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Redshift bins
Scale bins 0.0 < z ≤ 1 1 < z ≤ 2

0.0 < k ≤ 0.01 Q1, Σ1 Q3, Σ3

0.01 < k < ∞ Q2, Σ2 Q4, Σ4

TABLE I: The subscript numbering in the binned parameterizations.

by [29] and used in ISiTGR [33] as:

k2Φ = −4πGa2
∑

i

ρi∆i Q(k, a) (2)

k2(Ψ−R(k, a)Φ) = −12πGa2
∑

i

ρi(1 + wi)σi Q(k, a). (3)

where, with i denoting a particular matter species, ρi is the density, ∆i is the rest-frame overdensity, and σi is the
shear stress. Q(k, a) and R(k, a) are the time and scale dependent modified gravity parameters (MG parameters). Q
quantifies a modification to what is often referred to as the Poisson equation (though as noted in [42] this equation is
not truly the Poisson equation as it relates the overdensity to the space-like potential, Φ which only affects relativistic
particles). R then represents an inherent inequality between the two potentials that may be caused by a modified
gravity model, the gravitational slip [9].
In order to not only avoid a strong parameter degeneracy between the parameters Q and R, but to also have a

parameter that is directly probed by observations, ISiTGRdoes not directly use Eq. (3) in its code, but rather uses a
combination of Eqs. (2) and (3)[32]:

k2(Ψ+ Φ) = −8πGa2
∑

i

ρi∆i Σ(k, a) − 12πGa2
∑

i

ρi(1 + wi)σi Q(k, a), (4)

where the parameter Σ = Q(1 +R)/2. This parameter is directly probed by observations such as weak gravitational
lensing. Note that in our previous works Σ was referred to as D, but in an effort to have a consistent set of parameters
in the literature going forward we are now using the much more common and intuitive, Σ.

B. Evolution of the MG parameters

In general there are two things that can be done with this modified growth formalism. First, one can give the
MG parameters a generic form in order to look for possible deviations from general relativity. Alternatively, one
can assume the MG parameters take a specific functional form in order to mimic the effects of a particular modified
gravity model in order to test that particular modified gravity model under the assumption that the expansion history
mimics exactly that of ΛCDM. Since our goal in this work is to look for deviations from GR, we will of course be
taking the first approach.
We use three different parameterizations of the MG parameters in order to define their time and scale dependence.

We have described these parameterizations in our previous works [33, 39] and will briefly overview them again here.

• P1: The first parameterization is a traditional binning parameterization in which the modified gravity param-
eters are binned in both redshift, z, and wavenumber (scale), k. A total of four bins are created by using two
redshift bins and two scale bins. The scale bins are k ≤ 0.01 and k > 0.01, while the redshift bins are 0 < z ≤ 1
and 1 < z ≤ 2. For redshifts z > 2 the MG parameters take their GR value of 1 at all scales. For continuity
and numerical stability this parameterization is cast functionally as:
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In various analyses of testing gravity at cosmological scales, weak lensing (cosmic shear) plays a prominent role
in constraining the growth of large scale structure and thus the MG parameters. Weak lensing is also at the center
of a number of future experiments aimed at testing gravity at cosmological scales (e.g. LSST, Euclid, WFIRST).
However, an active area of work in the lensing community is also focused on understanding and controlling the
systematic effects affecting this probe. At the forefront of these systematics are the intrinsic alignments of galaxies
that generate correlations which contaminate the pure cosmic shear signal, see for example the reviews [55, 56]
and references therein. Briefly, there exist two types of galaxy intrinsic alignments. The first one is between close
galaxies aligned with each other due the gravitational field present during their formation. These are referred to as
intrinsic ellipticity – intrinsic ellipticity type or simply the II-type for the 2-points correlations and III for the 3-point
correlations. The second type of intrinsic alignments are due to the fact that a massive structure aligns galaxies close
to it and also produces lensing of background galaxies, resulting into an anti-correlation between cosmic shear and
intrinsic ellipticites. This is known as the gravitational shear – intrinsic ellipticity type, or the GI-type for the 2-points
and can be generalized based on the same idea to the 3-points correlations giving the GGI and GII types. While
the II and III intrinsic alignment can be suppressed by binning and cross-correlation techniques to assure that the
galaxies are far enough and the gravitational tidal effect is small, these techniques cannot eliminate the GI, GGI and
GII alignments since these are present between distant galaxies. Some theoretical analyses of the effect of intrinsic
alignments and other lensing systematics on MG parameters can be found in [57, 58]. We include in our analysis
the possible effect of the 2-point II and GI intrinsic alignments present in the CFHTLenS data and analyze their
correlations with the MG parameters in particular.
There has also been increasing discussion about possible tensions between various cosmological data sets, partic-

ularly in probing the amplitude of matter fluctuations at the CMB level versus probes at lower redshifts (e.g. weak
lensing, galaxy clustering), see for example [59] and references therein. The CMB tends to prefer higher values of the
extrapolated cosmological parameter σ8 (the clustering amplitude on scales of 8h−1Mpc) than what is obtained from
low redshift probes of the growth of structure. While some works have explored resolving these tensions with various
changes to the neutrino sector (for example, [59–62]), it is interesting to explore here if these tensions are present or
reflected on the modified gravity parameters.
The paper is organized as follows: in section II, we describe the methodology and parameterizations used. We

describe the data sets used in the analysis in section III. The results and discussion are in section IV, while we
conclude in section V.

II. METHODOLOGY

In order to constrain deviations from general relativity we update the publicly available package ISiTGR [33, 39, 63]
for use with the December 2013 version of CosmoMC [64] which is compatible with the likelihood codes for CMB power
spectrum data from the Planck satellite [48]. Here we will briefly overview the modified growth formalism used in
ISiTGR . A much more detailed account of the this formalism though is available in [33, 39].

A. The Modified Growth Formalism of ISiTGR

ISiTGR uses modified versions of the first order perturbed Einstein’s equations from the perturbed Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric. In a flat universe this metric is written in the conformal Newtonian
gauge as:

ds2 = a(τ)2[−(1 + 2Ψ)dτ2 + (1− 2Φ)dxidxi], (1)

where τ is conformal time, a(τ) is the scale factor normalized to one today, the xi’s are the comoving coordinates,
and Ψ and Φ are the potentials describing the scalar modes of the metric perturbations.
Modified gravity parameters have been introduced in various interrelated notations that mainly parameterize a

possible difference between the two potentials in the metric (for example, the gravitational slip parameter of [9]), and
a second parameter that characterizes how the spacetime curvature side (or gravitational potentials side) is coupled
to the source terms via the perturbed Einstein equations (sometimes this parameter can be related to a an effective
gravitational constant). Due to degeneracies between some of these parameters, some other combined parameters
have been proposed as for example exemplified at the end of this sub-section. We refer the reader to references [1–46].
A summary of the relationships between the various parameterization can be found in [32]. It is also worth mentioning
that papers have used these parameterizations in a functional or binned form. We use here the notation introduced

⌃ =
Q(1 +R)

2
or D 
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FIG. 1: MG parameter evolution in redshift and scale modeled using a new hybrid method. We plot here a 3D representation
for an example of the new hybrid binned evolution for the MG parameter Q(k, a) as given by our Eqs. (12) and (13) for the
parameters Q(k, a) with Q1 = 1.20, Q2 = 1.15, Q3 = 1.05, Q4 = 1.10, zTGR = 2, and kc = 0.01. We can see along the
z-axis how the binned aspect can allow for different best fit values for the MG parameters in the redshift space while along
the k-axis we can see the monotonic evolution in k evolving from some large scale (small k) value to a small scale (large k)
value exponentially. The hybrid parametrization combines the z-binning method that was shown to be robust with a smooth
evolution in k space.

To take advantage of all these techniques, we have developed two versions of our code. One version of the code
uses the functional form (11). It provides the option to apply the functional form (11) to either Q and R (as done in
[50]) or Q and D. The other version of the code is based on binning methods. It provides the option of the second
approach with traditional binning (described above), or alternatively the third, hybrid approach with two redshift
bins, but the evolution in scale evolves monotonically.
In the binning version of the code, we evolve only Q and D. Transitions between the redshift bin are evolved

following [44, 53] and use a hyperbolic tangent function with a transition width ztw = 0.05. In this way the binning
can actually be written functionally as (with X representing Q or D)

X(k, a) =
1 +Xz1(k)

2
+

Xz2(k)−Xz1(k)

2
tanh

z − zdiv
ztw

+
1−Xz2(k)

2
tanh

z − zTGR

ztw
, (12)

where zdiv is the redshift where the transition between the two redshift bins occurs and zTGR is the redshift below
which GR is to be tested. We hard code zTGR = 2zdiv to give us equally sized bins, but this of course is optional and
can easily be changed. Xzi(k) represents the binning method for k in the ith z bin. For the suggested hybrid method
it has the form

Xz1(k) = X1e
−k/kc +X2(1 − e−k/kc) (13)

Xz2(k) = X3e
−k/kc +X4(1 − e−k/kc),

while with traditional binning in principle evolves as

Xz1(k) =

{

X1 if k < kc
X2 if k ≥ kc,

(14)

Xz2(k) =

{

X3 if k < kc
X4 if k ≥ kc.

Here though, we have rather chosen to implement the traditional binning method with some control on the transition
as:

Xz1(k) =
X2 +X1

2
+

X2 −X1

2
tanh

k − kc
ktw

(15)

Xz2(k) =
X4 +X3

2
+

X4 −X3

2
tanh

k − kc
ktw

,
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B. Modified Gravity Growth Parameters

Parametrizing both modifications to Poisson’s equation, (2), as well as the ratio between the two metric potentials
φ and ψ in the perturbed FLRW metric (called gravitational slip by Caldwell et al. [11]) has recently been the subject
of a lot of the work on testing general relativity; see, for example, [11, 49–53]. The parameters we use in this paper
to describe modifications to the growth [modified gravity MG parameters] are based upon those used in [50].
The parametrized modifications to the growth equations proposed by [50] directly modify Eqs. (2) and (3) and

make no assumptions as to the time when a deviation from GR is allowed. These modifications are as follows:

k2φ = −4πGa2
∑

i

ρi∆i Q (8)

k2(ψ −Rφ) = −12πGa2
∑

i

ρi(1 + wi)σi Q, (9)

where Q and R are the MG parameters. The parameter Q represents a modification to the Poisson equation, while
the parameter R quantifies the gravitational slip (at late times, when anisotropic stress is negligible, R = ψ/φ). In our
code, rather than using the parameter R which is degenerate with Q, we instead use the parameter D = Q(1 +R)/2
as suggested in [50] (this parameter is equivalent to the parameter Σ in [45, 53] or G of [52]). Combining Eqs. (8)
and (9), we arrive at the second modified growth equation used in this paper:

k2(ψ + φ) = −8πGa2
∑

i

ρi∆i D − 12πGa2
∑

i

ρi(1 + wi)σi Q. (10)

So, the modified growth equations are (8) and (10), and Q and D are now the MG parameters. As discussed in our
previous work [56], this approach of using the parameter D instead of R is also useful because observations of the
weak-lensing and ISW are sensitive to the sum of the metric potentials φ + ψ and its time derivative respectively.
Thus observations are able to give us direct measurements of this parameter.

C. Different Approaches to Evolving Modified Growth Parameters in Time and Scale

To date, there have primarily been two approaches to evolving the MG parameters in time and scale; one using
a continuous functional form and the other based on binning. We implement in ISiTGR the two approaches and,
additionally, a new hybrid approach, as we explain below.
The first approach involves defining a functional form for each parameter that allows it to evolve monotonically

in both time and scale. This allows one to make no assumptions as to when a deviation from general relativity is
allowed. Such an approach was taken in for example [50]. In that work the functional form,

X(a) = (X0 − 1) as + 1 (11)

was assumed, where X denotes either Q or R in Eqs. (8) and (9). Thus a total of six model parameters are used to
test GR: Q0, R0, Q∞, R∞, kc, and s. The parameters s and kc parametrize time and scale dependence respectively,
with GR values s = 0 and kc = ∞. Q0 and R0 are the present-day superhorizon values while Q∞ and R∞ are the
present-day subhorizon values of the Q(k, a) and R(k, a) , all taking GR values of 1.
In the second approach, instead of evolving each of the parameters assuming some functional form, one can bin the

MG parameters. This approach allows the parameters to take on different values in predefined redshift and scale bins.
This technique was used in, for example, [52, 53]. In those works two redshift and two scale bins were defined and for
redshifts above a certain critical redshift, GR was assumed to be valid. In each bin the parameters were allowed to
take on different values resulting in a total of eight model parameters used to test GR.
The third approach that we propose here is a hybrid one where the evolution in redshift (or time) is binned into

two redshift bins, but the evolution in scale evolves monotonically in the same way as the functional form above. Our
motivation for this hybrid binning approach is that it takes advantage of an evolution in scale that is not so abrupt
as that in the traditional binning method, while still taking advantage of a redshift (time) dependence expressed in
the form of bins, which was shown to be more robust than time functional forms [53, 56, 58]. For example, in [56], we
found that binning methods do not display the extent of tensions between the MG parameters (preferred by different
data sets) as in the functional form method, where tensions are exacerbated by the chosen functional form. Also, in
Ref. [58], the author found similar to what we noticed and that the constraints on MG parameters depend strongly
on the parameter s (the scale factor exponent in the functional parametrization). They further looked at ways to
remove this strong dependence on the parameter s suggesting and exploring binning as a solution.

As a function of redshift with s = 3 
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GALAXY INTRINSIC ALIGNMENTS (IA) AS A 
CONTAMINANT TO WEAK LENSING (WL) SIGNAL  

¢ Contaminates WL signal 
by up to 15-20%. Ref 

¢  2 pt. IA biases 
cosmological parameters 
at 10%-50% level 

¢ The measured correlation 
function = sum of GG, GI 
and II signals.  

¢ Used a model for IA that 
is parameterized by an 
amplitude ACFHTLenS 

7 



DATA SETS USED 

¢ CMB temperature anisotropy power-spectrum 
from Planck Surveyor 

¢ Low-l  WMAP Polarization data 
¢ Weak lensing tomography shear-shear cross 

correlations from the CFHTLenS 
¢ Galaxy power spectrum from the WiggleZ survey  
¢  ISW-galaxy cross correlations of Ho et al. (2008). 
¢ BAO data from 6dF, SDSS DR7, and BOSS DR9. 
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RESULTS IA: CORRELATIONS WITH MG 
PARAMETERS 

¢ We find only weak to moderate correlations 
between MG parameters and the IA parameter. 
�  Both scale dependent parameterizations show most 

correlation in low-z, high-k bins (bin probed most by 
lensing data). 
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FIG. 3: 68% and 95% 2-D confidence contours for the parameters Q0, Σ0, and R0 from the scale independent parameterization,
P3, for the MG parameters. These constraints are consistent with GR a the 95% level, but a tension is evident. The tension is
evident when viewing these plots is not easily seen using the 1-D constraints given in Table V. This is due to the non-Gaussianity
of the probability distribution for these parameters as further Fig. 4.

Correlation table
Functional parameterization (P3)

Q0 Σ0

ACFHTLenS -0.023164 0.10624
σ8 -0.66775 -0.75738
Ωm -0.072171 0.052317

TABLE VI: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P3

constraints is illustrated even better in Fig. 4 where we plot the 1-D probability distributions for the MG parameters
used in this evolution method. The distributions for the parameters Q0 and R0 are both quite skewed, with a large
tail in one end of each of the distributions, while distribution for Σ0 is bimodal. As discussed briefly in §IVB the
cause of these tensions in the MG parameter space seems to be caused by a tension between the CMB and weak
lensing data sets. We discuss this in depth in the next section.

D. Tensions Between the CMB and Weak Lensing Data Sets

As we have discussed above, there are strong tensions with GR in the constraints on the MG parameters from
evolution methods P2 and P3. One of the parameters from P2 even shows an apparent deviation from GR at the
95% level when looking at the marginalized confidence limits. We have argued briefly above that this tension with GR
in the MG parameter constraints arises from a tension between the CMB (Planck) and weak-lensing (CFHTLenS)
data sets. We present a more in depth argument for that point here.
There has been a known tension between CMB and weak-lensing data sets for quite some time (see [59] and

references therein). During an analysis of the data using the ΛCDM model, this tension is usually evident from
comparing the preferred σ8 values of each of the data sets. While the CMB data usually prefers a σ8 ∼ 0.83 [47],
lensing data usually prefers a much lower σ8 ∼ 0.7. Recently there has been a lot of work on resolving this tension
between these data sets by allowing for a sterile neutrino species or heavier set of active neutrinos [59–62]. In principle
this would resolve the issue, as the neutrinos would suppress in late time growth and therefore explain why late time
measurements of σ8 from lensing do not match those from the CMB which infers the value of σ8 from early universe
observations rather than directly measuring it.
The biggest indication that the tension in the MG parameter space is coming from the known tension between the

two data sets is the bimodal distribution of Σ0 from P3. This of course indicates that two very different values of
Σ0 are equally preferred by the overall combination of data sets. Since σ8 has been useful to illustrate the tension
between these two data sets before, we explore the values preferred when using P3. We find very interesting results
upon doing this.
In Fig. 5 we show the 2-D confidence contours in the Σ0,σ8 plane as well as the 1-D probability distribution of σ8.

The first thing that can be noticed is σ8, just like Σ0 is bimodal. In fact the two peaks in the distribution correspond
roughly to the preferred σ8 values of the CMB and weak lensing data sets. This is because ,compared to GR, the
MG parameters allow the CMB to fit the Planck data better with lower values of σ8 and at the same time allow for a
better fit to the the weak lensing data with higher values of σ8. Quite importantly, from the 2-D confidence contours
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95% confidence limits on MG parameters
evolved using form P2

Q1 [0.38,3.43] Σ1 [1.03,1.37]
Q2 [0.00,2.86] Σ2 [0.75,1.07]
Q3 [0.28,2.46] Σ3 [0.93,1.14]
Q4 [0.05,1.99] Σ4 [0.86,1.14]

TABLE III: We list the 95% confidence limits for the MG parameters from using form P2 to define their time and scale
dependence. While most of the MG parameters for this hybrid evolution method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ1).

FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, contrary
to the marginalized 1-D constraints given in Table III the GR point is still within the 95% confidence region.

Correlation table
Binning parameterization (P1)

Q1 Q2 Q3 Q4 Σ1 Σ2 Σ3 Σ4

ACFHTLenS -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954
σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894
Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterization (P2)
ACFHTLenS 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504
Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P1 and P2.

C. P3 Scale Independent Evolution

The results from the scale independent evolution method, P3, are also much more insightful than those from P1.
They offer some insight as to the origin of the strong tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. Looking only at these constraints,
one might conclude that nothing interesting is happening in this parameterization of the MG parameters as all of the
parameters are completely consistent with one at the 95% level.

95% confidence limits on MG parameters
evolved using form P3

Q0 [0.77,1.99] Σ0 [0.79,1.16] R0 [-0.23,1.18]

TABLE V: We list the 95% confidence limits for the parameters Q0, Σ0, and R0 from the scale independent method, P3,
of defining the evolution of the MG parameters. These constraints show no apparent tensions with GR. This is in contrast
to the strong tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability distributions in Fig. 4 where the non-gassianity of the
parameter constraints easily seen.

The 2-D confidence contours for these parameters plotted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that their is a strong tension in the parameter space, with the parameters showing
some preference for non-GR values. The constraints are also non-Gaussian. The non-Gaussianity of the parameter



RESULTS IA: COMPARING DIFFERENT 
LENSING DATASETS. 
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FIG. 6: 68% and 95% 2-D confidence contours for the intrinsic alignment amplitude parameter ACFHTLenS and Ωm. FIRST
ROW: the theory is fixed to GR and the constraints obtained are in good agreement with those of [73] thought improved due
to more precise recent data. To the left are the results for the IA-optimized red galaxy sample of [73]. The clear detection
of non-zero ACFHTLenS is also in agreement with [73]. SECOND and THIRD ROWS: Similar constraints are presented but
for the scale-dependent parameterizations P2 and P3 that model any deviation from GR. The bounds are larger but a zero
ACFHTLenS parameter is practically on the the 95% CL boundary line for the optimized red galaxy sample. FOURTH ROW:
results for the scale independent MG parameterization. The constraints are very similar to the GR case with a robust non-zero
ACFHTLenS . This may hint to the effect of scale dependence in the MG parameterizations
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FIG. 6: 68% and 95% 2-D confidence contours for the intrinsic alignment amplitude parameter ACFHTLenS and Ωm. FIRST
ROW: the theory is fixed to GR and the constraints obtained are in good agreement with those of [73] thought improved due
to more precise recent data. To the left are the results for the IA-optimized red galaxy sample of [73]. The clear detection
of non-zero ACFHTLenS is also in agreement with [73]. SECOND and THIRD ROWS: Similar constraints are presented but
for the scale-dependent parameterizations P2 and P3 that model any deviation from GR. The bounds are larger but a zero
ACFHTLenS parameter is practically on the the 95% CL boundary line for the optimized red galaxy sample. FOURTH ROW:
results for the scale independent MG parameterization. The constraints are very similar to the GR case with a robust non-zero
ACFHTLenS . This may hint to the effect of scale dependence in the MG parameterizations
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FIG. 1: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P1 for redshift and scale
dependence of the MG parameters. All of the constraints for this evolution method are fully consistent with GR at the 68%
level.

IV. RESULTS AND ANALYSIS

For all results presented, in addition to the MG parameters and relevant nuisance parameters for the various data
sets, we vary the six core cosmological parameters: Ωbh2 and Ωch2, the baryon and cold dark matter physical density
parameters, respectively; θ, the ratio of the sound horizon to the angular diameter distance of the surface of last
scattering; τrei, the reionization optical depth; ns, the spectral index; and ln 1010As, the amplitude of the primordial
power spectrum.

95% confidence limits on MG parameters
evolved using form P1

Q1 [0.49,2.56] Σ1 [0.97,1.14]
Q2 [0.05,3.08] Σ2 [0.84,1.22]
Q3 [0.30,1.78] Σ3 [0.97,1.06]
Q4 [0.28,2.88] Σ4 [0.90,1.12]

TABLE II: We list the 95% confidence limits for the MG parameters from using form P1 to define their time and scale
dependence. In this traditional binning approach we find that all of the MG parameters are fully consistent with their GR
values of 1 at the 95% level.

A. P1 Traditional Binning

We first, presents our results when using form P1 for the evolution of the MG parameters. The one dimensional
marginalized constraints for this parameterization are presented in Table II. We also show the 2-D marginalized 68%
and 95% confidence contours for the parameters in Fig. 1. Using this evolution method, all of the MG parameters
are consistent with their GR value of 1 at the 95% level and no strong tensions are evident. This is in contrast to the
other evolution methods we use where some strong tensions appear, making those results more revealing as we will
discuss more in the sections below.

B. P2 Hybrid Evolution

The results when using the hybrid evolution method for the MG parameters, P2, are more revealing. This can
be seen quickly in Table III where we give the marginalized constraints on the MG parameters for this evolution
method. Of particular interest are the constraints on the parameter Σ1 where the GR value of 1 lies outside of the
95% confidence interval. This is very interesting as it could signal a possible deviation from general relativity. Looking
at the 2-D confidence contours for the MG parameters in Fig. 2 offers a bit of a reprieve though as the GR point is
still lies within the 95% confidence level in those plots. Nevertheless the tension exhibited in the constraints on this
parameter should be explored. We delay the majority of this discussion to §IVD, where after presenting the results
from evolution method P3 it becomes more clear that this constraint is driven by a long standing tension between
the weak lensing and CMB data sets.
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FIG. 1: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P1 for redshift and scale
dependence of the MG parameters. All of the constraints for this evolution method are fully consistent with GR at the 68%
level.

IV. RESULTS AND ANALYSIS

For all results presented, in addition to the MG parameters and relevant nuisance parameters for the various data
sets, we vary the six core cosmological parameters: Ωbh2 and Ωch2, the baryon and cold dark matter physical density
parameters, respectively; θ, the ratio of the sound horizon to the angular diameter distance of the surface of last
scattering; τrei, the reionization optical depth; ns, the spectral index; and ln 1010As, the amplitude of the primordial
power spectrum.

95% confidence limits on MG parameters
evolved using form P1

Q1 [0.49,2.56] Σ1 [0.97,1.14]
Q2 [0.05,3.08] Σ2 [0.84,1.22]
Q3 [0.30,1.78] Σ3 [0.97,1.06]
Q4 [0.28,2.88] Σ4 [0.90,1.12]

TABLE II: We list the 95% confidence limits for the MG parameters from using form P1 to define their time and scale
dependence. In this traditional binning approach we find that all of the MG parameters are fully consistent with their GR
values of 1 at the 95% level.

A. P1 Traditional Binning

We first, presents our results when using form P1 for the evolution of the MG parameters. The one dimensional
marginalized constraints for this parameterization are presented in Table II. We also show the 2-D marginalized 68%
and 95% confidence contours for the parameters in Fig. 1. Using this evolution method, all of the MG parameters
are consistent with their GR value of 1 at the 95% level and no strong tensions are evident. This is in contrast to the
other evolution methods we use where some strong tensions appear, making those results more revealing as we will
discuss more in the sections below.

B. P2 Hybrid Evolution

The results when using the hybrid evolution method for the MG parameters, P2, are more revealing. This can
be seen quickly in Table III where we give the marginalized constraints on the MG parameters for this evolution
method. Of particular interest are the constraints on the parameter Σ1 where the GR value of 1 lies outside of the
95% confidence interval. This is very interesting as it could signal a possible deviation from general relativity. Looking
at the 2-D confidence contours for the MG parameters in Fig. 2 offers a bit of a reprieve though as the GR point is
still lies within the 95% confidence level in those plots. Nevertheless the tension exhibited in the constraints on this
parameter should be explored. We delay the majority of this discussion to §IVD, where after presenting the results
from evolution method P3 it becomes more clear that this constraint is driven by a long standing tension between
the weak lensing and CMB data sets.
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95% confidence limits on MG parameters
evolved using form P2

Q1 [0.38,3.43] Σ1 [1.03,1.37]
Q2 [0.00,2.86] Σ2 [0.75,1.07]
Q3 [0.28,2.46] Σ3 [0.93,1.14]
Q4 [0.05,1.99] Σ4 [0.86,1.14]

TABLE III: We list the 95% confidence limits for the MG parameters from using form P2 to define their time and scale
dependence. While most of the MG parameters for this hybrid evolution method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ1).

FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, contrary
to the marginalized 1-D constraints given in Table III the GR point is still within the 95% confidence region.

Correlation table
Binning parameterization (P1)

Q1 Q2 Q3 Q4 Σ1 Σ2 Σ3 Σ4

ACFHTLenS -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954
σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894
Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterization (P2)
ACFHTLenS 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504
Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P1 and P2.

C. P3 Scale Independent Evolution

The results from the scale independent evolution method, P3, are also much more insightful than those from P1.
They offer some insight as to the origin of the strong tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. Looking only at these constraints,
one might conclude that nothing interesting is happening in this parameterization of the MG parameters as all of the
parameters are completely consistent with one at the 95% level.

95% confidence limits on MG parameters
evolved using form P3

Q0 [0.77,1.99] Σ0 [0.79,1.16] R0 [-0.23,1.18]

TABLE V: We list the 95% confidence limits for the parameters Q0, Σ0, and R0 from the scale independent method, P3,
of defining the evolution of the MG parameters. These constraints show no apparent tensions with GR. This is in contrast
to the strong tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability distributions in Fig. 4 where the non-gassianity of the
parameter constraints easily seen.

The 2-D confidence contours for these parameters plotted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that their is a strong tension in the parameter space, with the parameters showing
some preference for non-GR values. The constraints are also non-Gaussian. The non-Gaussianity of the parameter
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95% confidence limits on MG parameters
evolved using form P2

Q1 [0.38,3.43] Σ1 [1.03,1.37]
Q2 [0.00,2.86] Σ2 [0.75,1.07]
Q3 [0.28,2.46] Σ3 [0.93,1.14]
Q4 [0.05,1.99] Σ4 [0.86,1.14]

TABLE III: We list the 95% confidence limits for the MG parameters from using form P2 to define their time and scale
dependence. While most of the MG parameters for this hybrid evolution method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ1).

FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, contrary
to the marginalized 1-D constraints given in Table III the GR point is still within the 95% confidence region.

Correlation table
Binning parameterization (P1)

Q1 Q2 Q3 Q4 Σ1 Σ2 Σ3 Σ4

ACFHTLenS -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954
σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894
Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterization (P2)
ACFHTLenS 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504
Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P1 and P2.

C. P3 Scale Independent Evolution

The results from the scale independent evolution method, P3, are also much more insightful than those from P1.
They offer some insight as to the origin of the strong tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. Looking only at these constraints,
one might conclude that nothing interesting is happening in this parameterization of the MG parameters as all of the
parameters are completely consistent with one at the 95% level.

95% confidence limits on MG parameters
evolved using form P3

Q0 [0.77,1.99] Σ0 [0.79,1.16] R0 [-0.23,1.18]

TABLE V: We list the 95% confidence limits for the parameters Q0, Σ0, and R0 from the scale independent method, P3,
of defining the evolution of the MG parameters. These constraints show no apparent tensions with GR. This is in contrast
to the strong tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability distributions in Fig. 4 where the non-gassianity of the
parameter constraints easily seen.

The 2-D confidence contours for these parameters plotted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that their is a strong tension in the parameter space, with the parameters showing
some preference for non-GR values. The constraints are also non-Gaussian. The non-Gaussianity of the parameter
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FIG. 3: 68% and 95% 2-D confidence contours for the parameters Q0, Σ0, and R0 from the scale independent parameterization,
P3, for the MG parameters. These constraints are consistent with GR a the 95% level, but a tension is evident. The tension is
evident when viewing these plots is not easily seen using the 1-D constraints given in Table V. This is due to the non-Gaussianity
of the probability distribution for these parameters as further Fig. 4.

Correlation table
Functional parameterization (P3)

Q0 Σ0

ACFHTLenS -0.023164 0.10624
σ8 -0.66775 -0.75738
Ωm -0.072171 0.052317

TABLE VI: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P3

constraints is illustrated even better in Fig. 4 where we plot the 1-D probability distributions for the MG parameters
used in this evolution method. The distributions for the parameters Q0 and R0 are both quite skewed, with a large
tail in one end of each of the distributions, while distribution for Σ0 is bimodal. As discussed briefly in §IVB the
cause of these tensions in the MG parameter space seems to be caused by a tension between the CMB and weak
lensing data sets. We discuss this in depth in the next section.

D. Tensions Between the CMB and Weak Lensing Data Sets

As we have discussed above, there are strong tensions with GR in the constraints on the MG parameters from
evolution methods P2 and P3. One of the parameters from P2 even shows an apparent deviation from GR at the
95% level when looking at the marginalized confidence limits. We have argued briefly above that this tension with GR
in the MG parameter constraints arises from a tension between the CMB (Planck) and weak-lensing (CFHTLenS)
data sets. We present a more in depth argument for that point here.
There has been a known tension between CMB and weak-lensing data sets for quite some time (see [59] and

references therein). During an analysis of the data using the ΛCDM model, this tension is usually evident from
comparing the preferred σ8 values of each of the data sets. While the CMB data usually prefers a σ8 ∼ 0.83 [47],
lensing data usually prefers a much lower σ8 ∼ 0.7. Recently there has been a lot of work on resolving this tension
between these data sets by allowing for a sterile neutrino species or heavier set of active neutrinos [59–62]. In principle
this would resolve the issue, as the neutrinos would suppress in late time growth and therefore explain why late time
measurements of σ8 from lensing do not match those from the CMB which infers the value of σ8 from early universe
observations rather than directly measuring it.
The biggest indication that the tension in the MG parameter space is coming from the known tension between the

two data sets is the bimodal distribution of Σ0 from P3. This of course indicates that two very different values of
Σ0 are equally preferred by the overall combination of data sets. Since σ8 has been useful to illustrate the tension
between these two data sets before, we explore the values preferred when using P3. We find very interesting results
upon doing this.
In Fig. 5 we show the 2-D confidence contours in the Σ0,σ8 plane as well as the 1-D probability distribution of σ8.

The first thing that can be noticed is σ8, just like Σ0 is bimodal. In fact the two peaks in the distribution correspond
roughly to the preferred σ8 values of the CMB and weak lensing data sets. This is because ,compared to GR, the
MG parameters allow the CMB to fit the Planck data better with lower values of σ8 and at the same time allow for a
better fit to the the weak lensing data with higher values of σ8. Quite importantly, from the 2-D confidence contours
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95% confidence limits on MG parameters
evolved using form P2

Q1 [0.38,3.43] Σ1 [1.03,1.37]
Q2 [0.00,2.86] Σ2 [0.75,1.07]
Q3 [0.28,2.46] Σ3 [0.93,1.14]
Q4 [0.05,1.99] Σ4 [0.86,1.14]

TABLE III: We list the 95% confidence limits for the MG parameters from using form P2 to define their time and scale
dependence. While most of the MG parameters for this hybrid evolution method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ1).

FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σi from parameterization P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, contrary
to the marginalized 1-D constraints given in Table III the GR point is still within the 95% confidence region.

Correlation table
Binning parameterization (P1)

Q1 Q2 Q3 Q4 Σ1 Σ2 Σ3 Σ4

ACFHTLenS -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954
σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894
Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterization (P2)
ACFHTLenS 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504
Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlations between ACFHTLenS , σ8, Ωm versus the MG parameters of P1 and P2.

C. P3 Scale Independent Evolution

The results from the scale independent evolution method, P3, are also much more insightful than those from P1.
They offer some insight as to the origin of the strong tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. Looking only at these constraints,
one might conclude that nothing interesting is happening in this parameterization of the MG parameters as all of the
parameters are completely consistent with one at the 95% level.

95% confidence limits on MG parameters
evolved using form P3

Q0 [0.77,1.99] Σ0 [0.79,1.16] R0 [-0.23,1.18]

TABLE V: We list the 95% confidence limits for the parameters Q0, Σ0, and R0 from the scale independent method, P3,
of defining the evolution of the MG parameters. These constraints show no apparent tensions with GR. This is in contrast
to the strong tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability distributions in Fig. 4 where the non-gassianity of the
parameter constraints easily seen.

The 2-D confidence contours for these parameters plotted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that their is a strong tension in the parameter space, with the parameters showing
some preference for non-GR values. The constraints are also non-Gaussian. The non-Gaussianity of the parameter
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FIG. 4: 1-D probability distributions for the parameters Q0, Σ0, and R0 from the scale independent parameterization for
the MG parameters, P3. These constraints are consistent with GR a the 95% level, but a tension is evident particularly in
the parameters Q0 and R0. The probability distributions display a significant level of non-Gaussianity, especially Σ0 which
is somewhat bimodal. This non-Gaussianity explains why the tension seen in these plots is not seen using the marginalized
constraints given in Table V.

we see the higher values of Σ0 occur in the region of the parameter space where the lower σ8 values are preferred. This
lends credence to the conclusion that the higher preferred Σ1 from P2 is also being caused by this tension between
the CMB and weak lensing data sets.
While the tensions with GR we have seen in this work are still weak, they are nonetheless more significant than we

have seen in the past. The fact that it is primarily due to a tension between two cosmological observations probing
different eras of cosmic evolution is also important. Other explanations for the tensions between these data sets such
as changes to the neutrino sector have been proposed, though some arguments have been made that these do not
completely explain the tensions seen [59]. It remains an open question whether these observed tensions are signaling
some issues with the model or underlying theory.

FIG. 5: To illustrate that the tensions in the MG parameters may be arising from tensions between the Planck and CFHTLenS
data sets, we plot the 68% and 95% 2-D confidence contours between Σ0 and σ8 as well as the 1-D probability distribution
for σ8 when using method P3 for evolving the MG parameters. The probability distribution for σ8 is significantly bimodal
with peaks corresponding to the preferred values of σ8 for the Planck and CFHTLenS data sets. From the plots of the 2-D
confidence contours, one can see that the bimodality of Σ0 seen in Fig. 4 is directly tied to that of σ8 with the CFHTLenS
data causing a preference for higher values of Σ0 and CMB data from Planck having a preference for lower values of Σ0.

E. Galaxy Intrinsic Alignments: Constraints and Correlations

Our results are presented in Figs. 6, 7, Tab. IV, Tab. VI and Tab. VII. When the underlying theory is fixed to
GR, we find constraints on the the amplitude of the intrinsic alignment model, ACFHTLenS that are consistent with
zero for the CFHTLenS full galaxy sample, the blue or the red samples (Figs. 6, 7). But we find a clear non-zero
ACFHTLenS parameter when we use the optimized-red galaxy sample of [73], in agreement with their results. For
GR, we find for this sample ACFHTLenS = 3.54 ± 0.98 for the 68% limits. We find in general similar results to
those of GR when the scale independent MG parameterization, P3, is used. However, when the scale dependent MG
parameterizations, P1 and P2, are used, we find that the zero ACFHTLenS parameter is on the boundary line of the
95% confidence contours. This could show some inter-relations between the constraints on ACFHTLenS and the scale
dependence of the MG parameters. From the correlations tables, there are overall only weak to moderate correlations
between the MG parameters and the intrinsic alignment amplitude parameter. It is found that Q2 and Σ2 (i.e. smaller



TENSIONS BETWEEN THE DATA SETS 

¢ We have seen indications of tensions in the MG 
parameter space for P2 and P3. 

¢ Known tension between CMB and weak lensing, 
notably in constraints on σ8. 

¢ For P3 we get a bimodal σ8, hinting the tension in 
MG parameter space is likely related to known 
tension between the data sets. 
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SUMMARY 

¢ We find a 40-53% improvement on figure of merit 
for the MG parameters over previous results. 

¢ The intrinsic alignment amplitude shows weak to 
moderate correlation with the MG parameters 
(Q2 & Σ2 most correlated). 

¢ GR & P3 show a clear IA signal for the optimized 
early-type galaxy sample 

¢ GR is consistent with the data at the 95% CL 
when considering 2D contours. 

¢ A clear tension is present in the parameter Σ 
apparently related to the known tension between 
CMB and weak lensing. 
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EVOLVING THE MODIFIED GRAVITY 
PARAMETERS: BINNING METHODS 
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FIG. 1: MG parameter evolution in redshift and scale modeled using a new hybrid method. We plot here a 3D representation
for an example of the new hybrid binned evolution for the MG parameter Q(k, a) as given by our Eqs. (12) and (13) for the
parameters Q(k, a) with Q1 = 1.20, Q2 = 1.15, Q3 = 1.05, Q4 = 1.10, zTGR = 2, and kc = 0.01. We can see along the
z-axis how the binned aspect can allow for different best fit values for the MG parameters in the redshift space while along
the k-axis we can see the monotonic evolution in k evolving from some large scale (small k) value to a small scale (large k)
value exponentially. The hybrid parametrization combines the z-binning method that was shown to be robust with a smooth
evolution in k space.

To take advantage of all these techniques, we have developed two versions of our code. One version of the code
uses the functional form (11). It provides the option to apply the functional form (11) to either Q and R (as done in
[50]) or Q and D. The other version of the code is based on binning methods. It provides the option of the second
approach with traditional binning (described above), or alternatively the third, hybrid approach with two redshift
bins, but the evolution in scale evolves monotonically.
In the binning version of the code, we evolve only Q and D. Transitions between the redshift bin are evolved

following [44, 53] and use a hyperbolic tangent function with a transition width ztw = 0.05. In this way the binning
can actually be written functionally as (with X representing Q or D)

X(k, a) =
1 +Xz1(k)

2
+

Xz2(k)−Xz1(k)

2
tanh

z − zdiv
ztw

+
1−Xz2(k)
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, (12)

where zdiv is the redshift where the transition between the two redshift bins occurs and zTGR is the redshift below
which GR is to be tested. We hard code zTGR = 2zdiv to give us equally sized bins, but this of course is optional and
can easily be changed. Xzi(k) represents the binning method for k in the ith z bin. For the suggested hybrid method
it has the form

Xz1(k) = X1e
−k/kc +X2(1 − e−k/kc) (13)

Xz2(k) = X3e
−k/kc +X4(1 − e−k/kc),

while with traditional binning in principle evolves as

Xz1(k) =

{

X1 if k < kc
X2 if k ≥ kc,

(14)

Xz2(k) =

{

X3 if k < kc
X4 if k ≥ kc.

Here though, we have rather chosen to implement the traditional binning method with some control on the transition
as:

Xz1(k) =
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ktw

(15)
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Σ̇. This likelihood and its usefulness in testing for deviations from general relativity has been discussed extensively
in previous works, for example, [29–33, 39].
As a final probe of the matter distribution of the universe we use the weak lensing tomography shear-shear cross

correlation data. This data is not only useful in that it helps constrain both the expansion history and the growth
history of structure in the universe, but, as discussed above, it also gives us a way to directly probe the value of
the MG parameter Σ. In this work we use tomographic shear cross-correlation data from the Canada France Hawaii
Telescope Lensing Survey (CFHTLenS) [73]. The CFHTLenS survey analysis combined weak lensing data processing
with THELI [50], shear measurement with lensfit [52], and photometric redshift measurement with PSF-matched
photometry [51]. Analysis of systematic and photometric redshift errors for the weak lensing data was discussed in
[53, 54]. The data set of [73] consists of 21 sets of cosmic shear correlation functions associated with six redshift bins,
each spanning the angular range of 1.5 < θ < 35 arcmin. The calculation of the theoretical shear cross correlation
functions for this data set differ somewhat from those used in the weak lensing data set previously included in ISiTGR ,
[74], so we will briefly overview the relevant equations for the calculation here. A more detailed description, though,
can be found in [73].
As usual, the shear cross correlation functions ξkl+,−(θ)GG between bins k, l are given by

ξkl+,−(θ)GG =
1

2π

∫ ∞

0
dℓ ℓ J0,4(ℓθ)P

kl
κ (ℓ), (9)

where Jn is the nth-order Bessel function of the first kind, ℓ is the modulus of the two-dimensional wave vector, and
P kl
κ is the convergence cross-power spectra between bins k and l is given by [75]

P kl
κ (ℓ) =

∫ χh

0
dχ gk(χ)gl(χ)Pφ,φ

( ℓ

fK(χ)
,χ

)
, (10)

with comoving radial distance χ, comoving distance to the horizon χh, comoving angular diameter distance fK(χ).
Above, we have absorbed the usual extra terms into the power spectrum of the sum of the metric potentials, Pφ,φ,
where φ ≡ Φ+Ψ

2 . The weighted geometric lens-efficiency factor for the kth bin, gk(χ), is given by

gk(χ) ≡
1

a(χ)

∫ χh

χ
dχ′pk(χ

′)
fK(χ′ − χ)

fK(χ′)
, (11)

corresponding to the normalized galaxy redshift distributions pk.
In order to mediate the effects of possible intrinsic alignment contamination to the weak lensing signal, we follow

the technique used in [73] which parameterizes the contribution of the intrinsic alignments to the shear correlation
measurements using a nonlinear intrinsic alignment model introduced by [76] and based on the linear tidal field
alignment model of [77] which in turn is based on earlier work of [78].
In this technique the measured correlation functions are considered to be a sum of contributions from intrinsic

alignments, which we will denote ξkl+,−(θ)GI and ξkl+,−(θ)II , and the true shear correlation function, ξkl+,−(θ)GG above,

ξ̂kl+,−(θ) = ξkl+,−(θ)II + ξkl+,−(θ)GI + ξkl+,−(θ)GG . (12)

The intrinsic alignment contributions, ξkl+,−(θ)GI and ξkl+,−(θ)II , are calculated in the same way as ξkl+,−(θ)GG , Eq. (9)
except that the convergence cross power spectrum, Pκ, is replaced by the projected GI and II power spectrum, CGI

and CII respectively. Explicitly these power spectra are given by:

Ckl
GI
(ℓ) =

∫ χh

0
dχ

gk(χ)pl(χ) + gl(χ)pk(χ)

fK(χ)
FI Pφ,δ0

( ℓ

fK(χ)
,χ

)
, (13)

Ckl
II
(ℓ) =

∫ χh

0
dχ

pk(χ)pl(χ)

[fK(χ)]2
F 2
I Pδ0,δ0

( ℓ

fK(χ)
,χ

)
, (14)

where δ0 is the matter overdensity today and FI is a cosmology dependent factor given by:

FI = −ACFHTLenS C1 ρcrit Ωm. (15)

Above, ρcrit is the critical density of the universe today, C1 is a constant with a value 5 × 10−14h−2M−1
⊙ Mpc3, and

ACFHTLenS is a nuisance parameter that we will marginalize over in our likelihood analysis.
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photometry [51]. Analysis of systematic and photometric redshift errors for the weak lensing data was discussed in
[53, 54]. The data set of [73] consists of 21 sets of cosmic shear correlation functions associated with six redshift bins,
each spanning the angular range of 1.5 < θ < 35 arcmin. The calculation of the theoretical shear cross correlation
functions for this data set differ somewhat from those used in the weak lensing data set previously included in ISiTGR ,
[74], so we will briefly overview the relevant equations for the calculation here. A more detailed description, though,
can be found in [73].
As usual, the shear cross correlation functions ξkl+,−(θ)GG between bins k, l are given by

ξkl+,−(θ)GG =
1

2π

∫ ∞

0
dℓ ℓ J0,4(ℓθ)P

kl
κ (ℓ), (9)

where Jn is the nth-order Bessel function of the first kind, ℓ is the modulus of the two-dimensional wave vector, and
P kl
κ is the convergence cross-power spectra between bins k and l is given by [75]

P kl
κ (ℓ) =

∫ χh

0
dχ gk(χ)gl(χ)Pφ,φ

( ℓ

fK(χ)
,χ

)
, (10)

with comoving radial distance χ, comoving distance to the horizon χh, comoving angular diameter distance fK(χ).
Above, we have absorbed the usual extra terms into the power spectrum of the sum of the metric potentials, Pφ,φ,
where φ ≡ Φ+Ψ

2 . The weighted geometric lens-efficiency factor for the kth bin, gk(χ), is given by

gk(χ) ≡
1

a(χ)

∫ χh

χ
dχ′pk(χ

′)
fK(χ′ − χ)

fK(χ′)
, (11)

corresponding to the normalized galaxy redshift distributions pk.
In order to mediate the effects of possible intrinsic alignment contamination to the weak lensing signal, we follow

the technique used in [73] which parameterizes the contribution of the intrinsic alignments to the shear correlation
measurements using a nonlinear intrinsic alignment model introduced by [76] and based on the linear tidal field
alignment model of [77] which in turn is based on earlier work of [78].
In this technique the measured correlation functions are considered to be a sum of contributions from intrinsic

alignments, which we will denote ξkl+,−(θ)GI and ξkl+,−(θ)II , and the true shear correlation function, ξkl+,−(θ)GG above,

ξ̂kl+,−(θ) = ξkl+,−(θ)II + ξkl+,−(θ)GI + ξkl+,−(θ)GG . (12)

The intrinsic alignment contributions, ξkl+,−(θ)GI and ξkl+,−(θ)II , are calculated in the same way as ξkl+,−(θ)GG , Eq. (9)
except that the convergence cross power spectrum, Pκ, is replaced by the projected GI and II power spectrum, CGI

and CII respectively. Explicitly these power spectra are given by:

Ckl
GI
(ℓ) =

∫ χh

0
dχ

gk(χ)pl(χ) + gl(χ)pk(χ)

fK(χ)
FI Pφ,δ0

( ℓ

fK(χ)
,χ

)
, (13)

Ckl
II
(ℓ) =

∫ χh

0
dχ

pk(χ)pl(χ)

[fK(χ)]2
F 2
I Pδ0,δ0

( ℓ

fK(χ)
,χ

)
, (14)

where δ0 is the matter overdensity today and FI is a cosmology dependent factor given by:

FI = −ACFHTLenS C1 ρcrit Ωm. (15)

Above, ρcrit is the critical density of the universe today, C1 is a constant with a value 5 × 10−14h−2M−1
⊙ Mpc3, and

ACFHTLenS is a nuisance parameter that we will marginalize over in our likelihood analysis.
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The significant difference (inconsistency) between the equations of state found using 
these two combinations is a due to the DGP model in the simulated data.  
  
In this simulated case, The inconsistency tells us that we are in presence of modified 
gravity rather than GR+Dark Energy.  

Results: Equations of state found using two different combinations of simulated data 
sets. Solid contours are for fits to the [Supernova + CMB] data combination, while 
dashed contours are for fits to [Weak Lensing + CMB] data combination.                       
(MI, Upadhye, and Spergel, Phys.Rev. D74 (2006) 043513, astro-ph-2005) 


