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Scale and Contour: Two Components of a Theory
of Memory for Melodies

W. Jay Bowling
University of Texas at Dallas

This article develops a two-component model of how melodies are stored in long-
and short-term memory. The first component is the overlearned perceptual-motor
schema of the musical scale. Evidence is presented supporting the lifetime sta-
bility of scales and the fact that they seem to have a basically logarithmic form
cross-culturally. The second component, melodic contour, is shown to function
independently of pitch interval sequence in memory. A new experiment is re-
ported, using a recognition memory paradigm in which tonal standard stimuli are
confused with same-contour comparisons, whether they are exact transpositions
or tonal answers, but not with atonal comparison stimuli. This result is con-
trasted with earlier work using atonal melodies and shows the interdependence
of the two components, scale and contour.

Remembering melodies is a basic process in
the music behavior of people in all cultures.
This behavior may involve production, as
with the singer performing a song for an audi-
ence or the participant in a significant social
event trying to remember the appropriate
song. Or it may involve recognition, as with
the listener whose comprehension of the later
developments in a piece depends on memory
for earlier parts. In this article, I concentrate
on two components of memory that contribute
to the reproduction and recognition of melo-
dies, namely, melodic contour and the musical
scale. I maintain that actual melodies, heard
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or sung, are the product of two kinds of un-
derlying schemata. First, there is the melodic
contour—the pattern of ups and downs—that
characterizes a particular melody. Second,
there is the overlearned musical scale to which
the contour is applied and that underlies many
different melodies. It is as though the scale
constituted a ladder or framework on which
the ups and downs of the contour were hung.

Two examples epitomize the behavior this
theory addresses. First, if people in our West-
ern European culture hear a melody from
some non-Western culture using a non-West-
ern scale, their reproductions of that melody
will use their own Western scale, preserving
the contour of the original melody. The scale
functions as a classic example of a sensori-
motor schema controlling perception and be-
havior. In this example, the non-Western
melody is assimilated to the Western schema
(Frances, 19S8, p. 49). Part of the education
of ethnomusicologists is directed toward free-
ing them from their native schemata so that
they can hear accurately the pitches of non-
Western music.

The second example involves the use of
melodic contour in the structure of pieces of
music. One way a composer can tie a piece
together is to repeat the same contour at dif-
ferent pitch levels, at different relative place-
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Figure J. Section A shows examples from Beethoven's Piano Sonata opus 14 no. 1, illustrating
use of the same melodic contour with different interval sizes. (Intervals between notes are shown
below the staves in semitones. Excerpts are labeled with measure numbers.) Section B is an
American Indian example from Kolinski (1970, p. 91).

merits on the scale, or even on different scales.
The repetition provides unity without becom-
ing boring through being too exact. Figure 1A
demonstrates Beethoven's use of this device
in his Piano Sonata opus 14 no. 1. Such a
device relies on the listener's ability to recog-
nize the melodic contour through transforma-
tions of pitch. That such processes are not
confined to Western music is shown by Kolin-
ski's (1970) example from the Flathead In-
dians (see Figure IB). Adams (1976) has
provided a guide to the uses of contour con-
ceptualizations in ethnomusicology.

In what follows, I will discuss (a) scales
of pitch and their characteristics and (b)
melodic contours and their independence in
memory. (Independence is here used in the
sense of referring to cases where one remem-
bers one thing without remembering a related
thing.) I will also present a new experiment
that illustrates performance in memory for
melodies consistent with the present two-
component theory.

Musical Scales

Several aspects of musical scales as they
function in various cultures are of particular

interest to the psychologist. First, scales con-
sist of discrete steps of pitch, typically five
or seven to the octave. This limitation would
seem to match quite well the limitations of
people as information processors. Second,
musical scales of pitch are approximately
logarithmic with respect to frequency, a fact
that bears directly on the problem of pitch
scaling in psychophysics. Third, musical scales
can be slid continuously up and down in pitch
without distorting their relative interval sizes.
They serve as highly stable sensorimotor
schemata with great flexibility of application.

Discrete Scale Steps

With few exceptions, the cultures of the
world use discrete changes of pitch along a
musical scale in creating their melodies. Since
the singing voice and many early instruments
are capable of producing a continuous varia-
tion of pitch, how is it that the music of the
world moves by discrete steps? Helmholtz
(1954) raised this question, and some of the
answers he suggested are appealing even to-
day. The ultimate biological functions of dis-
crete steps are as obscure as the functions of
melody or of music itself. However, given that
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we have melody, discrete scale steps can be
very useful. Helmholtz argued that the di-
vision of the pitch continuum into discrete
steps is desirable in order that the degree of
melodic and rhythmic movement might be
immediately apparent to the listener. If pitch
moved continuously in a melody, he argued,
it would be much more difficult to decide ex-
actly how much the pitch had changed or
what rhythmic, temporal units had elapsed.
In fact, such a decision could be made only
on the basis of a fixed set of discrete refer-
ence points anyway. That is, the listener
would have to learn some form of scale as a
cognitive framework through which to deal
with the melodies he hears, continuous or not.

The modern cognitive psychologist can
easily carry Helmholtz's argument one step
further. Granting that we need discrete scale
steps to comprehend melodic movement, how
many should there be? Miller's (1956) classic
article suggested that human beings are lim-
ited in their categorical judgment capability
to using 7 ± 2 categories on any one dimen-
sion. Most cultures fall within this range, us-
ing five or seven distinct scale step categories
within the octave. As will be discussed below,
the system of categories repeats cyclically
every octave. Thus, in Miller's terms, a pitch
would be categorized in terms of two dimen-
sions: one for pitch level within the octave
(often called chroma) and the other for oc-
tave level. Certain cultures that would seem
at first sight to provide exceptions to this
pattern turn out on closer inspection not to.
For example, the music of India typically
uses many very narrow intervals of which 22
are available within an octave. However,
melodies are basically constructed out of
scales having seven or so focal pitches, and
the other neighboring tones are used as auxil-
iary tones around these focal pitches for the
purposes of ornamentation.

At this point, I need to introduce a con-
ceptual scheme for talking about musical
scales. This scheme has four levels of abstrac-
tion from the pitches of actual melodies and
shares certain features with the conceptual
schemes of Hood (1971) and Deutsch (1977).
I have discussed it in greater detail in an-
other paper (Bowling, Note 1). The most

abstract level is that of the psychophysical
scale, which is the general rule system by
which pitch intervals are related to frequency
intervals of tones. I will argue that the ap-
propriate form for the psychophysical scale
is approximately logarithmic, owing to the
fundamental place of octave judgments in hu-
man auditory processing. The second level is
that of tonal material, which includes the set
of pitch intervals in use by a particular cul-
ture or within a particular genre. In Western
music, the tonal material would include the
set of semitone intervals of the equal tem-
pered chromatic scale but not anchored to any
particular frequency. The third level is that
of the tuning system, which consists of a se-
lection of a subset of the available pitch in-
tervals from the tonal material that are used
in actual melodies. In Western music, the tun-
ing system might consist of the set of intervals
represented by the white notes of the piano—
the set of intervals with the ascending cycle
(in semitones) of [2, 2, 1, 2, 2, 2, 1] repeat-
ing every octave. This set of intervals can
become the basis of any of the heptatonic
modes (that is, the modes with seven notes
per octave): major, minor, or the medieval
church modes. The set of intervals of the
black notes on the piano [2, 3, 2, 2, 3] can
also function as a tuning system for the West-
ern pentatonic modes.

The most concrete level is mode. In going
from tuning system to mode, two things hap-
pen. First, an anchor for the frequencies is
established, and what were pitch intervals at
the more abstract levels get translated into
the pitches of notes. Second, a tonal focus in
the tuning system is selected, and a tonal
hierarchy is established on the tuning sys-
tem. (The tonal hierarchy determines which
notes in the mode are more important and
dynamic tendencies of the notes as they func-
tion in melodies.) These two operations are
usually combined in Western music under the
rubric of "selecting a tonality," for example,
taking the intervals of the white-note tuning
system and selecting the key of C-major, A-
minor, Eb-major, or C-dorian. Since mode in
my system overlaps considerably with the
term scale as used in the phrases musical scale
and diatonic scale, I will often use scale in
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what follows as a synonym for mode. I want
to caution the reader, however, that scale is
also used in ways that are not synonymous
with my use of mode, for example, in the
phrase chromatic scale, which is more nearly
synonymous with my term tonal material. My
use of scale is informal; a strictly formal sys-
tem would use only mode. I use the term
tonal to refer to melodies using the notes of
well-known modes. And I should caution the
reader that what I have to say here is mostly
irrelevant to the dispute among proponents
of tempered, Pythagorean, and other "natu-
ral" tuning systems well discussed by Ward
(1970).

Logarithmic Scale

The musical scales of most cultures repeat
themselves cyclically every octave. Tones an
octave apart are treated as equivalent in some
sense and are typically given the same name
(C, D, E; do, re, mi; or Barang, Sulu, Data
[Indonesian]). Tones that are psychologi-
cally and musically an octave apart have a
ratio between their fundamental frequencies
of approximately 2/1. (The "approximately"
will be discussed below.) Ward (1954) has
shown that Westerners are quite precise in
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setting two pure tones (presented alternately)
to the subjective interval of an octave. This
is all that is required to produce a logarithmic
psychophysical scale of pitch: Tones at equal
distances along the subjective pitch scale
(namely, an octave apart) should be related
by equal 'frequency ratios.

Complications arise because the subjective
octave usually represents a frequency ratio
just slightly greater than 2/1. Ward (1954;
replicated by Burns, 1974, using non-Western
subjects and by others [Sundberg & Lind-
qvist, 1973] using Westerners) found that
through the midrange of up to frequencies
of about 900 Hz, the frequency ratio of a
subjective, pure-tone octave was about 2.02/1.
This ratio still leads to an approximately
logarithmic scale. Ward's results are plotted
in the curve of Figure 2, which shows the
tuning of successive octaves as cumulative de-
viations from the 2/1 frequency ratio in
logarithmic units (hundredths of a semitone,
or cents). (A semitone represents a frequency
ratio of 21/12/1). Octaves having a 2/1 fre-
quency ratio would be represented in Figure
2 as a horizontal line. Straight segments of
the curve with positive slope represent loga-
rithmic pitch scales with a greater than 2/1
frequency ratio to the octave.
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Figure 2. Cumulative tuning deviations of octaves in cents (hundredths of a semitone) as a
function of the fundamental frequency of the upper note in the octave for Burmese harp (Xs;
Williamson & Williamson, 1968) and for Indonesian gamelans using sUndro (circles) and pilog
(triangles) tuning systems, (The Indonesian data are based on Hood [1966; filled symbols; # = 2]
and Surjodiningrat, Sudarjana, & Susanto [1969; open symbols; JVs = ll and 10 for sUndro and
ptlog, respectively]. The solid line is based on Ward's [1954] data for pure-tone octave judgments.)
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Figure 2 also shows some measurements of
non-Western instrument tunings: a set from
a Burmese harp (Williamson & Williamson,
1968) and several sets from Indonesian game-
lans (Hood, 1966; Surjodiningrat, Sudarjana,
& Susanto, 1969). Gamelan refers to both the
orchestra and the set of instruments, con-
sisting chiefly of gongs and marimbas. The
correspondence of the tunings and Ward's
curve is very good, especially considering the
sorts of systematic deviations within the oc-
tave in gamelan tunings discussed by Hood
(1966). One reason that the fundamental fre-
quencies of gamelan tunings are free to ap-
proximate the tunings of subjective octaves is
that there is not the same attempt as found
in the West to make fundamentals of higher
tones match upper partials (overtones) of
lower tones. One reason for this is that acous-
tically gongs have very irregular series of
upper partials.

Western pianos are tuned to octaves that
are slightly greater than 2/1 ratios, but the
deviation is smaller than that for subjective
pure-tone octaves (Martin & Ward, 1961).
The reason for the deviation is that piano
strings are not ideal, frictionless, vibrating
bodies but have a certain amount of stiffness.
This stiffness is most pronounced at the upper
and lower extremes of the keyboard, where
the ratio of the diameter to the length of the
string is relatively large. The stiffness of the
strings leads the frequencies of upper partials
to be progressively sharper than true har-
monics (which stand in integer ratios to the
fundamental). Hence, tuning upper funda-
mentals to partials of lower notes will lead to
stretched octaves, but they are not so severely
stretched as those of the human ear. Our
Western emphasis on consonance of simul-
taneous tones leads us to prefer this piano
tuning over one in which melodic succession
would be given precedence. (See Plomp &
Levelt, 1965, for a discussion of the contribu-
tion of coincidence of upper harmonics to the
consonance of complex tones.) These con-
siderations also suggest that for the same rea-
sons, a cappella choirs and string quartets
will tend to use a 2/1 octave, especially dur-
ing slow passages.

The precision of judgment of Ward's

(1954) subjects is a very good reason for pre-
ferring a quasi-logarithmic scale to other can-
didates for the psychophysical scale relating
pitch to frequency (Ward, 1970), Other rea-
sons include the above cross-cultural data and
the fact that one of Ward's (19S4) subjects
who had absolute pitch produced the same
scale by note labeling as with the octave
judgment method. Another strand of evidence
is provided by Null (1974), who obtained a
logarithmic scale using a slightly modified
magnitude estimation method. One of the
cleverest corroborations of the log scale is
provided by an experiment of Attneave and
Olson (1971). They observed that musically
untrained subjects had difficulty in producing
transpositions of arbitrarily selected pitch in-
tervals. Then, they hit upon the idea that
certain interval sequences might be over-
learned even by the uninitiated, for example,
the National Broadcasting Company (NBC)
chimes. They found that the NBC chimes had
always been presented at the same pitch level
—on the notes G-E-C in the middle register,
an acronym for the General Electric Corpora-
tion. They asked subjects to produce the pat-
tern at various pitch levels above and below
the original. The scaling question was, Would
transpositions follow a log scale, or a power
function, or something else? Subjects over-
whelmingly responded with transpositions
along a logarithmic scale. Thus, given a mean-
ingful task, untrained subjects use a loga-
rithmic scale for pitch.

Attneave and Olson's subjects demonstrate
how stable the tonal scale system is through-
out life once it is learned. So do Frances's
(1958) subjects, who found it easier to notice
changes on rehearing tonal melodies than
atonal. Tonal scales constitute one of the most
durable families of perceptual-motor schemata
that have been observed in psychology, rank-
ing perhaps only after the schemata of natu-
ral language in their stability and resistance
to change in adult life. In fact, the same kinds
of categorical perception phenomena found
in the phonetics of a language seem to hold
for musical scale pitch judgments (Burns,
1974). It would probably surprise most
American psychologists how early in life these
perceptual-motor schemata are acquired. Im-
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Figure 3. Sections A-E are examples of stimuli from
the present experiment. (A is the sample tonal stan-
dard stimulus; B is the target stimulus, the exact
transposition of the standard; C is the tonal an-
swer lure, which remains in the key of the standard
but at a different pitch level; D is the atonal lure
with the same contour as the standard; and E is the
randomly different lure.) Sections F-I are examples
of atonal stimuli from Experiment 1 of Dowling
and Fujitani, 1971. (F is the sample standard stimu-
lus; G is the target stimulus, the exact transposition
of the standard; H is the same-contour lure; and I
is the randomly different lure. All staves are notated
with a treble clef understood. Intervals in semitones
are shown under each stave.)

berty (1969) found that 8 year olds are able
to notice shifts of scales within a melody from
one key to another a semitone or two higher.
They found shifts of mode that left the under-
lying pattern of intervals unchanged (as in the
tonal answer stimuli of the experiment re-
ported below) much more difficult. Zenatti
(1969) found that 8 year olds can recognize
three-note tonal melodies much better than

atonal. Five year olds find tonal and atonal
melodies equally difficult because they have
not yet thoroughly internalized the scale.
Eleven year olds find both types equally easy.
But with four- and six-note melodies, even
adults find the atonal more difficult, in agree-
ment with Frances (1958).

In this discussion of musical scales, I have
not tried to incorporate Shepard's (1964)
helical theory of pitch scales. I wish to note,
however, that I believe the present theory
compatible with his. It only requires that the
helix be sprung somewhat to allow for Ward's
enlarged subjective octaves. I believe Shep-
ard's demonstration of the auditory barber
pole could be replicated using Ward's quasi-
logarithmic scale. The issue of the acceptance
of the helical model as a pitch scale has not
been settled, however. For example, Deutsch
(1972) has demonstrated that in the recog-
nition of familiar tunes, chroma (the quality
of C-ness, D-ness, or E-ness; do-ness, re-ness,
or mi-ness) does not suffice as a cue to tune
identity.

Memory for Melodic Contour

For everyone except the small percentage
of the population having absolute pitch, well-
known melodies must be stored as sequences
of pitch intervals between successive notes
(Deutsch, 1969). In this section, I have as-
sembled evidence that memory for the con-
tour (the ups and downs of the melodic
intervals) can function separately from mem-
ory for exact interval sizes. That is, the con-
tour is an abstraction from the actual melody
that can be remembered independently of
pitches or interval sizes. This is true for mel-
odies in both short-term and long-term
memory.

Retrieval from Short-term Memory

The contours of brief, novel atonal mel-
odies can be retrieved from short-term mem-
ory even when the sequence of exact intervals
cannot. This point is illustrated by an ex-
periment by Dowling and Fujitani (1971, Ex-
periment 1). They used a short-term recogni-
tion memory paradigm in which the standard
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stimulus on each trial was a randomly gen-
erated five-note melody having small pitch
intervals between successive notes. The com-
parison stimulus followed the standard after
a brief pause. Three types of comparison mel-
odies were the same as the standard in both
contour and pitch intervals, or had the same
contour but different intervals, or were dif-
ferent in both contour and intervals (i.e.,
were novel random sequences). These are il-
lustrated in Figure 3, Sections F-I. Different
groups of subjects had the task of distinguish-
ing among the following types of comparison
melody: exactly the same versus random, ex-
actly the same versus same contour, and same
contour versus random. Half the subjects were
given comparisons starting on the same pitch
as the standard; the other half had com-
parisons whose starting note was transposed
to another pitch level. The results showed that
when the comparison starts on the same pitch
level as the standard, exact-same comparisons
are easily distinguished from either random
comparisons or same-contour, different-inter-
val comparisons. In other words, it was easy
to reject any comparison stimulus that did
not contain exactly the same pitches as the
standard. When the comparison melodies were
transposed, however, exact-same targets and
same-contour comparisons were easily dis-
tinguished from random ones but almost im-
possible to tell apart. Listeners responded on
the basis of the presence or absence of the
contour and were unable to recognize the
sameness of intervals when these were added
to the contour.

Thus, when the listener is trying to retrieve
an exact set of intervals from memory, the
best he can do under the above conditions is
retrieve the contour. It is critical to this re-
sult that the target melodies be atonal, that
is, not using the pitches of a musical scale
familiar to the subjects. Frances (1958) found
alterations in tonal melodies easier to detect
than alterations in atonal melodies. A major
theme in the present article is that there are
two components at work in the normal process
of melody recognition: contour and scale.
Bowling and Fujitani (1971, Experiment 1)
explored the extreme case where the role of
the scale had been all but eliminated. They

found contour recognition to be completely
dominant over pitch interval recognition.
However, one would not expect the same re-
sult with tonal melodies. The overlearned
scale framework should make recognition of
the difference between a tonal target melody
and an atonal lure having the same contour
much easier. (These stimuli are illustrated in
Figures 3B and 3D.)

Distinguishing between a tonal melody and
a tonal lure having the same contour as the
first melody but starting on a different note
of the same modal scale should be very dif-
ficult. The relationship 'between this last pair
of melodies is the same as that of a fugue sub-
ject and its tonal answer. Such a pair is il-
lustrated by Figures 3A and 3C. There are
two ways to think of the tonal answer in
terms of the conceptual scheme of tuning sys-
tem and mode.

1. We might think of the tonal answer as
consisting of the same set of diatonic inter-
vals translated into a new mode. The interval
pattern of the tuning system (in Figure 3, the
white notes of the piano) remains fixed at the
same pitch level, while the tonality of the
melody in the sense of its starting pitch level
is moved to a new place in the tuning system.
Thus, both the standard and the tonal answer
in Figure 3 (A and C) have the diatonic in-
tervals [ + 2, -1, + 2, +1], but the first is
in C-major and the second is in A-minor.

2. The tonal answer might be thought of
as remaining in the same mode as the stan-
dard, which is exactly the way a tonal answer
is treated in a fugue. In that case, the pitches
of the mode remain fixed while the starting
pitch of the melody is shifted to a different
degree of the scale. Both melodies in Figure
3 (A and C) would remain in C-major, and
the difference between them would be that the
standard begins on the first degree and the
tonal answer on the sixth degree of the modal
scale.

I prefer the second of these characteriza-
tions for describing the cognitive processing
involved in the experiment presented below.
This is because the time interval between the
presentation of the standard and the tonal an-
swer is short. The standard is coded as being
in a particular major mode. When the listener
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hears the tonal answer immediately following
the standard, nothing in that comparison pat-
tern demands that he change mode. There-
fore, he hears the tonal answer in the same
mode as the standard. Diatonic interval pat-
tern (contour in a restricted sense) and mode
can function as features of the standard.
Tonal answers would then be difficult to dis-
tinguish from standard stimuli because they
share these two features. Exact transpositions
force the listener to change mode in midtrial.
Exact transpositions share the feature of
having the same intervals as the standards
when measured in semitones (that is, at the
level of tonal material). The experiment thus
brings these sets of feature similarities into
conflict with each other.

Lest too persuasive an argument here make
the results of the experiment seem a foregone
conclusion, let me introduce a plausible the-
ory that makes a different prediction from
the two-component scale-contour theory. It
could be, according to this theory, that con-
tours are not stored in memory independently
of interval sizes. Dowling and Fujitani got
their result because they used unnatural
atonal melodies. Atonal intervals are difficult
to remember, both because listeners have not
had much practice with them and because
they do not occur as part of an overlearned
scale schema. However, if we replicate Dowl-
ing and Fujitani using tonal materials, we
will get a very different result. The interval
sequences of tonal standard melodies will be
easily learned because they fall on a well-
known scale. Thus, changes in those intervals
will be easily noticed whether the change is
to an atonal melody or to a tonal melody in
another mode. The listeners should at least
do better than chance in discriminating ex-
act transpositions from tonal answers. (To
give this theory its due, I should note that
pilot work with a few professional musicians
convinces me that they can perform in the
way just described).

The two-component theory, on the other
hand, claims that even with tonal melodies,
contour (in the sense of ups and downs mea-
sured in diatonic intervals) and interval sizes
(measured in semitones at the level of tonal
material) are stored independently, the latter

simply as a mode label. Tonality can func-
tion as a cue to distinguish a tonal melody
from an atonal one. But changes in interval
size that leave tonality intact will be difficult
to notice.

Experiment on Tonal Melodies

This experiment is based on the paradigm
of Dowling and Fujitani (1971, Experiment
1). It copies the conditions of that experi-
ment in which comparison melodies were
transposed (i.e., began on a different pitch
from the standard melodies) and in which the
subject's task was to recognize only exact
transpositions of the standards. The most im-
portant difference between the two experi-
ments is that in Dowling and Fujitani, all
melodies were atonal; while in the present
experiment, all but one type of comparison
melody were tonal. Other differences in method
derived from differences in the available
equipment, subject populations, and the de-
sirability of equalizing expected interval size
between tonal and atonal melodies used in
the present experiment. Since the most com-
parable conditions in the two experiments—
those of distinguishing targets from randomly
different comparisons—gave roughly compara-
ble results (81% and 84% vs. 89%), the ef-
fects of changes in these other variables are
apparently negligible for purposes of estab-
lishing the qualitative results toward which
this study is directed.

Using tonal melodies in this paradigm
makes possible the introduction of one more
type of comparison melody: the tonal answer.
In this type, the comparison begins on a dif-
ferent pitch from the standard but stays
within the same diatonic scale. Thus, the pitch
intervals between tones will generally be
changed, but the melody will still be tonal.
Figure 3 shows examples of this and the other
types of comparison stimuli used in the pres-
ent experiment and that of Dowling and
Fujitani.

Method

Subjects. Twenty-one students at the University
of Texas at Dallas served in four separate group
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sessions, most of them receiving extra credit in
upper level psychology courses for their participa-
tion. Subjects were divided into groups on the basis
of a postexperiment questionnaire. Subjects in the
experienced group had 2 or more years of musical
training (including studying an instrument or voice
or playing an instrument in an ensemble but ex-
cluding taking music courses or singing in choir).
In the inexperienced group, subjects had less than
2 years training. Means for the two groups were
5.0 and .14 years training, respectively. The mean
age of subjects was 30.4 years and was comparable
in the two groups. There were three males and seven
females in the experienced group and seven males
and four females in the inexperienced group (a dif-
ference that probably reflects a tendency to give
females music lessons in our culture). Performance
of males and females in the two groups was roughly
comparable, with a slight superiority of experienced
males.

Procedure. Subjects were instructed that this was
an experiment in memory for melodies. On each trial,
they heard a pair of brief melodies, and their task
was to say whether the two were the same or dif-
ferent. For this purpose, they responded using a
four-category scale with responses of "sure same,"
"same," "different," and "sure different." There were
48 trials in the experiment and they wrote their re-
sponses on a sheet of paper provided. The experi-
menter explained that all comparison stimuli, even
those that were the same, would start on a different
note from the standard. What was important in de-
termining sameness was that not only the ups and
downs but also the distances among the notes be
the same. The experimenter referred to the possi-
bility of singing "Happy Birthday" starting on dif-
ferent notes as an illustration of how the same mel-
ody could occur at different pitch levels as long as
the distances among the notes remained the same.
The experimenter presented one example of each of
the types of stimulus pairs. After responding to ques-
tions, the experimenter then presented the 48 trials.

Stimuli. Stimuli were played on a freshly tuned
Steinway piano and recorded on tape. They were
presented to subjects over loudspeakers at comforta-
ble listening levels via high-quality reproduction
equipment. The timing of stimuli was controlled by
a Davis timer producing clicks every .67 sec, which
were barely audible on the tape. In all stimuli, the
rate of presentation of the quarter-note values ( J )
of Figure 3 was 3 tones per sec. Thus, each stimulus
was 2 sec in duration. There was a 2-sec blank in-
terval between standard and comparison stimuli on
each trial and a 5-sec response interval following
the comparison stimulus. A warning, consisting of
the experimenter's voice announcing the trial num-
ber, preceded the onset of each trial by 2 sec.

All standard stimuli began on middle C (funda-
mental frequency of 262 Hz). There are 16 possible
contours for five-note sequences, providing unisons
are excluded. The contours of the standard stimuli
on each of the 48 trials of the experiment were se-
lected by using three successive random permutations

of the order of the 16 contours. Thus, each contour
appeared as a standard exactly three times in the
experiment. The interval sizes between notes of the
tonal stimuli were chosen with the following proba-
bilities of diatonic scale steps: P (±\ step) = .67 ;
P (±2 steps) = .33.

There were four types of comparison melody. Each
of these four types occurred equally often in the
three blocks of 16 trials (randomly determined). All
comparison melodies began on either the E above
or the A below middle C (randomly determined).
These transpositions were chosen as being moderately
distant from C both in pitch level (+4 and —3
semitones) and in shared pitches (three and four,
respectively). (Frances, 1958, has shown "remote"
transpositions in the latter sense harder to recog-
nize than "near" transpositions.) Target comparison
stimuli (see Figure 3B) were exact transpositions to
the standards to the key of E or A. They retained
exactly the interval sizes of the standards. Tonal
answer comparison stimuli (see Figure 3C) were lures
that started on E or A but that remained in C, the
same key as the standard, and had the same con-
tour and diatonic intervals. Thus, the interval sizes
in semitones did not remain the same as in the stan-
dard, while the tonal scale remained the same.

Atonal same-contour comparison stimuli (see Fig-
ure 3D) were lures that retained the contour of the
standard but that used intervals randomly selected
without regard for tonal scales. The probabilities of
interval sizes of the atonal lures were P (±1 semi-
tone) = .17, P (±2 semitones) = .33, and P (±3 semi-
tones) — .50. (These probabilities were chosen so
that the expected interval size of a tone sequence
would be 2.33 semitones. This is comparable to the
expected interval size of 2 .27 semitones for the tonal
sequences. The latter figure was calculated as a
weighted average of the diatonic interval sizes, with-
out regard for starting pitch. The fact that all stan-
dard stimuli began on C, immediately next to a
1-semitone interval, would lower this estimate slightly
in the present case.) The random different stimuli
(see Figure 3E) were lures having different con-
tours from the standards (randomly selected) and
different diatonic scale intervals selected just as with
the standards.

Data analysis. The four-category confidence judg-
ments were used to generate individual memory op-
erating characteristics (MOC) for each subject for
each of the three types of stimulus comparisons. Hit
rates were given by responses to the target stimuli.
These hit rates were plotted separately against three
sets of false alarm rates given by responses to tonal
answer, atonal contour, and random lures to give
three areas under the MOC for each subject. Areas
under the MOC can be interpreted as an estimate of
what the proportion correct would be in the case
where chance performance is .50 (Swets, 1973).
Areas under the MOC were evaluated using an un-
weighted-means analysis of variance for unequal cell
sizes due to the unequal numbers of experienced
and inexperienced subjects.
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Table 1
Areas Under the Memory Operating
Characteristic of the Experiment Compared
with Similar Conditions of Dowling and
Fujitani's (1971} Experiment 1

Group

Target Target
vs. vs. Target

tonal atonal vs.
answer contour random

Experienced
Inexperienced

Dowling and
Fujitani

.48

.49

—

.79

.59

.53

.84

.81

.89

Results

Table 1 shows the mean areas under the
MOC for the two groups and the three stimulus
comparisons. The main effect of stimulus
comparison type was significant, F(2, 38) =
77.35, p < .001. Distinguishing between tar-
gets and tonal answer lures was very difficult,
with chance performance in both groups. Dis-
tinguishing targets from atonal same-contour
lures was somewhat easier, and distinguishing
targets from random lures was easiest of all.
The Experience X Stimulus Type interaction
was significant, F(2, 38) = 8.01, p < .001,
mainly reflecting a difference of ability in
distinguishing targets from atonal same-con-
tour lures. The main effect of experience ap-
proached significance at the .05 level. This
modest effect is consonant with the modest
correlations found by Dowling and Fujitani
between performance on their task and ex-
perience.

General Discussion of Short-term Recognition
of Melodies

The present results illustrate the importance
of scale as well as contour in short-term rec-
ognition memory for melodies. This point is
brought out by comparison with the results
of Dowling and Fujitani (see Table 1). Both
studies found that the two melodies are rela-
tively easy to distinguish in that they have
different contours, with performance in the
.80s. Dowling and Fujitani's subjects found it
difficult to distinguish between two atonal
melodies with the same contour but different

interval sizes, performing at around the
chance level of .50. In the present experiment,
subjects found it easier to reject an atonal
comparison melody when it was preceded by
a tonal standard melody. This was especially
true of experienced subjects who presumably
have a firmly internalized modal system.
What subjects in the present experiment
found extremely difficult, performing at
chance, was distinguishing between exact
transpositions of comparison melodies to new
tonal keys and shifts of the contour along the
same diatonic scale as the standard. Both ex-
perienced and inexperienced subjects had
trouble with this task. Phenomenologically,
the comparison stimuli in Pairs A-B and
A-C of Figure 3 sound "natural," while the
comparison in Pair A-D sounds "strange."

This result illustrates the separateness of
the functions of contour and mode. The func-
tion of mode is not to fix a set of intervals
in semitones as belonging to a melody. If it
were, tonal answers would not be confused
with exact transpositions. The mode is simply
a framework on which the contour may be
hung. For brief melodies heard only once, the
point on the modal scale where the melody
begins is not taken into account. What sub-
jects seem to account for is that both the
mode and the contour are the same in the
two melodies.

This result should not be taken to mean
that diatonic scale intervals are somehow psy-
chologically equal. The concept of subjective
equality applies best to the level of the psy-
chophysical scale. The aesthetic purpose of
using differently sized pitch intervals in mo-
dal scales would be lost if all the intervals
in the mode were subjectively the same. Dif-
ferent intervals are used because they pro-
vide melodic interest. Melodies are translated
into different modes because that is more in-
teresting than reiterating them in the same
mode. Musicians find tuning systems that use
only subjectively equal intervals dull because
they deny a major source of melodic variety.
This is the principal criticism of the "whole-
tone scale" with which Debussy and others
experimented around the turn of the century.

Moreover, Frances (1958, Experiment 2)
found evidence that makes the subjective
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equality of modal intervals difficult to believe
in. Frances mistuned certain notes on a piano
and then placed these notes in various melodic
contexts. He found that when the mistuning
was in the direction of the dynamic tendency
of the tone in its modal context, the altera-
tion was much less likely to be noticed than
when the mistuning was in the opposite di-
rection. This means that the subjective inter-
val size changes with modal context. Such
changes would be consonant with the theory
that diatonic intervals tend to be subjectively
equal provided that the changes due to con-
text make large intervals (in the sense of the
psychophysrcal scale and tonal material
levels) smaller and small intervals larger.
However, Frances got the opposite result. In
all of his cases, it was small intervals that
became smaller.

The confusion of target melodies and tonal
answers does not occur with well-known mel-
odies stored in long-term memory. Attneave
and Olson (1971) have shown that with fa-
miliar melodies, exact interval sizes are pre-
cisely remembered. In fact, familiar melodies
can be used as mnemonics for retrieving scale
intervals, as when a music student uses the
song "Over There" to remember descending
major sixths ( — 9 semitones) or the song
"There's a Place for Us" for ascending minor
sevenths ( + 10 semitones). But even for fa-
miliar melodies, the contour and mode can
function independently, as when "Frere
Jacques" or "Twinkle, Twinkle" are sung in
a minor key or when their contours are recog-
nized in spite of distorted interval sizes
(Bowling & Hollombe, 1977).

That memory for exact interval sizes of fa-
miliar melodies is so good raises the question
of how such melodies are stored. They cannot
be stored simply as contour plus scale, since
that would leave the skips unspecified. "Twin-
kle, Twinkle" and the "Andante" theme from
Haydn's Surprise Symphony would be stored
nearly identically: the contour [0, +,0, +,0,
—, ±, 0, —, 0, —, 0, — ] (where 0 = unison,
+ = up, and — = down) beginning on the
tonic and in the major mode. What is needed
is a way of specifying skips along the diatonic
scale. What I will suggest is a three-valued
dimension of quasi-linguistic marking. Inter-

vals of one diatonic step will be unmarked;
two-step intervals will be marked "s" for skip;
and larger leaps will be marked "be," where
x gives the number of steps. In this system,
"Twinkle, Twinkle" becomes [0, +]4, 0, +,
0, -, -, 0, -, 0, -, 0, -], while Haydn's
"Andante" becomes [0, +s, 0, +s, 0, -„, +,
0, —„, 0, — s, 0, — 8]. This system takes ad-
vantage of the fact that relatively narrow in-
tervals predominate in the music of the world
(Bowling, 1968). Of the 26 intervals in the
first two phrases of the two songs just cited,
12 are unisons (0 steps), 7 are one step (un-
marked), 6 are two steps (marked "s"), and
1 is four steps (marked "14").

In order to document this predominance
of small diatonic intervals more fully and to
show that using the present system of mark-
ing would put considerably less load on mem-
ory than would remembering literally every
interval size, 1 counted all the intervals in
the collection of 80 Appalachian songs by
Sharp and Rarpeles (1968). I chose this col-
lection because it was compiled by careful
scholars from an almost exclusively vocal tra-
dition that does not use harmonizing accom-
paniments. The collection is just about the
right size to produce stable data, and the
songs in it were selected without any obvious
biases regarding the phenomenon under in-
vestigation. I first categorized the 80 songs
into those using heptatonic modes (seven
notes to the octave; 46 songs) and those us-
ing pentatonic modes (five notes to the oc-
tave; 34 songs). For convenience, and be-
cause the existence of a system of hexatonic
modes is not indisputable, I treated the 21
songs that used only six notes of the scale as
heptatonic (an example of such a song is
"Twinkle, Twinkle"). This decision would if
anything bias the interval count against small
diatonic intervals, since a hexatonic step
across the note omitted from the heptatonic
mode was counted as a skip. (It is interesting
that the note omitted from the heptatonic
mode was always one of the pair of notes in
the underlying tuning system that stands in
the unique 6-semitone interval to each other
—B or F in the white-note tuning system—
and that the 6-semitone interval did not occur
in any of the heptatonic songs.) A subsequent
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Table 2
Percentages of Diatonic Intervals of
Different Sizes in the 80 Songs of Sharp
and Karpeles (1968}, with Unisons
Omitted

Mode type

Interval size in
diatonic steps

2 3 4 >4

Heptatonic
(46 songs,
1,544 intervals)

Pentatonic
(34 songs,
1,334 intervals)

56 30 8 3 2

81 15 2 1 1

check on the data showed that separating the
hexatonic songs from the heptatonic has a
negligible effect on the frequency distribu-
tion of interval sizes.

The songs were strophic. That is, more or
less the same melody was repeated for the
several verses. For present purposes, each in-
terval in one strophe of each song was counted
once. Where the rhythm differed from strophe
to strophe (because of different words), I
used the rhythm of the first strophe.

Unisons accounted for 23% and 25% of
the intervals in the heptatonic and pentatonic
modes, respectively. Taking unisons and un-
marked diatonic steps together accounted for
66% and 86% of all the heptatonic and
pentatonic intervals. Omitting unisons from
consideration allows us to see what percent-
ages of + and — intervals need to be marked
"s" or "1." Table 2 shows these data. For
both mode types, the unmarked intervals ac-
count for over half the cases. Only 13% of
heptatonic and 4% of the pentatonic intervals
need to be coded as leaps.

Moreover, the leaps are used in generally
predictable ways in the songs. Of 202 leaps
of three or more steps in the heptatonic songs,
106 (52%) occurred in one of the following
two contexts: (a) pick-up notes at the start
of a phrase or leaps to the start of a new
phrase (as between the second and third
phrases of "Twinkle, Twinkle"; 75 instances)
and (b) passages in which the same interval
and rhythmic pattern including the leap was
repeated in the same song (as in the first and

penultimate phrases of "Twinkle, Twinkle";
31 instances). The occurrence of leaps is also
redundant with mode. Among the pentatonic
modes, for example, the mode whose ascend-
ing intervals in semitones are [2, 3, 2, 2, 3]
had only 1% leaps in its songs versus 4%
for the other modes. And each mode has its
own pattern of more and less probable leaps.
For example, no leaps were observed between
the seventh and fourth degrees of the major
mode (the 6-semitone interval).

The scarcity of leaps and their redundant
usage when they do occur reduces considera-
bly the load on memory. Therefore, it seems
plausible to characterize the memory storage
of the pitch material of an actual melody as
a combination of mode and contour, includ-
ing a specification of the starting pitch level
in the mode and the marking of skips and
leaps. It is important to note that this anal-
ysis is restricted to the pitch material. With
real melodies, rhythm must play an important
part in memory. Kolinski (1969) in his anal-
ysis of variants of the song "Barbara Allen"
provides numerous instances in which the
very same contour and mode, with a change
in rhythm, become a different song, often in
another culture. For example, a change in
rhythm turns one of the variants into the
sextet from Lucia di Lammermoor. In fact,
it is artificial even to think of rhythmless
melodies. In the state of our knowledge, this
is a necessary artificiality, since the problem
becomes enormously complex when rhythm is
added.

Thinking

Rather than just holding a melodic phrase
in short-term memory, subjects in Bowling's
(1972) study on melodic transformations had
to turn it upside down, backwards, or both.
Recognition follows that order of increasing
difficulty. Of interest here is the fact that
subjects were able only to recognize the mel-
odic contour when so transformed and not
the exact interval sizes.

Long-term Memory

In addition to being preserved in short-
term memory, melodic contours also seem to
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be retrievable from long-term memory inde-
pendently of interval sizes. White (1960) dis-
torted familiar melodies such as "Yankee
Doodle" and "On Top of Old Smokey" by
changing the pitch intervals between notes
by doubling them, adding a semitone, and
so on. While the undistorted melodies were
recognized 94% of the time, melodies sub-
jected to these contour-preserving transforma-
tions were recognized at about the 80% level.
Other contour-preserving transformations such
as setting all intervals to 1 semitone produced
a greater decrement in performance (to
around the 65% level). However, contour-
destroying transformations produced even
greater decrements. For example, randomizing
the intervals or subtracting 2 semitones from
them even when this changed their sign pro-
duced performance in the 45-50% range. (It
is difficult because of sampling problems to
say what the chance level in White's task was,
though it was undoubtedly in the 10-20%
range. The rhythmic patterns of the tunes
presented alone on one pitch were recognized
with 33% accuracy.)

Bowling and Fujitani (1971, Experiment
2) refined somewhat White's approach using
five familiar tunes whose first two phrases
could be stylized into the same rhythmic pat-
tern. They used three kinds of distortion:
preservation of contour, preservation of con-
tour plus relative interval size (i.e., the
greater-than/less-than relationships of succes-
sive intervals were preserved), and preserva-
tion of the underlying harmonic structure of
the melody while destroying contour. The
contour-preserving distortion produced a dec-
rement in performance from 99% (undis-
torted) down to 59%. Preserving the relative
interval sizes only boosted this a little (to
66%). Destroying contour led to a perform-
ance of 28%. (Chance level was probably
between 20% and 30%).

Melodic contours of familiar tunes can be
recognized even though the distortion of in-
terval sizes is very great. Deutsch (1972)
showed that distorting a tune by adding or
subtracting one or two octaves from each pitch
made it very difficult to recognize. But if the
octave distortion is carried out with a preser-

vation of contour, performance is remarkably
improved (Dowling & Hollombe, 1977).

One final consideration is that long-term
memory has the function in musically non-
literate societies of preserving the musical cul-
ture, including the melodies. What we would
expect from the present theory is that vari-
ants of a tune would share certain similarities,
namely, those that arise from very similar
contours being hung on the underlying scale
framework in various ways. This variation
might occur for three principal reasons: for-
getting of the original intervals, the desire to
create interesting innovations by manipulating
interval relationships (as shown in Figure
1), and changes of instruments and scale sys-
tems that necessitate transformations of mel-
odies (as in the case of adapting a non-West-
ern melody to a Western scale). All of these
processes are probably operating, for example,
in the variations of the tune "Barbara Allen"
studied by Seeger (1966) and Kolinski
(1969). The most striking result of Seeger's
study of 76 variants of "Barbara Allen" in
the U.S. Library of Congress is that they
fall into families based on the sharing of
closely related contours. These contours fall
onto their scales in various ways, producing
a profusion of similar but interestingly varied
melodies.

Reference Note

1. Dowling, W. J. Musical scales and psychophysical
scales: Their psychological reality. In T. Rice &
R. Falck (Eds.), Cross-cultural approaches to
music: Essays in honor of Mieczyslaw Kolinski.
Manuscript in preparation.
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