
PROGRAMMING SMALL COMPUTERS

TO PRODUCE EXPERIMENTS IN MUSIC COGNITION

W. Jay Dowling

University of Texas at Dallas

This article offers suggestions for programming small computers (particu­
larly the Commodore 64 and Amiga) to produce stimuli for experiments in music
cognition. The main suggestions concern the overall structure of an experiment­
producing program, the organization ofpitch data in memory, the handling of time
and timbre data, the organization of melody data, and randomizing aspects of the
experiment.

The following article is based on several years experience programming small
computers to produce stimuli and record responses for psychological experiments
in music cognition (for example, the experiments reported by Dowling, Lung, &
Herrbold, 1986). The most useful things I have to say amount to a cluster of helpful
hints for the organization of such programs and the data upon which they operate.
I have phrased them in a general way so that they can be adapted to a variety of
computers. My most recent experience is with the Commodore 64 and Amiga 2000.
Most ofthe suggestions I shall make apply to both machines, and hence span a wide
range of size and speed ofprocessing. I shall also include a few specific suggestions
for those two machines.

Compared to the average desktop personal computer, the Commodore 64 is
small and slow. However, it has sufficient capability to do interesting music
cognition experiments. Its video-game quality sound generating chip is too noisy
and imprecise to be suitable for precisely controlled psychoacoustic studies.
However, the complex sounds it produces are sufficiently precise in pitch and time
to be useful for studies in cognition, and the monophonic audio output can easily be
directed to external amplifiers and tape recorders. The Commodore 64 can be
programmed in its resident BASIC to produce experiments of complicated design.
When BASIC is supplemented with an assembly language subroutine to contrel
sound production, better than millisecond precision in temporal control and
response time measurement is easily achieved, provided the video screen is blanked
during stimulus production. (For developing the assembly language routine I
recommend a monitor-assembler cartridge such as Human Engineered Software's
HesMon64 plugged into the game port.) The Commodore 64 is an easy machine to
use for experiments in which the computer interacts with the subject online in real
time. Its durability and cost (in the under-$500 range) make it a good choice where
precisely controlled pure tones are not required.

The Amiga, with its stereo, 8-bit digital-to-analog converters operating at 28
kHz sampling rates, is capable ofproducing much more precisely controlled sounds
than the Commodore 64. In the under-$2000 range, it is among the least expensive
machines taking advantage of the flexibility and speed of 68000-series processors .
While it can be programmed in BASIC, sophisticated programming requires the use

Psychomusicology, 1989 Copyright © 1989
Volume 8, Number 2 183 Psychomusicology

Programming Small Computers

of the C program language. Though the Amiga is capable of far more elaborate
sounds and visual displays than the Commodore 64, it requires far more expertise
and effort to program. In particular, it is very difficult to make it collect response
time data online in conjunction with the production of sounds. The following
suggestions assume that programmers have available one of the public domain
software packages for the production ofsingle tones defined by frequency, duration,
and waveform, such as Audiotools by Rob Peck (updated version of the programs
published in Amiga World, July-August, 1987).

The main suggestions I shall make concem the overall structure of an experi­
ment-producing program, the organization ofpitch data in memory, the handling of
time and timbre data, the organization of melody data, and the randomization of
aspects of the experiment.

Program Structure
There are several tasks the program must do, and it is best (especially in the long

run) to organize those tasks into separate modules in the program. Some of those
tasks, such as defining pitch parameters and initializing the sound generating
device, will be done just once in the program. Some tasks will be nested within other
tasks; for example, the program segment that passes parameters to the sound
generator for each stimulus sequence will be nested within the program segment that
plays a trial of the experiment, which in turn will be nested within the segment that
plays all the trials. It is strongly recommended that each task be contained within a
subroutine or "procedure" and called by the outer program segment as it is needed.
This "structured" style of programming is very natural in the languages Pascal and
C (the latter being the standard language for the Amiga), but even in BASIC it is very
useful to proceed that way. The utility of the structured approach will become
apparent as soon as you begin to modify the program for a second experiment. The
outline of such a program for playing a series of trials in an experiment is shown in
Table 1.

In this discussion it is assumed that the programmer has available an external
subroutine that plays a note (or sequence of notes) on the sound generating device
when the appropriate parameters are passed to it. The calls to that subroutine occur
in the innermost loop of the program, in order to produce the notes of a particular
stimulus. The outermost layer of the program initializes the sound device and sets
up default values of the sound parameters (such as loudness and timbre, if those are
not to be changed). Next it initializes the data sets to be used, reading them in from
the disk or DATA statements if necessary. Then it is ready to play sample trials. In
playing a trial the program retrieves the data describing the stimulus sequence to be
played and translates it note by note from humanly accessible mnemonics to a
parameter list to be passed to the sound generator. When the sample trials are done,
the program proceeds to randomize the order of trials in the experiment proper, and
then plays them using subroutines that translate the note-defining mnemonics into
parameters to control the sound, and sends the parameters to the sound device. When
the experiment is done the program turns off the sound generator.

184

Dowling

Table 1
Outline ofProgram to Produce Stimuli for an Experiment in Music Cognition.
(Note that loops are executed several times before going on.)

Initialize Sound Generator and Randomizer
Initialize Data Sets for Stimuli

(scale, melodies, trial types, etc.)
Play Sample Trials (loop)

Select Trial Type
Call PLA YTRIAL

Randomize Experiment Trials
Call PERMUTE
Store Answer Key

Play Experiment Trials (loop)
Select Trial Type from Randomized List
Call PLA YTRIAL

Tum Off Sound Generator
Subroutines
PERMUTE (see Table 5)
PLAYTRIAL

Select Stimulus
Translate Mnemonics to Parameters
Call PLA YNOTES

PLAYNOTES
Pass Parameters to Sound Generator
Start Sound

Organization ofPitch Data
A program like that diagrammed in Table 1 needs a way of translating pitches

from a human-oriented mnemonic scheme to the pitch parameters the sound
generator expects. The method I have beer: using wastes some memory, but is fast
and convenient. I represent each pitch as a two-digit number which is used as an
index of the array in which the pitch parameters are stored, as shown in Table 2. The
first digit indicates the octave level, and the second digit indicates pitch level within
the octave, beginning with C. Thus, if we have three octaves below middle-C, the
white notes of the keyboard would be labeled 41 (C), 42 (D), 43 (E), etc., up to 47
(B). The pitch parameters for those white notes are stored in column 1 of the array,
in the row indicated by the note label. The mnemonic for the black notes involves
labeling flats by preceding the note labels with a minus sign: -42 (Db), -43 (Eb),
-45 (Gb), -46 (Ab), -47 (Bb). The black-note parameters are located in column 2 of
the array. When the program encounters a negative number as a note label it sets the
column to 2 to retrieve the parameter. (For the Commodore 64, which uses two-byte
pitch parameters, a three-dimensional array is employed, in which the third index
indicates the high and low bytes of the parameter. Incidentally, use theformula in
the Commodore 64 manuals, and don't trust the values they provide in tables.)

185

Programming Small Computers

Table 2
Organization ofArray ofPitch Parameters (C, D, E, etc.) Retrieved by Mne ­
monic Row Labels. Black Notes are Labeled with Negative Numbers,for which
Parameters are Retrieved from Column 2 (Flats). Unused Row Labels are in
Parentheses.

Column

2
Row Label White Black

Notes Notes

11
12
13
14
15
16
17
(18)
(19)
(20)
21
22

41
42

C (32.75 Hz)
D
E
F
G
A
B

C (65.5 Hz)
D

C (262 Hz)
D

Db

Eb

Gb
Ab
Bb

Db

Db

I find these mnemonics easy to remember, and especially easy to type into the
machine, since numbers are easier to type than letters. Consider "Frere Jacques" in
the key ofBb: -37,41,42, -37, etc., is much easier than Bb, C, D, Bb, etc. And typing
"Mary Had a Little Lamb" in D (-45,43,42,43, -45, -45, -45, etc.) is much, much
easier than F#, E, D, E, F#, F#, F#, etc., once you get used to using -45 (Gb) for F#.

In some experiments I have used quarter steps, dividing the octave into 24
logarithmic steps using the twenty-fourth root of two. In that case the pitch
parameters can be conveniently arranged in an array with four columns as shown
in Table 3, in which I have used the plus sign to indicate the quarter-step above a
pitch-F+ for the quarter-step between F and F#, for example. Now the mnemonic
labels require three digits, with the third digit indicating the column. Middle C
would be indicated by 410, C+ by 411, C# by 412, C#+ by 413, D by 420, etc. The
program decodes the third digit to retrieve the column number. It is usually
convenient to preserve the foregoing mnemonic for Db and C#, so the program

186

Dowling

should retain the capability to decode negative numbers as indicating flats; for
example, it should treat -42 the same as 412 in order to retrieve that note's parameter
(C# or Db). In so doing, it needs to aim at the third column and go up one row (from
42) to find the correct parameter.

Especially with the Amiga-because of its speed and because its pitch
parameters are simply waveform frequencies or periods-it is convenient to have
the program calculate the contents of the parameter array as part of its initialization
procedures. With the Commodore 64 it is usually more convenient to read the array
in from the floppy disk during initialization. In either case it is easy to change the
tuning standard on which the experiment is based with only minor alterations in the
program, and that is often useful for purposes ofexperimental control. For example,
when dealing with perceptual differences between quarter-steps and semi tones or
diatonic pitches, it is often a good idea to run a condition in which the stimuli are
tuned not to A =440 Hz, but a quarter-step away, so that what was a semi tone is now
a quarter-step and vice-versa. Thus if some equipment malfunction were slighting
pitches that were quarter-steps, in the new tuning those pitches would fall on
standard semi tones, and the former semi tones would now be quarter-steps.

Table 3
Organization ofArray ofPitch Parameters (C, D, E, etc.) Retrieved by Mne­
monic Row Labels. Black-Note Parameters are in Column 2; Parameters for
Quarter-Steps are in Columns I and 3. The Third Digit of the Mnemonic Label
(here shown as x) Indicates Column Number. Quarter-Step Parameters are
Indicated with +.

Column

0 1 2 3
White Quarter Black Quarter

Row Label Notes Steps Notes Steps

llx C C+ C# C#+
12x D D+ D# D#+
13x E E+
14x F F+ F# F#+
15x G G+ G# G#+
16x A A+ A# A#+
17x B B+
(l8x)
(l9x)
(20x)
21x C C+ C# C#+
etc.

187

Programming Small Computers

Organization ofTime and Timbre Data
For me, the most convenient way to organize time data in melodies is to pick

some modulus (such as 166 ms) and designate note values in multiples of it. For
example, if stimuli are presented at a rate of six eighth-note values per second, then
the modulus would be 166 ms and an eighth note would be represented by 1, a
quarter note by 2, etc. The program would translate those numbers into the time
parameters sent to the sound generator, usually millisecond timings.

The program usually has the task of inserting silences for purposes of articu­
lation between the notes. Thus if the experiment calls for gaps of 20 ms between
notes, then with a 166 ms modulus a 1 is translated into a note 146 ms long followed
by 20 ms of silence, a 2 into a 312 ms note plus 20 ms silence, etc. This process is
illustrated in Table 4 for the start of "Mary Had a Little Lamb" in the key ofD. The
first row contains the melody expressed as a series of pairs of mnemonic pitch and
time parameters, one pair per note. The second row shows the translation into pitch
parameters from the array in Table 2 (represented as note names) and time
parameters in milliseconds.

Similarly, a timbre parameter can be added to the pairs in Table 4, usually in
the form of a number designating the waveform to be used in output.

Organization ofMelody Data
As suggested by Table 4, data for a melody can be organized as pairs, triples,

etc., of parameters, depending on how many aspects of each note need to be
specified. For example, one could specify the pitch, duration, timbre, loudness, and
(for the Amiga) the stereo channel for each note. The mnemonics for the m notes
of I melodies can be storedinanlx mx n array, wherenis the number ofparameters
to be specified for each note. As indicated in Table 1, the program selects a melody
(by specifying the row number in that array) and then translates the mnemonics into
parameters to be passed to the sound generator. The melody set can either be read
in initially from a disk file, or (more usually) initialized when the array is declared
(Amiga) or listed in DATA statements (Commodore 64).

Table 4
Illustration of the Translation ofPitch and Time Mnemonics (Row I) for "Mary
Had a Little Lamb" in D Major into Pitch and Time Parameters (Row 2) to be
Sent to the Sound Generator. Pitch Parameters are as in Table 2; Time Para­
meters are in Milliseconds. "0" Indicates Silence.

-45,2,43,2, 42,2, 43,2, -45,2, -45,2, -45,4

Gb,312,0,20, E,312,0,20, D,3 12,0,20, E,312,0,20, Gb,312,0,20
Gb,312,0,20, Gb,644,0,20

188

Dowling

Table 5
Outline of General Purpose Routine for Producing Random Permutations ofN
Numbers. (Array subscripts are indicated within square brackets[].)

PERMUTE

Enter with LIMIT = size of permuted array.
Returns array PERM containing a pseudorandom

permutation of LIMIT numbers.

Fill beginning of array NUMBERS with integers 1 through LIMIT.
For i = 1 to LIMIT - 1; get a random number x between 1 and LIMIT; check to see

if it ' s been used (i.e. , is NUMBERS[x] negative?); if x hasn't been used then
let PERM[i] = x, and NUMBERS [x] = NUMBERS[x] *-l.

Now we have PERM filled from 1 to LIMIT - 1, so we need to find the last number

in the list. All the ones that have been used in NUMBERS are negative.

For i = 1 to LIMIT, test NUMBERS[i] to find the one that's still positive; put that

number in PERM[LIMIT] .

Return.

Randomization in Experiments
Good experimental control requires that variables at several levels in the design

need to be scrambled so as to be unpredictable to the subjects. Thus strict
randomization is not necessary, and the pseudorandom number routines that come
with BASIC and C are entirely satisfactory. Generally variables are randomized
within some constraints; for example, if there are eight trial types in a particular
experiment, and we want to present each trial type ten times, then we might
construct a trial list consisting of ten successive random permutations of the eight
trial types. For this purpose a permutation subroutine such as that outlined in Table
5 is useful. Note that that subroutine picks all but the last number in the list
randomly, and then hunts to sec which number it hasn't used yet. For permuting long
lists, especially on the rather slow Commodore 64, we may want it to switch its
procedure before the very last item-say for selecting the last three or four.

The permutation subroutine is useful for randomizing other aspects of the
experiment as well, and that is why it is given in Table 5 in a general form that adapts
itself to permuted lists of varying length. For example, in my experiments I often
intersperse randomly arranged distractor notes among the notes of the target
melody. The distractor notes are selected in random order from a list of pitches.
Suppose that I want to use the notes C, D, and E, and that each is to appear twice in
every set of six consecutive distractors . In that case the list to be permuted would
consist of two of each note: C, C, D, D, E, E; and the PERMUTE subroutine would
be called to arrange the order of each six distractors.

189

Programming Small Computers

Reference
Dowling, W. J., Lung, K. M. T., & Herrbold, S. (1987). Aiming attention in pitch and

time in the perception of interleaved melodies. Perception & Psychophysics,
41,642-656.

Author Note
Requests for reprints should be sent to Dr. W. Jay Dowling, Program in Human

Development and Communication Sciences, Unversity of Texas at Dallas,
Richardson, TX 75083-0688.

190

