rypma, B., and Chapman, S.B. (2018). Higher-order cognitive training effects on processing speed-related neural activity: A randomized trial. Neurobiology of Aging, 62, 72-81.

Turner, M.P., Hubbard, N.A., Sivakolundu, D.K., Himes, L.H., Hutchison, J.L., Hart, Jr., J., Spence, J.S., Frohman, E.M., Frohman, T.C., Okuda, D.T. and Rypma, B. (2018). Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage, in press.

Hubbard, N.A., Weaver, T.P., Turner, M.P., and Rypma, B. (2018). Re-examination of “release-from-PI” phenomena: Deficits in recall accuracy do not recover after a semantic switch. Memory, in press.

2017

Hubbard, N.A., Turner, M.P., Ouyang, M., Himes, L., Thomas, B.P., Hutchison, J.L., Faghihahmadabadi, S., Davis, S.L., Strain, J.F., Spence, J., Krawczyk, D.C., Huang, H., Lu, H., Hart Jr., J., Frohman, T.C., Frohman, E.M., Okuda, D.T., and Rypma, B. (2017). Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis. Human Brain Mapping, 38, 5375-5390.

Hubbard, N.A., Sanchez, A.Y, Caballero, C., Ouyang, M., Turner, M.P., Himes, L., Faghihahmadabadi, S., Thomas, B.P, Hart, J. Huang, H., Okuda, D.T., and Rypma, B. (2017). Evaluation of visual-evoked cerebral metabolic rate of oxygen as a diagnostic marker in multiple sclerosis. Brain Sciences, 7, 6.

Hutchison, J.L., Hubbard, T.L., Hubbard, N.A., and Rypma, B. (2017). Ear advantage for musical location and relative pitch: Effects of musical training and attention. Perception, 46, 745-762.

2016

Akbar, N., Banwell, B., Sled, J.G., Binns, M.A., Doesburg, S.M., Rypma, B., Lysenko, M. and Till, C. (2016). Brain activation patterns and cognitive processing speed in patients with pediatric-onset multiple sclerosis. Journal of Clinical and Experimental Neuropsychology.

Turner, M. P., Hubbard, N. A., Himes, L. M., Faghihahmadabadi, S., Hutchison, J. L., Bennett, I. J., Motes, M. A., Haley, R. W., & Rypma, B. (2016). Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative SampleNeuroImage: Clinical.
Rypma, B., Fischer, H., Rieckmann, A., Hubbard, N.A., Nyberg, L., & Bäckman, L. Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance. Journal of Neuroscience, in press.
Hubbard, N.A., Turner, M., Hutchison, J.L., Ouyang, A., Strain, J., Oasay, L., Sundaram, S., Davis, S.L., Remington, G., Brigante, R.M., Huang, H., Hart, Jr., J., Frohman, T.C., Frohman, E., Biswal, B.B., & Rypma, B. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis. Journal of Cerebral Blood Flow and Metabolism, in press.

Hubbard, N.A., Hutchison, J.L., Hambrick, D.Z., and Rypma, B. (2016). The enduring effects of depressive thoughts on working memory. Journal of Affective Disorders, 15, 190-208.

2015

Hubbard, N.A., Faso, D.J., Krawczyk, D.C., & Rypma, B. (2015). The dual roles of trait rumination in problem solving. Personality and Individual Differences, in press.
Hubbard, N.A., Hutchison, J.L., Hambrick, D.Z., & Rypma, B. (2015). The enduring effects of depressive thoughts on working memory. Journal of Affective Disorders, in press.
Samudra, N., Ivleva, E.I., Hubbard, N.A., Rypma, B., Sweeny, J.A., Clementz, B.A., Keshavan, M.S., Pearlson, G.D., & Tamminga, C.A. (2015). Alterations in hippocampal connectivity across the psychosis dimensions. Psychiatry Research: Neuroimaging.
Hutchison, J.L., Hubbard, T.L., Hubbard, N.A., Brigante, R.M., and Rypma, B.(2015). Minding the Gap: An Experimental Assessment of Musical Segmentation Models. Psychomusicology, 25(2), 103-115.
Hubbard, N.A., Hutchison, J.L., Turner, M., Sundaram, S., Oasay, L., Robinson, D., Strain, J., Weaver, T., Davis, S.L., Remington, G.M., Huang, H., Biswal, B.B., Hart Jr., J., Frohman, T.C., Frohman, E.M., Rypma, B. (2015). Asynchrony in executive networks predicts cognitive slowing in Multiple SclerosisNeuropsychology, in press.
Hubbard, N.A., Hutchison, J.L., Turner, M., Montroy, J., Bowles, R.P., and Rypma, B. (2015). Depressive thoughts limit working memory capacity in dysphoriaCognition and Emotion, in press.

2014

Rao, N.K., Motes, M.A. and Rypma, B. 2014. Investigating the neural bases for intra-subject cognitive efficiency using functional magnetic resonance imagingFrontiers in Human Neuroscience, 8:840.
Hubbard, N.A., Turner, M.P., Robinson, D.M., Sundaram, S., Oasay, L., Hutchison, J.L., Ouyang, A., Huang, H., and Rypma B. 2014. Attenuated BOLD hemodynamic response predicted by degree of white matter insult, slows cognition in Multiple SclerosisMultiple Sclerosis Journal, 2014 20:267.
Hutchison, J.L., Hubbard, N.A., Brigante, R.M., Turner, M., Sandoval, T.I., Hillis, G.A.J., Weaver, T. and Rypma, B. (2014). The efficiency of fMRI region of interest analysis methods for detecting group differencesJournal of Neuroscience Methods.
Hubbard, N.A., Hutchison, J.L, Motes, M.A., Shokri-Kojori, E., Bennett, I.J., Brigante, R.M., Haley, R.W., & Rypma, B. (2014). Central executive dysfunction and deferred prefrontal processing in veterans with Gulf War Illness. Clinical Psychological Science.
Kannurpatti, S.S., Rypma, B. and Biswal, B.B.  (2014). Assessment of unconstrained cerebrovascular reactivity markers for large age-range fMRI studiesPLoS One.
Di, X., Rypma, B. and Biswal, B.B.  (2014). Correspondence of Executive Function Related Functional and Anatomical Alterations in Aging BrainProgress in Neuro-Psychopharmacology & Biological Psychiatry, 48C, 41-50.

2013

Yuan, R., Di, X., Kim, E.H., Barik, S., Rypma, B. and Biswal, B.B. (2013). Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations. Magnetic Resonance Imaging.
Di, X., Kannurpatti, S.S., Rypma, B. and Biswal, B.B. (2013). Calibrating BOLD fMRI activation with neurovascular and anatomical constraints. Cerebral Cortex, 23, 255-263.
Bennett, I.J., Rivera, H.G. and Rypma, B. (2013). Isolating age-group differences in working memory load-related neural activity: Assessing the contribution of working memory capacity using a partial-trial fMRI method.  Neuroimage, 72, 20-32.
Hutchison, J.L., Shokri-Kojori, E., Lu, H. and Rypma, B. (2013). A BOLD perspective on age-related flow-metabolism coupling and neural efficiency changes in human visual cortex. Frontiers in Psychology, 4:244.
Bennett, I.J. and Rypma, B. (2013). Advances in functional neuroanatomy: A review of combined DTI and fMRI studies in healthy younger and older adults. Neuroscience and Biobehavioral Reviews, 37, 1201-1210.

2012

Hutchison, J.L., Lu, H. and Rypma, B. (2012). Neural mechanisms of age-related slowing: The ΔCBF/ΔCMRO2 ratio mediates age-differences in BOLD signal and human performanceCerebral Cortex.
Shokri-Kojori, E., Motes, M., Rypma, B. and Krawczyk, D. (2012). The network architecture of cortical processing in visuo-spatial reasoning. Nature Scientific Reports, 2, 411.
Di, X., Kannurpatti, S.S., Rypma, B. and Biswal, B.B. (2012). Calibrating BOLD fMRI activation with neurovascular and anatomical constraintsCerebral Cortex.
Kannurpatti, S.S., Rypma, B. and Biswal, B.B. (2012). Prediction of task-related BOLD fMRI with amplitude signatures of resting-state fMRIFrontiers in Systems Neuroscience, 6:7.
Hutchison, J.L., Hubbard, T.L., Ferrandino, B., Brigante, R., Wright, J.M., & Rypma, B. (2012). Auditory memory distortion for spoken prose. Journal of Experimental Psychology: Learning, Memory, and Cognition 38(6), 1469-89.
Bennett, I.J., Motes, M.A., Rao, N.K. and Rypma, B. (2012). White matter tract integrity predicts visual search performance in young and older adults. Neurobiology of Aging, 33, 433.e21-e31.

2011

Prabhakaran, V., Rypma B., Narayanan, N.S., Meier, T.B., Austin, B.P., Nair, V.A., Naing, L., Thomas, L.E. and Gabrieli, J.D. (2011). Capacity-speed relationships in prefrontal cortexPLoS One, 6, e27504.
Lu, H., Hutchison, J., Xu, F. and Rypma, B. (2011). The relationship between M in calibrated fMRI and the physiologic modulators of fMRIOpen Neuroimage Journal.
Kannurpatti, S.S., Motes, M.A., Rypma, B. and Biswal, B.B. (2011). Non-neural BOLD variability in block and event-related paradigmsMagnetic Resonance Imaging, 29, 140-146.
Motes, M.A., Biswal, B.B. and Rypma, B. (2011). Age-dependent relationships between prefrontal cortex activation and processing speedCognitive Neuroscience, 2, 1-10.

2010

Kannurpatti, S.S., Motes, M.A., Rypma, B. and Biswal, B.B. (2010). Increasing measurement accuracy of age‐related BOLD signal change: Minimizing vascular contributions by resting‐state‐fluctuation‐of‐amplitude scaling.
Biswal, B.B., Eldreth, D.A., Motes, M.A. and Rypma, B. (2010). Task-dependent individual differences in prefrontal connectivity. Cerebral Cortex.
Kannurpatti, S.S., Motes, M.A., Rypma, B., and Biswal, B. (2010). Neural and vascular variability and the fMRI-BOLD response in normal aging. Magnetic Resonance Imaging, 28, 466-476.
Motes, M.A. and Rypma, B. (2010). Working memory component processes: Isolating BOLD signal-changes. Neuroimage, 49, 1933-1941.
Motes, M. A., Shokri Kojori, E., Rao, N.K., Bennett, I.J., & Rypma, B. (2010). Using fMRI to examine the brain-bases of working memory. In F. Columbus (Ed.), Working Memory: Capacity, Developments, and Improvement Techniques. Hauppauge, NY: Nova Publishers.

2009

Rypma, B. and Prabhakaran, V. (2009). When less is more and when more is more: The mediating roles of capacity and speed in brain-behavior efficiency. Intelligence, 37, 207-222.

2007

Patterson MD, Bly BM, Porcelli AJ, Rypma B.
Visual working memory for global, object, and part-based information. Mem Cognit. 2007 Jun;35(4):738-51.
Biswal BB, Kannurpatti SS, Rypma B.
Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magn Reson Imaging. 2007 Dec;25(10):1358-69. Epub 2007 May 4.
Rypma B., Eldreth DA, Rebbechi D.
Age-related differences in activation-performance relations in delayed-response tasks: a multiple component analysis. Cortex. 2007 Jan;43(1):65-76.