
r Human Brain Mapping 34:651–664 (2013) r

Removing an Intersubject Variance Component in
a General Linear Model Improves Multiway

Factoring of Event-Related Spectral Perturbations
in Group EEG Studies

Jeffrey S. Spence,1,2* Matthew R. Brier,3 John Hart, Jr.,3

and Thomas C. Ferree4

1Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
2Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
3Center for BrainHealth, School of Behavioral and Brain Science, University of Texas at Dallas,

Dallas, Texas
4Department of Radiology and Biomedical Engineering Program,
University of Texas Southwestern Medical Center, Dallas, Texas

r r

Abstract: Linear statistical models are used very effectively to assess task-related differences in EEG power
spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multi-
subject study, where many trials of each condition of interest are measured on each subject. Generally,
intra- and intersubject variances are both important to determine correct standard errors for inference on
functions of model parameters, but it is often assumed that intersubject variance is the most important con-
sideration in a group study. In this article, we show that, under common assumptions, estimates of some
functions of model parameters, including estimates of task-related differences, are properly tested relative
to the intrasubject variance component only. A substantial gain in statistical power can arise from the
proper separation of variance components when there is more than one source of variability. We first de-
velop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and tempo-
ral components from EEG data acquired in a group of healthy subjects performing a well-studied response
inhibition task. Hum Brain Mapp 34:651–664, 2013. VC 2011Wiley Periodicals, Inc.
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INTRODUCTION

Time-frequency analyses of EEG data acquired in cogni-
tive experiments cover spatial, temporal, and spectral
dimensions, requiring an analytic approach that incorpo-
rates both inferential statistics and data reduction. Often
the goal is to determine regional differences in brain activ-
ity between contrasts of task conditions and baseline or
prestimulus intervals. Linear statistical models or general
linear models (GLM) are commonly used to assess task-
related differences, and principal components are often
used as a data reduction tool for interpretability.
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This analytic approach to handle the large ‘‘volume’’ of
data in EEG has been addressed previously. In the context
of event-related potentials, a body of work advocates using
sequential principal component analysis (PCA) for data
reduction, then conducting statistical tests on the resulting
components [Donchin, 1966; Dien, 2006; Dien et al., 2003;
Spencer et al., 1999]. In that approach, subjects and task con-
ditions are treated as samples in the PCA, and inference
between conditions is conducted by modeling the compo-
nents retained after sequential PCA in the GLM. The term
‘‘sequential’’ refers to the sequential application of two-way
PCA to the multiway array after repeated unfolding; we
refer to this ERP-based approach as PCA-ANOVA.

In recent work, Ferree et al. [2009] tested the application
of PCA-ANOVA to event-related spectral perturbations
and found several types of instability in the results. First,
the largest PCA component reflected 60 Hz noise, which
was not significantly different between conditions within
any single subject, but was variable across electrodes and
subjects. It was concluded that this approach was not
effective at isolating activity that is specific to task condi-
tions. This problem extends beyond 60 Hz noise to include
prominent features in the power spectrum (e.g., 1/f-like
behavior at low frequencies and the alpha resonance) that
dominate the spectrum in each condition but may not be
different between conditions. Second, the results were
highly sensitive to the deletion of a single subject, with
differential sensitivity across subjects. In effect, PCA-
ANOVA finds regions of high intersubject variance
because this is the dominant component of the PCA,
which then enters the GLM as the dependent variable.

Recalling that event-related spectral perturbations are
usually analyzed within subjects, using trials to test for
differences between conditions, it was hypothesized that
task-related differences could be better isolated by first
applying the GLM on the power spectral estimates them-
selves within each subject, and then submitting only sig-
nificant contrasts of conditions and baseline to PCA. This
procedure produced more stability in the results, including
a proper cancellation of 60 Hz noise, and more robustness
against single-subject deletions.

This new method, termed STAT-PCA [Ferree et al.,
2009], is an improvement over PCA-ANOVA, because
intersubject variance does not contribute to the test on con-
dition differences, thus better isolating task-related differ-
ences. However, in that first instantiation of STAT-PCA
subjects were still included as samples in the PCA. Subse-
quent investigations reported here showed that a single
subject can, in some cases, yield a dominant PCA compo-
nent so that the spatial, temporal, and spectral pattern of
activation reflects the pattern of the single subject rather
than the activation pattern common to the group.

For group studies, in which the subjects are sampled
from populations of interest (e.g., healthy controls or
patient groups), an implicit goal is to assess task-related
changes in brain activity that are characteristic of the
theoretical population from which the sample is taken.

This is best accomplished by incorporating the subjects in
appropriate mixed effects linear models at the inferential
stage (STAT) before the PCA. These models, explicitly
stated in the Theory section, are more general in the sense
that they allow estimates of parameter effects and more
than one variance component within the framework of a
single model rather than adopting an inferential model
separately for each subject. In addition, the correct separa-
tion of variance components still allows the testing of task-
related differences relative to the intrasubject variance
component, and the incorporation of subjects in a single
model removes subjects from the PCA so that only space,
time and frequency dimensions need to be reduced by PCA.

Our motivation for the development of the models
described below is generated by the desire to extend the
original STAT-PCA procedure to allow a more flexible set of
experimental designs while improving its robustness prop-
erties. This article demonstrates two distinct advantages of
the proposed models: (1) the statistical power to detect task-
related changes in brain activation is markedly improved
when there is more than one source of variability, and (2)
the PCA data reduction step more accurately displays the
group pattern of activations since the intersubject variances
are correctly accounted for during the inferential stage
before PCA. The general linear models and the separation
of variance components from several sources of variability
are first described theoretically, then its implementation is
evaluated by comparing this extended STAT-PCA time-fre-
quency analysis to the original STAT-PCA procedure in a
simple response inhibition task for which the main result is
known from the literature.

THEORY

Statistical Models

As noted above the results of EEG power spectral analy-
ses typically span space, time and frequency (STF).
Depending on the spatial, temporal and spectral resolu-
tion, the array of results is typically of an order of magni-
tude similar to an fMRI statistic map image with each STF
combination a point in the three-dimensional array, or a
‘‘voxel’’ in fMRI terminology. For ease of notation we sup-
press the reference to the particular STF ‘‘voxel’’ in the
data array and model the logarithm of the power spectral
density (PSD) at each STF ‘‘voxel.’’ By defining yjkl ¼ log
PSDjkl we describe the observed responses yjkl as deriving
from an experimentally imposed task condition and ran-
dom variation in both subjects and trials using the stand-
ard linear model notation

yjk‘ ¼ lþ bj þ ck þ ejk‘; (1)

where j ¼ 1,. . .,n subjects; k ¼ 1,. . .,c conditions; and l ¼
1,. . .,tjk trials in each subject and condition. This is a mixed
effects linear model with subjects as a random effect, bj,
and task condition as a fixed effect, ck. Thus, there are two
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variance components, r2e and r2b, with the distributional
assumptions ejkl

i.i.d.
� N(0,r2e ) and bj

i.i.e.
� N(0,r2b), independent

of ejkl. These variance components are the intra- and inter-
subject variances, respectively. Note that this is a simple
extension of a within-subject linear model ykl ¼ l 1 ck 1

ekl, which is used implicitly in standard t-tests on task con-
dition differences. The additional random effect term for
subjects, bj, allows the accommodation of this additional
source of variability.

Model 1 asserts no subject-by-condition interaction. That is,
it assumes each subject, sampled from a single theoretical
population, responds similarly to the task conditions. Since
the sample of subjects in the response inhibition task,
described in the Methods section, is presumably drawn
from a single population (e.g., healthy controls between 18
and 25 years of age), there is no a priori reason to suspect a
subject-by-condition interaction. However, if this interaction
is suspected, then Model 1 can be modified as

yjk‘ ¼ lþ bj þ ck þ ðbcÞjk þ ejk‘; (2)

with the interaction term also a random effect, adding a
third variance component, r2bc, corresponding to the inde-
pendent random variable (bc)jk

i.i.d.
� N(0,r2bc). Considerable

variability among subjects with respect to the effect of task
condition, indicating a sample drawn from more than one
population, might justify this additional interaction term.
For example, if some subjects respond to an inhibition task
with an increase in PSD at a given STF voxel, while others
respond with a decrease, and still others show no response
at all, an interaction term will ‘‘capture’’ the extra variabili-
ty due to an inhomogeneous group of subjects (i.e., when
the sample is, in fact, not drawn from a single population).
Otherwise, a systematic effect of task condition across all
subjects from a homogeneous group (r2bc ¼ 0) allows one
to generalize the condition effect to the population from
which the sample is taken.

Models 1 and 2 both take advantage of two features of
the acquired EEG data: (1) the condition effect, ck, is a
crossed factor; and (2) the variability in the EEG PSD can
be linearly decomposed due to the independence of
within-subject and between-subject sources. The first fea-
ture simply means that all levels k of the task condition
occur in each subject; the second feature allows the separa-
tion of these sources of variability, which improves statisti-
cal efficiency. To see how these models can substantially
increase statistical power to detect differences due to task
condition when the variance of yjkl includes more than one
source of variability, we first demonstrate analytically how
the separate variance components enter into an analysis
of variance (ANOVA) framework and then develop the
t-statistic for any contrast of interest among the levels of
task condition.

F-statistics in an ANOVA are ratios of mean squares or
variances, each estimated by a quadratic form of the data
vector comprised of elements yjkl. Since the models we are
positing are mixed-effects models having more than one

variance component, it is important to have the appropri-
ate mean square in the denominator of the F-statistic for
correct inference. These can be determined by taking
expected values of the mean square estimates or expected
mean squares (EMS) corresponding to each effect in the
linear model. Table I shows these expected values for each
model and for tjk ¼ t [see Milliken and Johnson, 2009].

What is important to note about Table I is the fact that
the EMS for condition—the only fixed effect in either
model—does not contain the intersubject variance compo-
nent, r2

b. In other words, for both models the intersubject
variance, r2b, is not one of the variance components that
comprise the total variability when assessing the effect of
task conditions. This means that under the null hypothesis
of no condition effect, the quadratic function of the fixed
effect parameter, f2(c), is zero; and the appropriate de-
nominator in the F-statistic, which tests the effect due to
task condition, is an estimate of one of the following
expected mean squares: r2e if Model 1 is posited, or r2e 1

tr2bc, if Model 2 is posited.
Contrasts among the levels of task condition take the

form ck � ck0 in Model 1 or ck � ck0 þ ðbcÞ�k � ðbcÞ�k0 in
Model 2 for k = k0. It is known that the best linear
unbiased estimator of any task condition contrast in both
models is y.k. � y.K0. [Searle, 1971], where the averages are
taken over the indices j and l, i.e., over the subjects and
trials. To form a t-statistic one needs the variance of these
contrasts. This is easily found, using the EMS Table I, as

Varð�y�k� � �y�k0 �Þ ¼ 2r2
e=nt or

Varð�y�k� � �y�k0 �Þ ¼ 2ðr2
e þ tr2

bcÞ=nt

for Models 1 and 2, respectively. Estimates of the varian-
ces are obtained by replacing the EMS components with
mean square values (MS) taken directly from an ANOVA
table, and the square root of the variance estimates consti-
tute the denominator of the t-statistic, ts.

ts ¼ ð�y�k� � �y�k0 �Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �MSerror=nt

p
or

ts ¼ ð�y�k� � �y�k0 �Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �MSsubj�cond=nt

q
ð3Þ

TABLE I. Expected values of mean square estimates for

each effect in linear Models 1 and 2

Effect EMS

Model 1
Subject r2

e 1 ct r2b
Condition r2

e 1 f2 (c)
Error r2

e

Model 2
Subject r2

e 1 tr2bc 1 ctr2b
Condition r2

e 1 tr2bc 1 f2 (c)
Subj � cond r2

e 1 tr2bc
Error r2

e
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In Model 1 the t-statistic has nct 2 n 2 c 1 1 degrees of free-
dom; in Model 2 the t-statistic has (n 2 1) (c 2 1) degrees of
freedom. Again, note that the variance of task condition
contrasts does not involve the intersubject variance compo-
nent, r2b, in either model. This is precisely the source of the
increase in statistical power for detecting differences in task
conditions when using either Model 1 or 2.

Calculation of Statistical Power

If one does not account for the separation of variance
components in a full GLM as we have done explicitly in
these linear mixed effects models, then the intersubject
variance component will be included in the estimate of
error variance and will necessarily contribute a positive
constant to the denominator of F- and t-statistics, thereby
reducing statistical power to detect task condition differen-
ces. The magnitude of the reduction in statistical power
will depend on the relative contributions of these variance
components comprising the total Var(yjkl) ¼ r2

e 1 r2bc 1 r2b
(or r2e 1 r2b if r2bc ¼ 0). If the intersubject variance compo-
nent, r2b, is a significant proportion of Var(yjkl), then the
reduction in statistical power can be substantial.

Let r2
bce denote the inflated error variance when the

intersubject variance component is not appropriately
removed using Model 1 or 2. Thus, r2bce in the reduced
GLM contains all variance components and the inflated
contrast variances are r2e 1 tr2b (Model 1) or r2be 1 tr2bc 1

tr2b (Model 2), each multiplied by 2/nt. By further defining
the relative efficiency (r.e.) as the ratio of variances r2e/r

2
bce

(Model 1) or (r2e 1 tr2bc)/r
2
bce (Model 2), one can easily

quantify the loss of statistical power to detect a condition
difference. The r.e. is at most one when r2b ¼ 0 and
decreases as the relative contribution of r2b increases.

Statistical power, U(k), as a function of the noncentrality
parameter, k, of Student’s t-distribution on m degrees of
freedom and denoted fk(�;m), is calculated as [Casella and
Berger, 1990]

UðkÞ ¼
Zta=2

�1

/kðx; mÞdxþ
Z1

t1�a=2

/kðx; mÞdx;

where a is the desired voxel-level error rate. The reduction
in statistical power due to the inflated variance is U(k*),
where k� ¼

ffiffiffiffiffiffiffi
r:e:

p
� k.

Good theoretical and applied sources that provide con-
firmation and considerably more detail for all the preced-
ing material are the following: Casella and Berger [1990],
Milliken and Johnson [2009], and Searle [1971].

METHODS

Cognitive Task

To first demonstrate the efficacy of the full GLM, then
compare the original STAT-PCA procedure with our

extended modifications using the full GLM, we imple-
mented a simple inhibition task—‘‘Go/NoGo’’—that elicits
a well-known response. The ERP signature of that
response is a frontocentral response known as the N2
[Jodo and Kayama, 1992; Smith et al., 2007] and P3 [Bruin
et al., 2001]. That ERP has a period in the range of theta
oscillations [Luu and Tucker, 2001], and in fact the NoGo
condition results in a larger theta band increase than the
Go condition [Yamanaka and Yamamoto, 2010, see Fig. 1].

Participants were instructed to push a button if they
were presented with an arrow (‘‘Go’’ trials constitute 80%
of trials) and to withhold a response if presented with an
octagon (‘‘NoGo’’ trials constitute 20% of trials). Stimuli
were presented for 300 msec followed by 1,700 msec of
blank screen. Baseline trials were obtained from the presti-
mulus intervals for each subject.

Participants

Twenty-six subjects (12 males and 14 females, ages 18–
25) participated in the Go/NoGo experiment while EEG
was recorded. All were free of neurological deficits
by self-report. All were right handed and gave informed
consent before participation in accordance with the Institu-
tional Review Board of The University of Texas at Dallas.
This study was conducted at the UT Dallas Center for
BrainHealth, following the Good Clinical Practice Guide-
lines, the Declaration of Helsinki, and the U.S. Code of
Federal Regulations.

Data Acquisition and Preprocessing

Continuous EEG was recorded from a 64-electrode Neu-
roscan Quickcap using a Neuroscan SynAmps2 amplifier
and Scan 4.3.2 software sampled at 1 kHz and hardware
filtered at 200 Hz with impedances typically below 10 kX.
An experienced EEG technician preprocessed the data
manually. First, data recorded from poorly functioning
electrodes were visually identified and removed. Second,
eye blink artifacts were removed by a spatial filtering algo-
rithm in the Neuroscan Edit software (Compumedics,

Figure 1.

The ERP signature, averaged over subjects and trials, in the fron-

tocentral electrode (FCz) following NoGo and Go conditions.
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Inc.), using the option to preserve the background EEG.
Third, the data were passed through an automated artifact
removal program [Junghöfer et al., 2000] which detects
individual channel and global artifacts based on the
recording reference and average reference, respectively.
The data from each subject and electrode were epoched by
condition, and re-referenced to the spline-based average
reference [Ferree, 2006]. The Fourier power spectrum was
calculated within the peristimulus intervals using 0.5-s
wide windows moving in 0.05-s steps. In each window the
time series was linearly detrended, cosine tapered, and
zero-padded to 1.0-s duration to achieve 1 Hz resolution.
Finally, the squared modulus was normalized to obtain
the power spectral density (PSD) in units of lV2/Hz. For
this simple response inhibition task we analyzed frequen-
cies only up to 25 Hz.

Inference From the Full GLM

The logarithm of the power spectral density was modeled
at each STF voxel as indicated in Models 1 and 2 with n ¼ 26
subjects, c ¼ 3 conditions—baseline, Go, NoGo—and tjk
trials; i.e., a variable number of trials which depended on
subject and condition. To assess which of the two models
was more appropriate for our EEG data we estimated each of
the variance components by restricted maximum likelihood
(REML) and calculated the percentage of each component
to the total variance of yjkl. Thus, the relative contributions
of the intra-subject variance, r2

e , the interaction variance,
r2bc, and the intersubject variance, r2b, were estimated
across the STF voxels as the ratios r̂2

e=ðr̂2
e þ r̂2

bc þ r̂2
bÞ,

r̂2
bc=ðr̂2

e þ r̂2
bc þ r̂2

bÞ, and r̂2
b=ðr̂2

e þ r̂2
bc þ r̂2

bÞ, respectively.
For the response inhibition task described above, pri-

mary interest was centered on the contrast between the
two task conditions, Go and NoGo. Hence, t-statistics were
calculated similar to those shown in Eq. (3) but modified
appropriately to accommodate the unequal tjk [Milliken
and Johnson, 2009]. All analyses were done using the
mixed procedure in SAS (Cary, NC) with the degree-of-
freedom method indicated in Kenward and Roger [1997]
to adjust the downward bias in variances when testing for
fixed effects in mixed models. This constituted the inferen-
tial stage (STAT) of the STAT-PCA procedure. Only those
STF voxels (62 electrodes � 21 time points � 25 frequen-
cies) with significant task-condition differences were
passed to the PCA stage of the STAT-PCA analysis. This
was done as follows.

Let s be an index of STF-voxel location, and let STF(s) be
the estimate of y�NoGo� � y�Go� at voxel s. An indicator
array, denoted

IðsÞ ¼ 1 if q < q�

0 if q � q�;

�

where q is the false discovery rate (FDR) q-value [Benjamini
and Hochberg, 1995; Storey, 2003], provided a ‘‘significance
mask.’’ Finally, the array calculated by element-wise multi-

plication, STF(s)�I(s), was then passed to the PCA stage,
which is described below. In this study we set a significance
threshold at q* ¼ 0.01.

Sequential PCA

To obtain the most salient subsets from the full set of
potential results a PCA of the statistically significant
results was conducted sequentially with two levels of
‘‘unfolding.’’ Specifically, the STF(s)�I(s) array, which spans
three dimensions, was arranged as a two-dimensional data
matrix with frequencies as columns and concatenated elec-
trodes/time points as rows. The first PCA in the sequence
was performed, followed by component selection using
parallel analysis [Horn, 1965] and a varimax rotation
[Kaiser, 1958] of the subspace of retained components. The
corresponding scores were determined by projecting the
data matrix onto the rotated components. For each spectral
component the corresponding score was rearranged, again,
as a two-dimensional data matrix with electrodes as
columns and time points as rows. A second PCA was
performed, followed by a second round of component
selection by parallel analysis and varimax rotation. The
temporal components following the second PCA were
taken to be the scores corresponding to the retained spatial
components.

Much more detail of the sequential PCA procedures can
be found in Ferree et al. [2009]. An important distinction,
however, between the sequential PCA in Ferree et al.
[2009] and this article is that the former included a third
temporal PCA with time points as columns in the
rearranged data matrix and subjects as rows. Since, in this
article, subjects were included in the full GLM at the infer-
ential stage of the STAT-PCA procedure, the number of
steps in the sequential PCA were reduced to two. The
sequential PCA, parallel analysis and varimax rotation
were implemented in the R statistical computing language
(available at: http://www.r-project.org) and MATLAB
(available at: http://www.mathworks.com).

Visualization of Principal Components

Once the sequential PCA was completed we had, for
each contrast of interest, a ‘‘branching’’ of spectral, spatial
and temporal components. We refer to this as ‘‘branching’’
because each spectral component may be associated with
more than one spatial component, These triplets of spec-
tral, spatial, and temporal components can be plotted in
side-by-side panels showing the time-course of the domi-
nant frequencies associated with unique topographic maps
on the surface of the head. In addition, because earlier
work on STAT-PCA showed good agreement between the
temporal component and the time course of the group-
averaged power at the peak frequency and electrode, time-
courses of individual subjects were also investigated to
assess their individual contributions to the group average.
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RESULTS

Assessing the Contributions of Each Variance

Component to the Total Variance

Model 2 allows for the possibility that our sample of
subjects is not from a single population and so responds
differently to the inhibition task, through the subject � con-
dition interaction term. In that case it would not be legiti-
mate to extrapolate the findings to a single assumed
population. Evidence that r2

bc ¼ 0, therefore, would indi-
cate that the effect due to response inhibition is consistent
across subjects within the bounds of intrasubject variability
and that this finding would legitimately generalize to a
single population. We first explore the variance compo-
nents implicit in Models 1 and 2.

To assess which of the two models was more appropri-
ate for these data, we estimated all three variance compo-
nents in Model 2 and calculated the contributions and r̂2

b ,
r̂2
bc, r̂

2
e as a percentage of total variance. We expected the

contribution of the subject � condition interaction variance
component to be small since there was no a priori reason
to expect heterogeneity among the subjects in this task.

Figure 2 shows box plots of percentages of total variance
for each component, where the percentiles are based on
distributions over all STF voxels. As expected the interac-
tion variance component is near zero. The 25th, 50th, and
75th percentiles are 0.12%, 0.52%, and 1.10%, respectively;
and nearly all (99.9%) of STF voxels have interaction var-
iance component estimates comprising less than 5% of
the total variance. The left panel of Figure 2 shows the

distribution summaries from separate estimates of the
inter- and intrasubject variance components in Model 1.
They are nearly identical to those from Model 2, indicating
that Model 2 does not provide important additional
information about the variability of the subjects’ response
to inhibition in our sample.

All subsequent analyses reported here, therefore, utilize
Model 1, the two-variance-component model, for the infer-
ence stage of STAT-PCA.

Statistical Power

Statistical power curves were calculated as formulated
in the Theory section, using mean REML estimates of r2

b

and r2e in Model 1 from the response inhibition task, and a
conservative value of t equal to the harmonic mean
(ðth ¼ c � f

Pc
k¼1 1=�t�kg

�1Þ). The estimated relative efficiency,
r.e., based on those values is 1=ð1þ thr̂2

b=r̂
2
eÞ.

Figure 3 demonstrates the dramatic differences in statisti-
cal power to detect an increase in the mean EEG power
spectral density in response to the ‘‘NoGo’’ stimulus at the
peak electrode and time point when Var(yjkl) is comprised
of intersubject and intrasubject variances. Without appro-
priately separating the inter- and intrasubject variance com-
ponents using Model 1, there is a large decrease in r.e. and,
therefore, a large decrease in statistical power. For example,
a 20% increase in the mean EEG power spectral density
due to the ‘‘NoGo’’ condition can be detected with statisti-
cal power 0.95 using Model 1. In our sample, to reach
comparable statistical power in a reduced GLM, where

Figure 2.

Box plots of estimates of the variance components in Model 1

(left) and Model 2 (right) as a percentage of total variance over

all STF voxels. The subject � condition interaction variance com-

ponent does not contribute a significant proportion to the total

variance (median ¼ 0.52%). The inter- and intrasubject variance

components constitute an average 30% and 70% of the total var-

iance, respectively, regardless of which model is posited. Hence,

Model 1 is sufficient to explain the variability inherent in the

response inhibition task for our sample.
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subject-level variability is incorporated incorrectly into the
test for condition differences, the increase in the mean spec-
tral density would have to be as high as 150% (see Fig. 3).

Comparison of Methods in the Analysis of the

Response Inhibition Task

The response inhibition task provides a benchmark
against which we compare the original STAT-PCA proce-
dure to our extension of it based on Model 1 (or Model 2.)
As a point of reference, Figure 4 shows the baseline power
spectral density (PSD) estimates for two separate electro-
des and two separate frequency ranges—FCz and 5 to
6 Hz; FPz and 18 to 19 Hz. These particular electrodes and
frequencies are chosen because the former is the peak loca-
tion and partial frequency range of the known theta
response to NoGo [Bruin et al., 2001; Jodo and Kayama,
1992; Luu and Tucker, 2001; Smith et al., 2007; Yamanaka
and Yamamoto, 2010], and the latter is one of several elec-
trodes and partial frequency ranges with no task condition
effect, but where a single subject shows anomalous meas-
ures relative to the rest of the group. In the course of the
analyses we find that this one subject provides the source
of dominating PCA components when intersubject var-
iance is not accounted for in the full GLM and, therefore,
the subjects are not removed at the inference step.

Figure 5 shows in detail what occurs statistically at the
peak electrode (FCz) within the theta band for each of
three contrasts of interest: Go vs. Baseline, NoGo vs. Base-
line, and NoGo vs. Go. We see that there is a small but sig-
nificant increase in PSD for the Go condition relative to

baseline, particularly in the first half of the epoch. NoGo tri-
als, however, produce a much larger increase in PSD, which,
relative to the Go trials, peaks at 0.35 s poststimulus onset.
Figure 5 demonstrates that, at the known location and fre-
quency range of the response to inhibition, most subjects
share the same strong PSD increase in the NoGo trials and
that subject-level inference, through separate individual sta-
tistical models, or group inference, through the full GLM
(Model 1 or Model 2), yields similar PSD ratios to be passed
to sequential PCA after statistical thresholding. Conse-
quently, we would expect the original STAT-PCA procedure
to be sufficient in isolating the response to the NoGo task.

In contrast, Figure 6 reveals that a single subject, incon-
sonant with the rest of the group, can pass non-zero PSD
ratios to the sequential PCA when employing the original
STAT-PCA procedure because intersubject variances are
not taken into account. Figure 6 is an example in a frontal
electrode (FPz) at higher frequencies (18–19 Hz), where
there is no known response to the conditions of the inhibi-
tion task. By accounting for the inter-subject variance com-
ponent using the full GLM of Model 1 (or Model 2),
Figure 6 shows that none of the PSD ratios are passed to
the PCA. Otherwise, the single subject survives threshold-
ing and contributes very low PSD ratios to PCA through-
out the entire epoch, which has a strong influence on the
components of the PCA, inappropriately dominating the
group pattern of activation.

The utility of PCA resides in its ability to distill the global
set of significant results into interpretable components. To
understand from where the PCA components arise, one
method of displaying all voxel-level results from a task con-
dition contrast is to display time-frequency color maps for
every electrode in a layout with similar topography as the
electrode cap. Figure 7 shows these layouts for (a) the full
GLM and (b) the original STAT-PCA, each comparing the
NoGo response with the Go response. Frequency ranges
from 1 to 25 Hz are shown vertically, and the temporal
epoch is shown horizontally (0–1 s) within each channel of
the electrode cap. In Figure 7a one sees from the frontal
midline electrodes that the theta band increase in PSD due
to the NoGo trials occurs at 0.35 s just before a lower fre-
quency band (up to 4 Hz) increase in PSD at 0.4 s poststimu-
lus onset. Figure 7b, on the other hand, reveals much lower
PSD ratios in many electrodes: the two frontal electrodes
(FPz and FP2) at nearly constant amplitude in the frequency
range 16 to 25 Hz for the entire 1-s epoch; and predomi-
nantly occipital and parietal electrodes in various frequency
bands around 0.6 s poststimulus onset. The lower PSD
ratios in Figure 7b are all due to a single subject.

To display the global set of statistically significant results
by PCA, the non-zero PSD ratios, following the inference
stage from NoGo/Go, are passed to the sequential PCA.
Retained frequency components from the first level are
shown in the scree plots. Figure 8a follows the inference stage
(STAT) using Model 1, which incorporates subjects in a
single model; and Figure 8b follows the inference stage from
the original procedure, where each subject has a separate

Figure 3.

Statistical power curves as a function of the increase in the EEG

power spectral density due to the NoGo response at peak elec-

trode and time poststimulus (based on REML estimates of the

variance components in the response inhibition task and [a] ¼
0.05). Appropriate separation of the variance components based

on Model 1 yields the solid curve. The loss of statistical

power—dashed curve—results from the dramatic decrease of

relative efficiency when the inter-subject variance component is

not accounted for in the GLM.
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model. Four components are retained in Figure 8a—two
delta band components and two theta band components; five
components are retained in Figure 8b—the same delta
components, a theta component, and two beta components
(16–25 Hz and 10–16 Hz). Again, as predicted from
Figure 7b, many of these frequency components retained in
Figure 8b are derived entirely from the single subject.

Following the second level of sequential PCA to obtain
the subspace of spatial components and temporal scores,
we derive an easily interpretable display of the increase in
PSD due to the NoGo task, which agrees nicely with the
results found in the literature covering simple inhibition
tasks. By (1) including subjects in a single statistical model
and (2) properly separating the variance components from
the several sources of variability, we obtain Figure 9. We
see succinctly and unequivocally the group finding that
NoGo elicits an increase in PSD beyond the slight increase
due to Go alone in the frontal midline electrodes, centered
at FCz. At this location we see that the increase occurs in
the theta band with peak at 0.35 s and at a delta frequency
range with peak at 0.4 s from the onset of stimulus.
In addition, the increase in delta band extends slightly
toward the parietal electrodes bilaterally.

Conversely, the original STAT-PCA procedure leaves
subjects in the sequential PCA, and, by the vagaries of a sin-
gle subject in our sample, yields components dominated by
that subject. This masks the group pattern and leaves am-
biguous which are group results and which are single indi-
vidual results. Figures 10 and 11 reveal this ambiguity. The
two delta components are identical to those found from the
full GLM as are the peaks at electrode FCz and 0.4 s; how-
ever, three additional spatial components from the second
level are derived from the ‘‘delta-branch’’ of the first level of
sequential PCA. All three come from one subject only,
revealing the 0.6-s peak in the decrease of PSD at occipital
and parietal electrodes. The theta band result is also recov-
ered (Fig. 11) at FCz but peaks a little sooner (0.25 s) due to
a larger increase in the PSD ratio from another single subject
at 0.25 s. The high beta band decrease in the two frontal
electrodes, due to the single subject, is clearly seen by PCA,
and the temporal scores mimic this subject’s time-course at
those electrodes and frequencies (see Figs. 4c and 6c).
Finally, the lower beta band component yields three spatial
components from the same subject with a decrease in PSD
ratios, peaking near 0.7 s in the occipital and left temporal
electrodes, then 0.8 s on the right.

Figure 4.

(a) PSD estimates in each of the three task conditions—base-

line, Go, and NoGo—from the peak electrode (FCz) averaged

over part of the theta frequency range 5 to 6 Hz. (b) PSD

estimates in each of the three task conditions from the frontal

electrode (FPz) averaged over the frequency range 18 to 19 Hz.

Each subject is represented as a dotted line, and the group

average is shown as solid lines. Note the increase in PSD for

theta oscillations in the NoGo condition from the peak elec-

trode 0.35 s from stimulus onset (upper right panel), which is a

pattern shared by most subjects. Note also that there is no

effect of task condition on PSD in the frontal electrode at 18 to

19 Hz but that a single subject is substantially lower than the

rest in the NoGo condition during the entire epoch (lower right

panel).
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DISCUSSION

The statistical models presented in this article impart
two important advantages to analyses of event-related
spectral perturbations. The first is purely statistical. For
experimental designs having several sources of variability,
statistical power is maximal when variance components in
the mixed model are appropriately separated in tests of
condition differences. The second follows serendipitously
for sequential PCA. When subjects are included in the
statistical model and, therefore, not in the PCA, the results
of PCA more accurately reflect the group behavior rather
than individual outlying subjects.

The original motivation for STAT-PCA in Ferree et al.
[2009] was to achieve some robustness in isolating task
related activation by utilizing PCA descriptively only after
the inference stage (STAT). This was accomplished in large

measure not because subject-level variability was
accounted for at the inference stage, but because subject-
level variability was ignored at the inference stage. Tests
for condition effects were applied to individuals, a sepa-
rate set of voxel-level tests for each subject. In effect, this
strategy transfers subject-level variability from the infer-
ence stage to the descriptive PCA stage. Since, in this con-
text, PCA is intended to compactly display the results of
the statistical inference, a desirable feature should be that
the display ‘‘honors’’ the group behavior. If, however, sub-
ject-level variability in spectral, spatial, and/or temporal
specificity occurs due to a small number of subjects, the
PCA may incorporate the subject-level variance in the

Figure 6.

Task condition contrasts in the frontal electrode (FPz) before

and after statistical thresholding for (a) Go versus baseline, (b)

NoGo versus baseline, and (c) NoGo versus Go at the fre-

quency range 18 to 19 Hz. One would not expect a response

to the task conditions at this location and frequency range.

Therefore, we would expect none of the average PSD ratios to

be passed to PCA. This is indeed the case using Model 1 to

account for intersubject variance, shown by flat solid lines in the

right column for each of the three separate contrasts. However,

if subjects are included in the PCA, the single outlying subject

surviving the threshold (dotted line in right column) will be

passed to PCA and will contribute significantly to the resulting

spectral, spatial, and temporal components for both the NoGo

versus baseline and NoGo versus Go contrasts.

Figure 5.

Task condition contrasts in the peak electrode (FCz) before and

after statistical thresholding for (a) Go versus baseline, (b)

NoGo versus baseline, and (c) NoGo versus Go at the theta

band frequency range. Using Model 1, only the group averages

(solid lines) that survive the inference threshold are passed to

PCA. In the original STAT-PCA procedure all subjects (dotted

lines) that survive their individual respective thresholds are

passed to PCA. In this case there is good agreement among

most subjects, and the average captures the essential informa-

tion to be passed to PCA.

r Time-Frequency Analyses of EEG Data r

r 659 r



form of a dominant eigenvalue and corresponding factor
loadings. If this occurs, then the PCA is displaying not
group-level inference, but a host of individual inferences.

A reliable display of group-level inference by PCA man-
dates that group-level inference occurs at the first stage
(STAT). Clearly, subjects should be included in the statisti-
cal model. However, when subjects are included, we incor-
porate additional sources of variability to the model and,
therefore, proper accommodation and separation of var-
iance components is essential to maximize statistical
power. Model 1 and Model 2 accomplish both so that PCA
can reduce the large volume of results from correlated
voxel-level inference and display only the essential fea-
tures of group patterns of activation.

We have presented these statistical models within the
framework of STAT-PCA as developed in Ferree et al.
[2009] because our group had a motivation to improve the
robustness of the procedure and increase the flexibility by
making the statistical inference (STAT) as general as possi-
ble. It should be emphasized, however, that the two parts
of STAT-PCA are independent of each other, with ‘‘STAT’’
comprising statistical inference only and ‘‘PCA’’ compris-
ing the method by which the large volume of results are
displayed. The statistical models presented in this paper

Figure 7.

Sixty-two-channel flattened layouts matching approximately the

layout of the electrode cap. Each channel shows the thresholded

PSD ratios of the NoGo response relative to the Go response for

each frequency/time voxel, where frequencies (1–25 Hz) are repre-

sented vertically and the temporal epoch (0–1 s) is represented

horizontally—bottom to top and left to right, respectively. (a)

Shows the main findings using Model 1, where subjects are included

in the GLM. The largest NoGo response, measured by the largest

PSD ratios (shown in red color), occurs in FCz and neighboring

electrodes at two frequency ranges: 1 to 4 Hz peaking 0.4 s and

5 to 8 Hz peaking 0.35 s from stimulus onset. (b) Shows the same

results from the original STAT-PCA procedure. The group finding is

recovered, but a single subject contributes very low PSD ratios

(shown in blue) not only in FPz and FP2 at higher frequencies,

as seen in Figures 4 and 6, but also in several frequency bands in a

majority of electrodes near 0.6 s from stimulus onset.

Figure 8.

Scree plots from the first level of sequential PCA. Four compo-

nents in (a) are retained (filled circles) from parallel analysis fol-

lowing statistical inference using the full GLM (Model 1). Low

frequencies (1–4 Hz) yield the two largest components, and the

theta frequency range (5–8 Hz) yields the last two retained

components. In (b) the original STAT-PCA procedure retains

five components following parallel analysis: the two largest in

the range 1 to 4 Hz, the next at 5 to 6 Hz, followed by one at

16 to 25 Hz, and the last between 10 and 16 Hz. In (b) all but

the second component is determined either partially or com-

pletely by the single subject (see Figs. 10 and 11).
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do not require a subsequent PCA (Fig. 7 is an example
of a non-PCA display of results). We believe that these
models would benefit many EEG studies and many fMRI
studies, regardless of how an investigator would like to
present the high-dimensional results obtained from the
models. However, we also believe that for high-volume
studies similar to the one presented in this paper, PCA is
a very convenient and reliable method for distilling voxel-
level results to a manageable and interpretable visual
presentation.

One may argue that a much simpler model could be uti-
lized to accommodate subjects in the ‘‘STAT’’ stage before
PCA, thus reducing the computational burden of variance
component estimation across STF voxels. For each subject
and condition, one could first average across trials to
obtain a reduced dependent variable set, so that each
subject would have a single measurement per condition.
Then difference measures—NoGo�Go, for example—
could be modeled by a reduced GLM, yielding, for our
response inhibition task, a paired t-test analysis. By differ-
encing the pairs of task condition levels for each subject,
the intersubject variance component is effectively removed
in the same fashion as is accomplished by Model 1. An
analysis based on this reduced model is equivalent to that
based on Model 1 if and only if tjk ¼ t for all j, k; k ¼ 2

specifically; and r2
e is known. Although this reduced

model may be more familiar in current practice, we would
recommend against this approach for several reasons.

1. More commonly in EEG tjk = t; i.e., there is a vari-
able number of trials for each subject and condition.
In the response inhibition task, for example, the Go
condition occurs about four times as often as NoGo.
Consequently, the dependent measures entering this
reduced model would have unequal variances across
conditions, in which case differencing the pairs of de-
pendent variables would not remove the inter-subject
variance component. Rather, a proportion of r2

b

would be contained in the variance of differences,
increasing the denominator in a paired t-test. An
analysis based on either Model 1 or Model 2 accom-
modates these unequal variances explicitly.

2. If k > 2, then several of these reduced models would
be utilized implicitly in paired t-tests—one for each
possible pairwise combination of condition levels,
consequently reducing the statistical efficiency of
parameter estimation. Model 1 or Model 2 utilizes
all the data in a single model for any number of
condition levels, maximizing statistical efficiency of
parameter estimation.

Figure 9.

PCA results following the inference stage using Model 1.

Spectral components (left), spatial components (middle), and

temporal components (right) confirm the main finding that the

NoGo task results in an increase in PSD relative to the Go task

at two frequency ranges centered at FCz: (a) two components

in the delta band (with some power at posterior electrodes),

peaking 0.4 s postonset; (b) two components in the theta band,

peaking 0.35 s postonset. Note that the PCA distills the findings

in Figure 7a into succinct easily interpretable factors, and the

temporal component in (b) matches the group average time

course at FCz (5–6 Hz) in Figure 5c.
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3. The reduced model could not assess the presence of a
subject � condition interaction variance component,
r2
bc. If this variance component exists, the extrapola-

tion of inference to a conceptual population of sub-
jects would not be valid. Model 2 explicitly accounts
for the possibility of sample heterogeneity due to
more than one conceptual population.

4. Since r2
e is not known, it must be estimated. In this

reduced model the estimation occurs across the sub-
ject differences with (n 2 1) degrees of freedom. In
Model 1 the estimation occurs across all subjects, con-
ditions and trials with nct 2 n 2 c 1 1 degrees of
freedom. Not only does the latter confer much greater
statistical efficiency, it also confers a practical advant-
age, if, as is common in human studies, the number
of subjects enlisted is low. Variance estimates based
on only five subjects, for example, would have only 4
degrees of freedom in the reduced model; the same

estimates would have nearly 800 degrees of freedom
based on Model 1, greatly reducing the variance of
the variance estimates themselves. In addition, extrap-
olative inference is valid, even in smaller sample
sizes, as long as r2bc ¼ 0, and if the subjects can be
considered a random sample.

5. Finally, Models 1 and 2 easily extend to accommodate
multiple subject groups, as is common when, for
example, patient groups are compared to a matched
control group.

To illustrate this final point, Model 1 extends as

yijk‘ ¼ lþ ai þ bjðiÞ þ ck þ ðacÞik þ eijk‘;

with i ¼ 1, : : : ,a groups. In addition to the fixed effect for
group, a fixed effect for the group � condition interaction is
included. Note that this interaction term is not the

Figure 10.

PCA results from the first two retained spectral components of

the original STAT-PCA procedure. The two delta frequency

components yield four spatial components: spatial component 1

is centered at FCz and peaks 0.4 s postonset, which matches

the group result for the NoGo increase in PSD; the other three

spatial components are derived from the single subject, and

reveal a 0.6-s peak for a NoGo decrease in PSD at posterior,

right, and left electrodes, respectively. This result is consistent

with the results shown in Figure 7b, strongly influenced by the

single subject.
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Figure 11.

PCA results from the last three retained spectral components

of the original STAT-PCA procedure. Triplet (a) shows the group

result for the expected NoGo response in the theta band cen-

tered at FCz, though one subject causes the peak increase in

PSD to occur slightly sooner than expected at 0.25 to 0.3 s.

The single subject dominates all other components: (b) reveals

the decrease in PSD following the NoGo stimulus in the two

frontal electrodes at high beta frequency range and at constant

amplitude across the entire epoch, mirroring this subject’s time

course in Figures 4 and 6; (c) shows the same subject’s influence

in the range 10 to16 Hz, where the decrease in the PSD ratios

occurs in the posterior and left-sided electrodes at 0.65 to 0.7 s

postonset, then right-sided electrodes 0.75 to 0.8 s postonset.

As in Figure 10, these components are derived from a single

subject, masking the true group result.
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interaction term that appears in Model 2. The important
point in the context of this paper is the fact that tests on
how the groups differ with respect to their task-condition
differences are also relative to the intrasubject variance
component. That is, the EMS for the fixed-effect interaction
term and variances of interaction contrasts do not contain
r2
b, the inter-subject variance component. If intersubject

variances are included in tests of task-condition change-
scores between groups, then statistical power suffers due
to a reduction in relative efficiency.

When is r2
b important? Testing the group effect within a

single condition or averaged over the levels of condition in
the extended model would indeed involve a linear combina-
tion of intra- and intersubject variances. Those tests must
include r2b for valid inference. Examples would include tests
of differences between two or more groups (patient vs. con-
trol, for example) only at the NoGo condition or only at
baseline. Similarly, if one averaged over all task conditions
for each group, then tested for group differences on the con-
dition averages, one must include r2b for valid inference. Of-
ten, however, the group 3 condition interaction contrast is of
primary importance. For example, would the increase in the
power spectral density due to the NoGo condition, relative
to the Go condition, occur to the same extent or occur at all
in one group versus another? Those are group differences of
change scores. To answer with good statistical power, these
interaction contrasts should be tested appropriately relative
to a function of r2e only.

We conclude with a quotation from Ferree et al. [2009]
that ‘‘... STAT-PCA provides a basis for the reduction of
the results of time-frequency analysis of multielectrode
EEG data into concise components that facilitate cognitive
interpretation.’’ In this article we have emphasized and
developed further the statistical inference (STAT) step, not
only to improve the robustness of the procedure, but to
improve its capacity to generalize to any type of experi-
mental design. In doing so, we have provided a general
procedure for analyzing high volume EEG time-frequency
data and, perhaps more importantly, provided the basis
for reducing the need for multi-level approximations to
mass-univariate procedures.
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