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This article offers suggestions for programming small computers (particu­
larly the Commodore 64 and Amiga) to produce stimuli for experiments in music 
cognition. The main suggestions concern the overall structure of an experiment­
producing program, the organization ofpitch data in memory, the handling of time 
and timbre data, the organization of melody data, and randomizing aspects of the 
experiment. 

The following article is based on several years experience programming small 
computers to produce stimuli and record responses for psychological experiments 
in music cognition (for example, the experiments reported by Dowling, Lung, & 
Herrbold, 1986). The most useful things I have to say amount to a cluster of helpful 
hints for the organization of such programs and the data upon which they operate. 
I have phrased them in a general way so that they can be adapted to a variety of 
computers. My most recent experience is with the Commodore 64 and Amiga 2000. 
Most ofthe suggestions I shall make apply to both machines, and hence span a wide 
range of size and speed ofprocessing. I shall also include a few specific suggestions 
for those two machines. 

Compared to the average desktop personal computer, the Commodore 64 is 
small and slow. However, it has sufficient capability to do interesting music 
cognition experiments. Its video-game quality sound generating chip is too noisy 
and imprecise to be suitable for precisely controlled psychoacoustic studies. 
However, the complex sounds it produces are sufficiently precise in pitch and time 
to be useful for studies in cognition, and the monophonic audio output can easily be 
directed to external amplifiers and tape recorders. The Commodore 64 can be 
programmed in its resident BASIC to produce experiments of complicated design. 
When BASIC is supplemented with an assembly language subroutine to contrel 
sound production, better than millisecond precision in temporal control and 
response time measurement is easily achieved, provided the video screen is blanked 
during stimulus production. (For developing the assembly language routine I 
recommend a monitor-assembler cartridge such as Human Engineered Software's 
HesMon64 plugged into the game port.) The Commodore 64 is an easy machine to 
use for experiments in which the computer interacts with the subject online in real 
time. Its durability and cost (in the under-$500 range) make it a good choice where 
precisely controlled pure tones are not required. 

The Amiga, with its stereo, 8-bit digital-to-analog converters operating at 28 
kHz sampling rates, is capable ofproducing much more precisely controlled sounds 
than the Commodore 64. In the under-$2000 range, it is among the least expensive 
machines taking advantage of the flexibility and speed of 68000-series processors . 
While it can be programmed in BASIC, sophisticated programming requires the use 
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of the C program language. Though the Amiga is capable of far more elaborate 
sounds and visual displays than the Commodore 64, it requires far more expertise 
and effort to program. In particular, it is very difficult to make it collect response 
time data online in conjunction with the production of sounds. The following 
suggestions assume that programmers have available one of the public domain 
software packages for the production ofsingle tones defined by frequency, duration, 
and waveform, such as Audiotools by Rob Peck (updated version of the programs 
published in Amiga World, July-August, 1987). 

The main suggestions I shall make concem the overall structure of an experi­
ment-producing program, the organization ofpitch data in memory, the handling of 
time and timbre data, the organization of melody data, and the randomization of 
aspects of the experiment. 

Program Structure 
There are several tasks the program must do, and it is best (especially in the long 

run) to organize those tasks into separate modules in the program. Some of those 
tasks, such as defining pitch parameters and initializing the sound generating 
device, will be done just once in the program. Some tasks will be nested within other 
tasks; for example, the program segment that passes parameters to the sound 
generator for each stimulus sequence will be nested within the program segment that 
plays a trial of the experiment, which in turn will be nested within the segment that 
plays all the trials. It is strongly recommended that each task be contained within a 
subroutine or "procedure" and called by the outer program segment as it is needed. 
This "structured" style of programming is very natural in the languages Pascal and 
C (the latter being the standard language for the Amiga), but even in BASIC it is very 
useful to proceed that way. The utility of the structured approach will become 
apparent as soon as you begin to modify the program for a second experiment. The 
outline of such a program for playing a series of trials in an experiment is shown in 
Table 1. 

In this discussion it is assumed that the programmer has available an external 
subroutine that plays a note (or sequence of notes) on the sound generating device 
when the appropriate parameters are passed to it. The calls to that subroutine occur 
in the innermost loop of the program, in order to produce the notes of a particular 
stimulus. The outermost layer of the program initializes the sound device and sets 
up default values of the sound parameters (such as loudness and timbre, if those are 
not to be changed). Next it initializes the data sets to be used, reading them in from 
the disk or DATA statements if necessary. Then it is ready to play sample trials. In 
playing a trial the program retrieves the data describing the stimulus sequence to be 
played and translates it note by note from humanly accessible mnemonics to a 
parameter list to be passed to the sound generator. When the sample trials are done, 
the program proceeds to randomize the order of trials in the experiment proper, and 
then plays them using subroutines that translate the note-defining mnemonics into 
parameters to control the sound, and sends the parameters to the sound device. When 
the experiment is done the program turns off the sound generator. 
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Table 1 
Outline ofProgram to Produce Stimuli for an Experiment in Music Cognition. 
(Note that loops are executed several times before going on.) 

Initialize Sound Generator and Randomizer 
Initialize Data Sets for Stimuli 

(scale, melodies, trial types, etc.) 
Play Sample Trials (loop) 

Select Trial Type 
Call PLA YTRIAL 

Randomize Experiment Trials 
Call PERMUTE 
Store Answer Key 

Play Experiment Trials (loop) 
Select Trial Type from Randomized List 
Call PLA YTRIAL 

Tum Off Sound Generator 
Subroutines 
PERMUTE (see Table 5) 
PLAYTRIAL 

Select Stimulus 
Translate Mnemonics to Parameters 
Call PLA YNOTES 

PLAYNOTES 
Pass Parameters to Sound Generator 
Start Sound 

Organization ofPitch Data 
A program like that diagrammed in Table 1 needs a way of translating pitches 

from a human-oriented mnemonic scheme to the pitch parameters the sound 
generator expects. The method I have beer: using wastes some memory, but is fast 
and convenient. I represent each pitch as a two-digit number which is used as an 
index of the array in which the pitch parameters are stored, as shown in Table 2. The 
first digit indicates the octave level, and the second digit indicates pitch level within 
the octave, beginning with C. Thus, if we have three octaves below middle-C, the 
white notes of the keyboard would be labeled 41 (C), 42 (D), 43 (E), etc., up to 47 
(B). The pitch parameters for those white notes are stored in column 1 of the array, 
in the row indicated by the note label. The mnemonic for the black notes involves 
labeling flats by preceding the note labels with a minus sign: -42 (Db), -43 (Eb), 
-45 (Gb), -46 (Ab), -47 (Bb). The black-note parameters are located in column 2 of 
the array. When the program encounters a negative number as a note label it sets the 
column to 2 to retrieve the parameter. (For the Commodore 64, which uses two-byte 
pitch parameters, a three-dimensional array is employed, in which the third index 
indicates the high and low bytes of the parameter. Incidentally, use theformula in 
the Commodore 64 manuals, and don't trust the values they provide in tables.) 
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Table 2 
Organization ofArray ofPitch Parameters (C, D, E, etc.) Retrieved by Mne ­
monic Row Labels. Black Notes are Labeled with Negative Numbers,for which 
Parameters are Retrieved from Column 2 (Flats). Unused Row Labels are in 
Parentheses. 

Column 

2 
Row Label White Black 

Notes Notes 

11 
12 
13 
14 
15 
16 
17 
(18) 
(19) 
(20) 
21 
22 

41 
42 

C (32.75 Hz) 
D 
E 
F 
G 
A 
B 

C (65.5 Hz) 
D 

C (262 Hz) 
D 

Db 

Eb 


Gb 
Ab 
Bb 

Db 

Db 

I find these mnemonics easy to remember, and especially easy to type into the 
machine, since numbers are easier to type than letters. Consider "Frere Jacques" in 
the key ofBb: -37,41,42, -37, etc., is much easier than Bb, C, D, Bb, etc. And typing 
"Mary Had a Little Lamb" in D (-45,43,42,43, -45, -45, -45, etc.) is much, much 
easier than F#, E, D, E, F#, F#, F#, etc., once you get used to using -45 (Gb) for F#. 

In some experiments I have used quarter steps, dividing the octave into 24 
logarithmic steps using the twenty-fourth root of two. In that case the pitch 
parameters can be conveniently arranged in an array with four columns as shown 
in Table 3, in which I have used the plus sign to indicate the quarter-step above a 
pitch-F+ for the quarter-step between F and F#, for example. Now the mnemonic 
labels require three digits, with the third digit indicating the column. Middle C 
would be indicated by 410, C+ by 411, C# by 412, C#+ by 413, D by 420, etc. The 
program decodes the third digit to retrieve the column number. It is usually 
convenient to preserve the foregoing mnemonic for Db and C#, so the program 
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should retain the capability to decode negative numbers as indicating flats; for 
example, it should treat -42 the same as 412 in order to retrieve that note's parameter 
(C# or Db). In so doing, it needs to aim at the third column and go up one row (from 
42) to find the correct parameter. 

Especially with the Amiga-because of its speed and because its pitch 
parameters are simply waveform frequencies or periods-it is convenient to have 
the program calculate the contents of the parameter array as part of its initialization 
procedures. With the Commodore 64 it is usually more convenient to read the array 
in from the floppy disk during initialization. In either case it is easy to change the 
tuning standard on which the experiment is based with only minor alterations in the 
program, and that is often useful for purposes ofexperimental control. For example, 
when dealing with perceptual differences between quarter-steps and semi tones or 
diatonic pitches, it is often a good idea to run a condition in which the stimuli are 
tuned not to A =440 Hz, but a quarter-step away, so that what was a semi tone is now 
a quarter-step and vice-versa. Thus if some equipment malfunction were slighting 
pitches that were quarter-steps, in the new tuning those pitches would fall on 
standard semi tones, and the former semi tones would now be quarter-steps. 

Table 3 
Organization ofArray ofPitch Parameters (C, D, E, etc.) Retrieved by Mne­
monic Row Labels. Black-Note Parameters are in Column 2; Parameters for 
Quarter-Steps are in Columns I and 3. The Third Digit of the Mnemonic Label 
(here shown as x) Indicates Column Number. Quarter-Step Parameters are 
Indicated with +. 

Column 

0 1 2 3 
White Quarter Black Quarter 

Row Label Notes Steps Notes Steps 

llx C C+ C# C#+ 
12x D D+ D# D#+ 
13x E E+ 
14x F F+ F# F#+ 
15x G G+ G# G#+ 
16x A A+ A# A#+ 
17x B B+ 
(l8x) 
(l9x) 
(20x) 
21x C C+ C# C#+ 
etc. 
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Organization ofTime and Timbre Data 
For me, the most convenient way to organize time data in melodies is to pick 

some modulus (such as 166 ms) and designate note values in multiples of it. For 
example, if stimuli are presented at a rate of six eighth-note values per second, then 
the modulus would be 166 ms and an eighth note would be represented by 1, a 
quarter note by 2, etc. The program would translate those numbers into the time 
parameters sent to the sound generator, usually millisecond timings. 

The program usually has the task of inserting silences for purposes of articu­
lation between the notes. Thus if the experiment calls for gaps of 20 ms between 
notes, then with a 166 ms modulus a 1 is translated into a note 146 ms long followed 
by 20 ms of silence, a 2 into a 312 ms note plus 20 ms silence, etc. This process is 
illustrated in Table 4 for the start of "Mary Had a Little Lamb" in the key ofD. The 
first row contains the melody expressed as a series of pairs of mnemonic pitch and 
time parameters, one pair per note. The second row shows the translation into pitch 
parameters from the array in Table 2 (represented as note names) and time 
parameters in milliseconds. 

Similarly, a timbre parameter can be added to the pairs in Table 4, usually in 
the form of a number designating the waveform to be used in output. 

Organization ofMelody Data 
As suggested by Table 4, data for a melody can be organized as pairs, triples, 

etc., of parameters, depending on how many aspects of each note need to be 
specified. For example, one could specify the pitch, duration, timbre, loudness, and 
(for the Amiga) the stereo channel for each note. The mnemonics for the m notes 
of I melodies can be storedinanlx mx n array, wherenis the number ofparameters 
to be specified for each note. As indicated in Table 1, the program selects a melody 
(by specifying the row number in that array) and then translates the mnemonics into 
parameters to be passed to the sound generator. The melody set can either be read 
in initially from a disk file, or (more usually) initialized when the array is declared 
(Amiga) or listed in DATA statements (Commodore 64). 

Table 4 
Illustration of the Translation ofPitch and Time Mnemonics (Row I) for "Mary 
Had a Little Lamb" in D Major into Pitch and Time Parameters (Row 2) to be 
Sent to the Sound Generator. Pitch Parameters are as in Table 2; Time Para­
meters are in Milliseconds. "0" Indicates Silence. 

-45,2,43,2, 42,2, 43,2, -45,2, -45,2, -45,4 

Gb,312,0,20, E,312,0,20, D,3 12,0,20, E,312,0,20, Gb,312,0,20 
Gb,312,0,20, Gb,644,0,20 
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Table 5 
Outline of General Purpose Routine for Producing Random Permutations ofN 
Numbers. (Array subscripts are indicated within square brackets[].) 

PERMUTE 

Enter with LIMIT = size of permuted array. 
Returns array PERM containing a pseudorandom 

permutation of LIMIT numbers. 

Fill beginning of array NUMBERS with integers 1 through LIMIT. 
For i = 1 to LIMIT - 1; get a random number x between 1 and LIMIT; check to see 

if it ' s been used (i.e. , is NUMBERS[x] negative?); if x hasn't been used then 
let PERM[i] = x, and NUMBERS [x] = NUMBERS[x] *-l. 

Now we have PERM filled from 1 to LIMIT - 1, so we need to find the last number 

in the list. All the ones that have been used in NUMBERS are negative. 


For i = 1 to LIMIT, test NUMBERS[i] to find the one that's still positive; put that 

number in PERM[LIMIT] . 

Return. 

Randomization in Experiments 
Good experimental control requires that variables at several levels in the design 

need to be scrambled so as to be unpredictable to the subjects. Thus strict 
randomization is not necessary, and the pseudorandom number routines that come 
with BASIC and C are entirely satisfactory. Generally variables are randomized 
within some constraints; for example, if there are eight trial types in a particular 
experiment, and we want to present each trial type ten times, then we might 
construct a trial list consisting of ten successive random permutations of the eight 
trial types. For this purpose a permutation subroutine such as that outlined in Table 
5 is useful. Note that that subroutine picks all but the last number in the list 
randomly, and then hunts to sec which number it hasn't used yet. For permuting long 
lists, especially on the rather slow Commodore 64, we may want it to switch its 
procedure before the very last item-say for selecting the last three or four. 

The permutation subroutine is useful for randomizing other aspects of the 
experiment as well, and that is why it is given in Table 5 in a general form that adapts 
itself to permuted lists of varying length. For example, in my experiments I often 
intersperse randomly arranged distractor notes among the notes of the target 
melody. The distractor notes are selected in random order from a list of pitches. 
Suppose that I want to use the notes C, D, and E, and that each is to appear twice in 
every set of six consecutive distractors . In that case the list to be permuted would 
consist of two of each note: C, C, D, D, E, E; and the PERMUTE subroutine would 
be called to arrange the order of each six distractors. 
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