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for analyzing the time-varying spectral content of EEG data collected in cognitive
tasks. The goal is to extract and summarize the most salient features of numerical results, which span space,
time, frequency, task conditions, and multiple subjects. Direct generalization of an established approach for
analyzing event-related potentials, which uses sequential PCA followed by ANOVA to test for differences
between conditions across subjects, gave unacceptable results. The new method, termed STAT-PCA,
advocates statistical testing for differences between conditions within single subjects, followed by sequential
PCA across subjects. In contrast to PCA-ANOVA, it is demonstrated that STAT-PCA gives results which: 1)
isolate task-related spectral changes, 2) are insensitive to the precise definition of baseline power, 3) are
stable under deletion of a random subject, and 4) are interpretable in terms of the group-averaged power.
Furthermore, STAT-PCA permits the detection of activity that is not only different between conditions, but
also common to both conditions, providing a complete yet parsimonious view of the data. It is concluded that
STAT-PCA is well suited for analyzing the time-varying spectral content of EEG during cognitive tasks.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Cognitive experiments involve stimuli delivered to the subject,
and responses generated by the subject, in time frames that depend
upon the task. Brain responses that involve increased synchrony with
a consistent phase relationship to an event, e.g., stimulus or response,
contribute to the event-related potential (ERP). Brain responses that
involve decreased synchrony, or increased synchrony without a
consistent phase relationship to an event, are best detected with
time–frequency analysis. In cognitive tasks with long duration, time–
frequency analysis is expected to be more fruitful than ERP analysis.
While time–frequency analysis is relatively straightforward, a
considerable challenge remains to reduce and summarize the
numerical results, which span space, time, frequency, task conditions,
and subjects.

Principal component analysis (PCA) has been applied extensively
to ERP analysis, in order to reduce the waveforms in spatial and
temporal dimensions (Spencer et al.,1999, 2001). The ERP is computed
in each condition, by averaging the post-stimulus time series across
trials. The number of trials in each condition and the variance of the
mean are not retained. Then PCA is applied sequentially to spatial and
rights reserved.
temporal dimensions, and the resulting factor scores are submitted to
ANOVA to test for differences between conditions. The group of
subjects, rather than repeated trials, is used as the statistical ensemble
when testing for differences between conditions. This approach,
which we call PCA-ANOVA, is reported to work well for ERP analysis,
and is now used widely. Its main limitations are that PCA-ANOVA can
test only for differences between conditions, and requires multiple
subjects on which to base these tests.

When extending to time–frequency analysis, the needs for data
reduction are even greater, and the very nature of the data is different.
Only a few studies have used PCA together with time–frequency
analysis. Bernat et al. (2005) combined time–frequency analysis with
PCA, but their emphasis was a comparison between different methods
of time–frequency analysis. Tenke and Kayser (2005) studied the
effects of transforming the power spectrum, and using an explicit
reference versus the surface Laplacian. Our findings support this
previous work, but neither group addressed the key question of how
best to integrate PCA with statistical testing.

Following the approach established in the ERP literature, we
applied PCA sequentially to frequency, space, and time dimensions,
then submitted the resulting scores to ANOVA to test for differences
between conditions. The results were found to be unstable, and
changing the order of dimensions did not resolve the problems. We
suspected that PCA, when applied first, was unable to isolate task-
related changes, because the power spectrum is dominated by
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features that may not be task related. If the task-related effects do not
contribute the greatest variance to the matrix passed to PCA, then PCA
will not isolate the task-related activity in the highest components.
Because Varimax rotation behaves poorlywithmany components, and
because the overall goal is data reduction, it is important to organize
the analysis so that task-related activity appears in the first few
principal components.

We hypothesized that a better approach would put statistical
testing at the beginning of the analysis, in order to isolate task-related
variance in single subjects. Statistical testing for differences between
power spectra is standard in a large body of work on event-related
synchronization (ERS) and de-synchronization (ERD), in which these
tests are conducted in single subjects (Pfurtscheller and Lopes da Silva,
1999; Delorme and Makeig, 2004). The number of trials in each
condition, and the variance in the estimate of the mean, are used to
test statistical significance. For visualization purposes, differences that
are not statistically significant are often rounded to zero. In the new
approach called STAT-PCA, we tested for differences between condi-
tions in single subjects, then followedwith PCA for data reduction, and
found that results were highly stable.

Within-subject statistical testing also solves several other pro-
blems inherent in the analysis of cognitive data with PCA. First, it
permits testing for differences not only between conditions, but also
between a given condition and baseline. We use this fact to reveal
activity that is common to both conditions. Second, it has been noted
that the rotation ambiguity of PCA factors may result in misallocation
of variance (Wood and McCarthy, 1984), giving linear combinations of
activity in the two conditions (Dien, 1998). By conducting statistical
tests within subjects, activity that is different between conditions, and
activity that is common to both conditions, are separated before
decomposing with PCA, so an important caveat of PCA is eliminated.
Third, statistical testing in single subjects isolates task-related activity
in single subjects, and this facilitates clinical diagnosis in which single
subjects are the focus of investigation.

Methods

Participants

The subjects were 25 young adults between the ages of 18 and 29.
All were right-handed, and 10 were male. All were free from
neurological or psychiatric disorders by self-report. Written informed
consent was obtained from each subject prior to testing. This study
was conducted according to the Good Clinical Practice Guidelines, the
Declaration of Helsinki, and the U.S. Code of Federal Regulations.
Written and informed consent was obtained from all participants
according to the rules of the Institutional Review Board of The
University of Texas at Dallas.

Stimuli and task

The data set upon which we developed these methods is part of a
continuing study of semantic memory retrieval (Slotnick et al., 2002;
Assaf et al., 2006). The stimuli consisted of pairs of written words,
which consisted of features of familiar objects (e.g., ‘desert’ and
‘humps’). The subjects were to determine whether the two features
combined to result in retrieving the memory of a specific object (e.g.,
‘camel’). Other word pairs were chosen to lead to no retrieval (e.g.,
‘mane’ and ‘wings’). Subjects were instructed that the target needed to
be a specific object, not merely an association between the twowords.
Fifty trials comprised stimulus pairs that have been shown in previous
work (Assaf et al., 2006; Brier et al., 2008) to elicit retrieval of a specific
object, and 50 were non-retrieval trials. The same feature words used
in the object retrieval pairs were used in the non-retrieval pairs, but
were re-paired with a semantically unrelated word. Each word pair
appeared on the screen for 3 s, separated by a blank screen that
appeared for 2–3 s (randomized). While it is true that the researchers
defined which word pairs should or should not elicit retrieval, the
small number of ‘incorrect’ responses indicates that this task does
access semantic memory. The few trials with incorrect responses were
also discarded.

Data acquisition

EEG data were acquired with a 64-channel, Synamps II system
(Compumedics, Inc.). Data were sampled at 1 kHz and hardware
filtered at 200 Hz. Electrode impedances were typically below 5 kΩ,
although some were slightly higher. An experienced EEG technician
preprocessed the data manually. First, data recorded from poorly
functioning electrodes were identified visually and removed. Second,
eye blink artifacts were removed by a spatial filtering algorithm in the
Neuroscan Edit software (Compumedics, Inc.), using the option to
preserve the background EEG. This option uses the singular value
decomposition of a ‘clean’ data segment to optimize the removal of
eye blinks from the continuous data (M. Pflieger, personal commu-
nication). Third, time segments containing significant muscle artifacts
or eye movements were rejected.

During acquisition, time-locking events were placed in the EEG
record corresponding to the white computer screen, the onset of
word-pair stimuli, and button-press responses of two types. For
spectral analysis, a baseline interval was defined as 1 s prior to the
stimulus. In order to study stimulus-related activity, a peri-stimulus
interval was defined from –1 to 3 s. The data were epoched
accordingly and exported to Matlab (Mathworks, Inc.) for further
analysis. We have begun to explore the benefits of epoching relative
to responses, but for brevity only peri-stimulus results are reported
here.

Reference correction

The datawere recorded with a reference electrode located near the
vertex, which results in small amplitudes over the top of the head. In
order to correct for this effect, the data were re-referenced to the
average voltage at each time point, which approximates the voltage
relative to infinity (Nunez,1981). In order to minimize a known bias in
the electrode-based average reference (Junghofer et al., 1999), a
spline-based estimate of the average scalp potential (Ferree, 2006)
was computed using spherical splines (Perrin et al., 1989). Placing the
electrode cap on a realistic phantom head, the electrode coordinates
were digitized (Polhemus, Inc.), and these coordinates were used to fit
the splines for each subject. The integrity of the spline interpolation
was confirmed visually, by comparing waveforms of arbitrarily
deleted channels with the original waveforms in those channels.
The integrity of the spline-based average reference was confirmed by
comparing topographic maps of baseline alpha power with similar
maps using the cap reference, and the electrode-based average
reference. In subjects with a small number of bad electrodes, the
splines were used to interpolate those electrodes, to yield a total of 62
data channels in every subject. Ensuring the same number of
electrodes in all subjects facilitates the matrix manipulations in
sequential PCA.

Time–frequency analysis

Throughout the peri-stimulus interval, time-dependent Fourier
power spectra were estimated in 0.5-second wide windows, moving
in 0.05-second steps. The time of each window was defined as the
center of the nonzero data in that window. The earliest time was
−0.75 s, and the latest time was 2.75 s, because the centers of 0.5-sec
windows cannot reach the ends of the epoch. Fourier power spectra
were computed using the pwelch function implemented in Matlab
(Mathworks, Inc.). In each window, the time series was linearly
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detrended to reduce spectral leakage from the zero-frequency bin,
cosine tapered to reduce spectral leakage generally, and zero-padded
to 1-s duration to achieve 1-Hz frequency resolution. Each time series
was then Fourier transformed, magnitude squared, and suitably
normalized to obtain the power spectral density (PSD) in units μV2/
Hz. For each condition, the result was averaged across all trials, to
obtain the best statistical estimate of the PSD.

The time-averaged PSD in the baseline interval was computed two
ways for comparison. In both ways, the PSD was averaged across all
trials in both conditions. In the first way, the time averaging was
accomplished using the Welch method, in which the 1-s baseline
interval was divided into three 0.5-s windows with 50% overlap
(Welch, 1967). In the second way, the time averaging was accom-
plished by averaging the time-varying PSD over all time points prior to
the stimulus. This was done because we observed in several subjects
that the power values in the Welch windows were not always
representative, occasionally missing large fluctuations and leading to
inaccurate estimates of the temporal mean. The relationships between
the estimates of baseline power, and the effects on PCA-ANOVA and
STAT-PCA, are discussed in the Results.

If the results of our analysis are to be used to explain cognitive
processes in terms of neural oscillations, we should state clearly what
oscillations are included in our analysis. In conventional terminology,
‘evoked’ activity has a precise time and phase relationship with a
temporal event, while ‘induced’ activity does not. The ERP isolates
evoked activity, but spectral analysis is needed to detect induced
activity. Because evoked activity also contributes to spectral power, a
direct application of spectral analysis must be considered to reflect
both evoked and induced activity. Some researchers have attempted
to isolate induced activity, by subtracting the ERP prior to time–
frequency analysis (Kalcher and Pfurtscheller, 1995; Ding et al., 2000;
Truccolo et al., 2002). In the present work, it is not our goal to
distinguish evoked and induced activity, and we have not implemen-
ted any method to subtract the ERP. Our results must therefore be
interpreted to include both evoked and induced activity. Because it is
difficult to maintain phase locking to the stimulus for long times,
however, we expect that later times are dominated by induced
activity, especially at higher frequencies.

Difference-mode and common-mode responses

The standard PCA-ANOVA approach, applied to ERP waveforms, is
usually arranged to test for differences between conditions (Spencer et
al., 1999, 2001; Dien et al., 2003). The calculation of the ERP waveform
in each condition begins with subtracting the baseline, defined as the
average of the pre-stimulus time series across time and trials. Baseline
subtraction is required in ERP analyses, because EEG time series are
prone to slow drift from electrode polarization and imperfect
amplifier properties. Yet activity in the baseline interval may include
residual activity from the previous response and/or anticipation of the
next stimulus. For this reason and others, many ERP researchers prefer
to focus only on differences between conditions.

In the ERD/ERS literature, it is common to quantify brain
oscillations relative to baseline (Pfurtscheller and Lopes da Silva,
1999; Delorme and Makeig, 2004). In the power spectrum, any
electrode or amplifier drift appears in the zero-frequency term, so this
effect is not central. (An exception is that any power in the lowest
frequency bin, e.g., less than 0.5 Hz when using 1-Hz frequency bins,
may contaminate higher frequencies by spectral leakage, but this
effect is minimized by detrending the data in each window before
Fourier transforming.) Of course, the baseline interval may still be
contaminated, by the previous response or anticipation of the next
stimulus. Because the Fourier transform is squared in each trial to
compute power, and because the moving windows have non-zero
width determined by the taper, the same variation in the inter-
stimulus interval may not be as effective.
Despite the issues inherent to defining and interpreting a baseline
interval, we argue that it is compelling to consider both differences
between conditions and differences relative to baseline in parallel. In
the case of our semantic retrieval task, for example, it seems likely that
studying the words visually, searching for associations, and launching
a motor response are common to both conditions, while retrieving a
word from semantic memory occurs only in one condition. Although
themental processes of semantic retrieval are not yet understoodwell
enough to list and categorize each one, considering both kinds of
activity obviously gives a more complete picture of the data. Consider
a hypothetical example, inwhich there is greater power in condition A
than condition B, for some frequency band and time interval. From this
information alone, any of the following could be true: 1) condition A
has ERS that condition B does not, 2) condition B has ERD that
condition A does not, 3) conditions A and B both have ERS, but
condition A has more, 4) conditions A and B both have ERD, but
condition B has more. Only by studying the differences relative to
baseline is it possible to distinguish these cases.

Following this logic, we define the ‘difference-mode’ response as
the difference of moving-window power spectra between two
conditions, without reference to baseline, and define the ‘common-
mode’ response as the difference of moving-window power spectra
between both conditions and baseline. By both conditions, we mean
the average of the PSD in both conditions, weighted by the number of
trials in each condition; that is equivalent to taking the union of the
trials in both conditions before averaging across trials. The rational for
pooling the responses from both conditions to form the common-
mode response, rather than looking at each response separately
relative to baseline, is that half of the information in the separate
responses is already contained in the difference-mode response, and
the common-mode response is orthogonal to that. Taken together,
therefore, the difference-mode and common-mode responses give the
most complete yet parsimonious view of task-related activity. We
submit the results from both modes separately to PCA. Once the
prominent factors from both modes are identified, these can guide
inference about the behavior in each condition.

To be precise, consider the algebraic definitions of common mode
(CM) and difference mode (DM), assuming the number of trials in the
two conditions is equal. Let R represent the time-varying PSD in the
retrieval condition, N represent the time-varying PSD in the non-
retrieval condition, and B represent the time-averaged PSD in the
baseline interval. At each frequency, electrode, and time point, we
have DM=R−N, and CM=(R+N)/2−B. Solving for R and N gives R
−B=CM+DM/2, and N−B=CM−DM/2. Thus the response in each
condition relative to baseline may be obtained trivially from the
common-mode and difference-mode results. In the present work,
difference-mode STAT-PCA permits a direct comparison with PCA-
ANOVA, and common-mode STAT-PCA gives new information not
accessible with PCA-ANOVA.

Statistical tests for differences between power spectra

In most ERP studies, only the within-subject average response is
carried forward, e.g., to PCA-ANOVA, and neither the number of trials
nor the variance across trials is used. Instead, the statistical ensemble
used to test for differences between conditions is comprised of many
subjects in the study. In our initial attempts, we adopted this
approach, submitting the trial-averaged, time-varying power in each
condition to three-way PCA-ANOVA. Empirically, the results were
unsatisfactory (see Results). Theoretically, a disadvantage of con-
ducting PCA first is that statistical variability in the estimates of the
power spectrum, which are inherent for stochastic signals, might
overly influence the PCA. On these grounds, we hypothesized that
within-subject statistical tests for differences in power spectra, either
between conditions or relative to baseline, would improve the
results.
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Statistical testing for differences between power spectra is a
reasonably well-developed topic. In its simplest form, the log of the
power spectrum estimate is assumed to be Gaussian distributed. The
estimate based upon a finite number of samples is biased, however, by
an amount that depends upon the number of samples (Thomson and
Chave, 1991; Bokil et al., 2007). Using analytic expressions in these
references, we corrected for this bias and estimated the variance in the
mean using the appropriate number of samples in each case. The bias
correction is a simple function of the number of samples, which is
subtracted from the original calculation of the PSD. In the post-
stimulus interval, the number of samples contributing to the PSD in
each condition was taken to be twice the number of trials in that
condition, accounting for sine and cosine contributions. (In the
calculation of baseline power and the common mode, the number of
trials was equal to the sum of the trials in both conditions.)
Furthermore, in the baseline interval, because the 50% overlap
combined with cosine tapering leads to approximately independent
samples, the number of samples was tripled, corresponding to three
0.5-s windows in the 1-sec baseline interval.

The PSD is computed at many electrodes, frequencies, and time
points. By setting α=0.05, false positives are expected at this rate.
Correcting for multiple comparisons is non-trivial when the data are
correlated. In the spatial dimension, data at different electrodes are
correlated due to volume conduction. In the spectral dimension,
spectral leakage causes neighboring frequency bins to be correlated. In
the temporal dimension, overlapping windows cause neighboring
time points to be correlated. One remedy in the spectral domain is to
keep only contiguous sets of frequencies that are wider than the
bandwidth of the analysis (Bokil et al., 2007), and another is to use the
false-discovery rate (Durka et al., 2004), but neither of these
approaches as published addresses false-positives in the full three
dimensions of space–time–frequency. In the present work, we have
chosen for simplicity not to correct for multiple comparisons. If false
positives occur randomly, they should have little impact on the PCA
analysis applied to multiple subjects. Indeed, the results below
support the assertion that only meaningful, task-related activity
emerges from STAT-PCA.

Input to principal component analysis

This work contrasts two approaches to integrating time–frequency
analysis with statistical tests. In the standard method, PCA-ANOVA,
the time-dependent power values in each condition are input to
sequential PCA (see below) and the resulting scores are passed to
ANOVA. This is a one-way (condition) repeatedmeasures ANOVAwith
two levels (retrievals and non-retrievals). In this approach, the
variance across trials is not retained, and the statistical ensemble
used in the ANOVA is comprised of multiple subjects. In the new
method, STAT-PCA, statistical tests between conditions are conducted
in each subject and electrode separately, and the statistical ensemble
is comprised of multiple trials. Insignificant differences are rounded to
zero, in effect, eliminating noise from the results. Only the non-zero
spectral differences are passed to PCA for data reduction.

Although the statistical tests for differences between spectra in
STAT-PCA assumed that the log-power spectrum is Gaussian dis-
tributed, we used PSD in units of μV/Hz2 not dB as input to PCA. This
choice does not affect the set of frequencies that show significant
differences, but does affect the numerical values submitted to PCA.We
adopted this method after we tried both μV/Hz2 and dB units and the
former gave much better results. The log transformation renders large
power values not so different from the small power values, and this
had several adverse effects on the PCA results: many more factors
retained, less distinctive factor loadings, and poorer agreement with
group averaged data. We therefore kept the units of μV/Hz2 as input to
PCA, consistent with the recommendations of Tenke and Kayser
(2005), but set the differences to zero according to the aforemen-
tioned statistical test. Even with this choice, which tends to under-
emphasize the power at higher frequencies, we obtained differences
in the 20–35 Hz range that were reported previously in this task
(Slotnick et al., 2002).

Principal component analysis

In our description of PCA, we use standard terminology and matrix
organization, with some small exceptions. The data matrix is arranged
with columns indexing variables and rows indexing samples. Follow-
ing standard conventions in PCA analysis, the column-means are
subtracted, i.e., in each column separately the mean across rows is
subtracted. Following the consensus in the ERP literature (Kayser and
Tenke, 2003; Dien et al., 2005), we use the covariance matrix rather
than the correlationmatrix. With this convention, PCA is equivalent to
singular value decomposition (SVD): the right eigenvectors are called
the component or factor ‘loadings’, and the left eigenvectors times the
singular values are called the component or factor ‘scores’.

In ERP analysis, PCA has been applied sequentially to reduce the
results in the spatial and temporal dimensions. An important
consideration is the order in which PCA is applied to the various
dimensions. An early work applied PCA to the spatial dimension
(Donchin, 1966), and later works applied PCA to the temporal
dimension (Curry et al., 1983; Donchin and Heffley, 1979; Mocks and
Verleger, 1991). More recent works applied PCA spatially then
temporally (Spencer et al., 1999, 2001; Dien et al., 2003). The choice
to apply spatial PCA before temporal PCA for ERP analysis was based
on the argument that ‘components are defined by unique patterns of
scalp distributions’ (Spencer et al., 2001). It has also been suggested to
apply temporal PCA first (Dien and Frishkoff, 2005), because spatial
components may overlap due to volume conduction. Despite all these
well-reasoned arguments, no study has yet compared the effects of
order in sequential PCA.

In our initial investigations, we studied PCA-ANOVA and STAT-PCA
for all six possible orderings of frequency, space, and time. In order to
keep this report tractable, we focus on one order. We arrived at this
order by following one of the earlier arguments, that the best order is
determined by the inherent separability of the data (Dien, 1998). First,
cognitive processes are accompanied by oscillations in characteristic
frequency bands. Bands have nonzero width, but do not typically
overlap. This separability suggests that spectral PCA should be
conducted first. Second, time–frequency analysis involves moving
windows with some non-zero width, and this blurs time resolution
below that of ERP analysis. This suggests that temporal PCA should be
conducted last. On these arguments, we suggest that a sensible
starting point is spectral–spatial–temporal PCA. Based upon our initial
investigations, which spanned all six possible orderings, our impres-
sion is that this ordering produced among the most stable and
sensible results for our data set.

To perform sequential PCA in this order, the data are arranged
into a matrix, with columns indexing frequencies, and rows
indexing the result of concatenating electrodes, time-points,
conditions (PCA-ANOVA only), and subjects. First, PCA is applied
to obtain the spectral loadings, and the largest factors are retained.
For each spectral factor retained, the corresponding factor score is
reshaped to form a matrix with columns indexing electrodes, and
rows indexing the concatenation of time points, conditions (PCA-
ANOVA only) and subjects. Second, PCA is applied to obtain the
spatial loadings, and the largest factors are retained. For each
spatial factor retained, the corresponding score is reshaped to form
a matrix with columns indexing time points, and rows indexing the
concatenation of conditions (PCA-ANOVA only) and subjects. Third,
PCA is applied to obtain the temporal loadings, and the largest
factors are retained. In PCA-ANOVA, the temporal scores are
submitted to ANOVA. In STAT-PCA, the temporal scores are simply
kept as the final result.
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Factor retention

Themain objective of PCA is dimension reduction, but determining
the precise number of components or factors to retain is notoriously
difficult (Zwick and Velicer, 1986; Hayton et al., 2004). All of the
standard methods are based upon the eigenvalues. The goal is to
identify a small set that capture most of the data variance, and are
distinct from the remaining set of smaller eigenvalues. In the simplest
method, the eigenvalues are plotted in a ‘scree’ plot, and the cut point
is determined by eye (Cattell, 1966). Despite its wide use, this method
is highly subjective, especially when the eigenvalues decrease
gradually, or when there are several distinct steps. In the present
data, we often have one very large eigenvalue, followed by one or
more visible steps. To make the choice less subjective, we implemen-
ted two statistical techniques that should bracket the best choice.

The first technique is the maximum profile likelihood (MPL),
which aims to determine the cut point that leads to the most natural
grouping of eigenvalues (Zhu and Ghodsi, 2006). After exploring this
technique extensively, we have arrived at the following impressions.
When a few eigenvalues are large and similar, standing well above
the others, MPL picks these few. When the first eigenvalue is much
larger than the others, MPL tends to pick it, even if there is a
second elbow in the scree plot just a few points away. In this way,
MPL appears either to perform well, or to underestimate the
number of factors. MPL has the advantage of being very efficient
computationally.

The second technique is parallel analysis (PA), which is based upon
rejecting the null hypothesis that the eigenvalues are the same as
those of a random matrix with the same dimensions and distribution
of values (Horn, 1965). Comparison studies using model data agree
that this is the most reliable technique (Zwick and Velicer, 1986;
Hayton et al., 2004), although it is not widely used. One study showed
that, when PA is wrong, it tends to overestimate the number of factors
to retain (Zwick and Velicer, 1986), although another study points out
that PA tends to underestimate the number of factors when the first
eigenvalue is large (Turner, 1998). Despite having a single large
eigenvalue in our data, we have found that PA always estimates more
factors than MPL.

In order to generate randommatrices for PA, we shuffled the values
in the original matrix and computed the eigenvalues using identical
procedures. For each eigenvalue generated from the null distribution,
we computed the mean across the 100 random matrices. Eigenvalues
from the real matrix that were greater than the mean eigenvalue from
the random matrices were considered descriptive of the covariance
structure of the data. The use of themean has precedent (Hayton et al.,
2004), but has also been criticized as setting the false-positive rate to
0.5. An obvious remedy is to set the false-positive rate to 0.05
(Glorfeld, 1995), but this requires many more random matrices,
because evaluating the tails of a distribution is muchmore demanding
computationally than evaluating the mean. Because PA is already
quite demanding, and because a large false-positive rate corresponds
to overestimating the number of factors, we used the mean of 100
random matrices as the threshold, and we interpret this PA estimate
as an upper bound.

Factor rotation and refinement of factor retention

PCA decomposes a datamatrix into orthogonal components. While
this is often effective for separating signal and noise subspaces, it is
well known that the factors retained according to relative variance
alone may not provide the most useful factorization of the signal. For
this reason, it is normal to apply an additional transformation, such as
factor rotation, to satisfy some additional constraint. In the present
work, we focus on Varimax rotation, which aims to simplify the
structure of each factor by loading its variance onto the smallest
number of elements. In applications to ERP data, there is general
agreement that Varimax rotation helps separate distinct cognitive
components (Kayser and Tenke, 2003; Dien et al., 2005).

As described in the previous subsection, the eigenvalue-based
techniques MPL and PA are helpful in determining the number of
factors to retain, but they leave some ambiguity and subjectivity in
the choice. In the present work, we have made inroads toward an
improved method for factor retention. It is based upon the common
understanding that retaining too many factors becomes problematic
when using rotation (Dien et al., 2007). Our idea is to compare the
rotated factor loadings with the data, as a function of the number
of factors retained. In order to compare the factor loadings with the
data, we need some measure of the data that has the same
dimension as the factor loadings. Because the column-means are
subtracted prior to PCA, and because PCA is fundamentally a
variance-based technique, the simplest non-zero data measure is
the column-variance. Analogous to the definition of column-mean
(see above) the column-variance is the variance of each column
using the rows as samples. Of course, the column-variance of the
data matrix contains less information than the full covariance
matrix, but still provides a sensible data measure for evaluating the
rotated factors.

To apply this idea in practice, in each step of sequential PCA, we
plotted the original and rotated eigenvectors along with the normal-
ized column-variance (see Fig. 3). Varying the number of factors
retained within the range bracketed by MPL and PA, we retained the
minimum number of factors necessary to explain the prominent
features in the data. This procedure was carried out to decide the
number of factors to retain in each step of sequential PCA. The choice
to limit the number of factors to the prominent features in the
column-variance, within the plausible range bracketed byMPL and PA,
amounts to a conservative choice of the number of factors, becausewe
know that the full covariance matrix contains more information. This
use of the eigenvectors in conjunction with the eigenvalues to make
choices about factor retention deserves more development, but even
in its present form it is evident that using the rotated eigenvectors in
this way is more rigorous than using the eigenvalues alone.

Factor visualization and interpretation

Decisions about factor retention define a factor tree that associates
each spectral factor with one or more spatial factors, and each spatial
factor with one or more temporal factors. Each set of spectral, spatial,
and temporal factors defines a factor triplet. Spectral and temporal
loadings are plotted as two-dimensional curves, and spatial loadings
are plotted as topographic maps. The loadings are normalized, but the
signs are arbitrary. In order to visualize the spectral and spatial
loadings consistently, we flipped their sign if their maximum absolute
value corresponded to a negative value. Most spectral loadings had a
single peak, although sub-peaks are often present. Most spatial
loadings were either focal or bi-focal maps, appearing to represent
semi-localized oscillators. Most temporal loadings were less compact,
and the choice of orientation was usually arbitrary. In PCA, the
(column-mean subtracted) data matrix is approximated as a product
of spectral, spatial, and temporal loadings. In our conventions, any
negative signs were effectively assigned to the temporal loadings as
follows.

In order to determine the most sensible sign for the temporal
loadings, we compared them to the subject-averaged data. For each
triplet, we selected the peak frequency of the spectral factor, and one
or more peak electrodes of the spatial factor. For these peaks, we
averaged the common-mode and difference-mode PSD values across
subjects. The temporal factors were flipped and scaled to have
maximum similarity with the subject-averaged PSD. Visualization of
the temporal loading along with the group-averaged data confirms
the internal validity of the process, and permits each factor to be
interpreted as ERD versus ERS.



Fig. 1. Time-varying power at 10 Hz in electrode OZ for single subject: (a) retrieval
condition (solid), non-retrieval condition (dashed), baseline (dotted); (b) difference
mode (dashed), common mode (solid), zero (dotted). Dots show statistical significance
for pb0.05.
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Metric for component similarity

This paper demonstrates that STAT-PCA performs better than PCA-
ANOVA in several ways, and showing that requires comparing PCA
factors quantitatively. Each factor triplet is comprised of a spectral
loading F, a spatial loading S, and a temporal loading T. For two
triplets: (Fa, Sa, Ta) and (Fb, Sb, Tb), we define the triplet similarity
metric

Cab = FTa Fb
� �

STaSb
� �

TT
a Tb

� �

where T denotes vector transpose. Γab=1 implies a perfect match, and
Γab=0 implies perfect orthogonality. Because small variations in the
data can change the ordering of factors with similar eigenvalues, it is
important to consider all possible orderings. Consider the general
case, in which set A has M triplets, and set B has N triplets. To
compare all pairings of factors from sets A and B, we constructed the
matrix Γab, for a=1,…, N and b=1,…, M. We summarized this matrix
by computing the maximum of each row, to identify for each factor in
set A the most similar factor in set B, independent of order. In order
to generate a summary statistic across subjects, we took the
maximum along the largest dimension of Γ (e.g., if aNb then the
maxima were taken across the rows). This vector was then averaged
to obtain a single global metric for each subject. These values were
subjected to a paired t-test to determine if STAT-PCAwas in fact more
stable than PCA-ANOVA.

Results

Time-varying power and mode transformation in single subjects

Fig.1a shows the time-varying power for a single subject, electrode
OZ, frequency 10 Hz, relative to the Welch baseline power. Both
conditions show power fluctuations during the baseline interval,
decreased power after stimulus presentation, and a return toward
baseline starting near 1 s. Fig. 1b shows the difference-mode (dashed)
and common-mode (solid) responses. The common mode captures
the strong decrease that is common to both conditions. The difference
mode is much smaller, although some deflections are visible.

Fig. 1a also shows with dots the time points at which the power in
each condition was significantly different from baseline (pb0.05).
Neither conditionwas significantly different from baseline prior to the
stimulus. Fig. 1b shows with dots the time points at which the power
in each mode was significantly different from baseline (pb0.05). The
common mode (solid dots) was significantly different from baseline
only after the stimulus. The difference mode (open dots) showed
significant differences sporadically, including some points prior to the
stimulus. Because the stimuli were randomized, there can be no
systematic difference in baseline between the two conditions. We
conclude that the differences between conditions prior to the stimulus
are due to random variations, and the points that passed the statistical
test in this interval are false positives. Because false positives occur
randomly across subjects, however, they are not expected to influence
the PCA applied to multiple subjects.

Results of automated tests for factor retention

Fig. 2 shows spectral eigenvalue plots computed for PCA-ANOVA
and STAT-PCA in difference mode. The filled dots show MPL and PA
recommendations for the number of retained factors. In all cases
shown, MPL=1 or 2, and PANMPL. Fig. 2a was found for PCA-ANOVA
without baseline subtraction. The second factor represents 60 Hz
noise, as described below. Fig. 2b was found for PCA-ANOVA with
baseline subtraction. Even though the MPL and PA values for factor
retention in Fig. 2b are identical to those in Fig. 2a, baseline
subtraction moves 60 Hz noise from the second factor to beyond
the fifth factor. Fig. 2c was found for difference-mode STAT-PCA, and
Fig. 2d was found for common-mode STAT-PCA. Broadly speaking,
the eigenvalue plots for STAT-PCA are similar to PCA-ANOVA,
featuring 1–2 large values, followed by a small set preceding an
elbow in the range 5–8. The values for MPL and PA bracket any
visible elbow, except in this example of common-mode STAT-PCA.
Further exploration of factor retention choices in common-mode
STAT-PCA showed that, although there appears to be a step after five
factors, only two factors were interpretable.

Refined factor retention using factor rotation

The MPL and PA algorithms provide useful guidelines for the
number of factors to retain. In order to select a number within this
range, we used additional information about how the rotated
eigenvectors correspondwith the column-variance of the data matrix.
Fig. 3 shows the un-rotated (thin dashed lines) and rotated (thin solid
lines) alongwith the column-variance (thick solid line), for difference-
mode spectral STAT-PCA, and four choices of the number of retained
factors K. For K=1, the eigenvector (black) captures the low-frequency
behavior of the column-variance, but ignores the narrow alpha peak
and broad beta peak. For K=2, the first eigenvector (black) behaves
similarly, and the second eigenvector (blue) captures the alpha peak.



Fig. 2. Scree plots for spectral PCA: (a) PCA-ANOVA without baseline subtraction, (b) PCA-ANOVA with baseline subtraction, (c) STAT-PCA in difference mode, and (d) STAT-PCA in
common mode. Filled dots indicate MPL and PA choices for factor retention; in all cases MPLbPA.
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The effects of rotation are minimal in this case. For K=3, the roles of
the first two eigenvectors are unchanged, and the third eigenvector
(red) is quite complicated, including peaks at 1 Hz, 4 Hz, 11 Hz, and
29 Hz, with non-uniform signs. Again the effects of rotation are
minimal. For K=4, the roles of the first two eigenvectors are again
unchanged. Although the third eigenvector (red) is still complicated, it
is simplified slightly by losing much of its peak at 29 Hz after rotation.
The fourth eigenvector (green) isolates 29 Hz almost exclusively after
rotation. We used these arguments to support the choice of K=4 in
this example, and note that this choice is well within the upper limit
recommended by PA (Fig. 2c). A similar procedure was used to select K
for each step of sequential PCA.

Retention of 60 Hz noise in PCA-ANOVA

In our initial explorations with PCA-ANOVA we passed the time-
varying PSD in both conditions to PCA,without baseline subtraction.We
kept frequencies up to 100Hz to see if any high-gammaactivity could be
found. We found that without baseline subtraction one of the largest
components (second spectral factor, fifth spatial factor, third temporal
factor) that survived the ANOVA (F(1,48)=5.74; p=0.0205) reflected
60Hznoise. The spectral loading had a single, narrowpeak at 60Hz. The
spatial loading was peaked near the ground electrode, consistent with
theory (Ferree et al., 2001). The time course of the temporal factor was
non-descript. We had not anticipated this result, because ANOVA was
supposed to isolate differences between conditions, and the difference
in 60 Hz noise between conditions should be negligible.

An explanation for why this happens is as follows. When
conducting spectral PCA, the data matrix has rows that include
electrodes, time points, conditions (PCA-ANOVA only) and subjects.
Prior to forming the covariance matrix, the column-means are
subtracted from the data matrix, consistent with the usual definition
of covariance matrix. The column-variances are generally non-zero,
however, even for the 60 Hz column. Because this feature dominates
the covariance matrix, 60 Hz noise emerges as one of the largest
factors. While it may be possible to dismiss this, saying that 60 Hz
noise is easily filtered, or that one could simply limit the frequency
range to 1–50 Hz, we view this as an indication that PCA-ANOVA failed
to isolate task-related differences between conditions. Attempting to
remedy this problem, we subtracted the baseline power from the
moving-window PSD in each condition, in analogy with ERP analysis.
We found that the 60 Hz factor no longer reached significance in the
ANOVA, and tentatively concluded that we had solved this problem.

Sensitivity of PCA-ANOVA to the definition of baseline power

We considered two ways of estimating the baseline power
spectrum. The first way was based upon the Welch method, using
50% overlapping windows. In the 1-sec baseline interval, this gives
three 0.5-s windows that are nearly independent with the cosine
tapering. As shown in Fig. 1, power varies in the baseline interval. The
second way was based upon averaging the time-dependent power in
all moving windows (0.05 s steps) within the baseline interval. The
two ways of computing the baseline power give slightly different
results, because the Welch estimate can be seen as three samples
amongmany obtainedwith slidingwindows. Fig. 4 shows scatter plots
comparing the two ways of computing the baseline power in a single
subject (a) and all subjects (b). In the single-subject case, for this



Fig. 3. Illustration of strategy for factor retention, shown for spectral STAT-PCA in differencemode. The thick solid curve represents the column-variance of the data array. Thin dashed
curves represent eigenvectors before rotation. Thin solid curves represent eigenvectors after rotation. As more factors are retained, their eigenvectors are colored as follows: first
(black), second (blue), third (red), fourth (green).
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particular subject, the two estimates are highly correlated, suggesting
small variability in power during the baseline interval. In the all-
subject case, some values deviate far from linearity, revealing large
baseline variability in some subjects. Further analysis revealed that
these deviants come from one subject mainly, and 2–3 others
Fig. 4. Comparison of baseline power in two methods of computing for (a) single subject, (b)
axis shows results for 90% overlap (averaging all values in moving-window PSD estimate).
secondarily. Yet these subjects are not ‘bad’ per se, as their EEG
appear fine, and their responses to the stimulus are visible.

In PCA-ANOVA, the two methods of computing baseline power,
Welch 50%-overlap estimate and sliding-window 90%-overlap esti-
mate, gave three factors. Table 1 shows the triplet similarity matrix
all 25 subjects. Horizontal axis shows results for 50% overlap (Welch method). Vertical



Table 1
PCA-ANOVA: baseline power

Triplet similarity metrics for two estimates of baseline power in PCA-ANOVA. Both
estimates (50% overlap, 90% overlap) gave three significant triplets.
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that compares the results. We found max(Γab)=0.0713, which implies
poor correspondence between the two solutions. We conclude that
PCA-ANOVA is highly sensitive to the definition of baseline power.

In STAT-PCA, taking the difference between conditions and
keeping only significant differences in single subjects had the effect
of removing 60 Hz activity entirely. Even when concatenating across
subjects, therefore, STAT-PCA is not affected by 60 Hz. The table for
STAT-PCA that would be analogous to Table 1 has ones on the diagonal
and zeros elsewhere. We conclude that STAT-PCA is relatively
insensitive to the definition of baseline power.

Because the definition of baseline interval, and the method of
averaging used to compute baseline power, are rather arbitrary
decisions made by the researcher, with little information available to
confirm the absolute validity of one choice over another, we argue that
any method for analyzing group data should be minimally sensitive to
these kinds of choices. The lack of robustness of PCA-ANOVA to the
definition of baseline power raises serious concerns about reprodu-
cibility of results obtained with this method. In contrast, STAT-PCA
isolates task-related spectral changes reliably, which is the stated goal
of this entire analysis.

Sensitivity of PCA-ANOVA to the deletion of a single subject

When looking for a group effect, it is generally undesirable for one
subject to influence the results excessively. In order to assess stability
of the factors retained, we calculated PCA-ANOVA for the entire group
and compared the results with those obtained by deleting each
subject one at a time. When N=25 subjects were used, four factors
were deemed significant by ANOVA. When a single subject was
removed, three factors were found. That alone raised concern.
Furthermore, of the three triplets found when N=25, only one of
those triplets was found when N=24. We emphasize that the subject
removed was not one of the subjects that exhibited high baseline
variability in Fig. 4b. Indeed, Table 2was recomputed for each of the 25
subjects separately, and similar results were obtained. To quantify this,
we generated the summary statistics as described above and themean
was found to be 0.6870. This implies that PCA-ANOVA is very sensitive
Table 2
PCA-ANOVA: subject deletion

Triplet similarity metrics for entire subject group (N=25) and one subject deleted
(N=24) in PCA-ANOVA. Calculations for N=24 gave a different number of significant
triplets depending upon the subject that was dropped.
to the deletion of a random subject, making it difficult to generate
reproducible results.

Robustness of STAT-PCA to the deletion of a single subject

In exact parallel to the procedure used to remove a single subject in
PCA-ANOVA, single subjects were removed one at a time from the
STAT-PCA analysis and the results compared to the group. In order to
make the most direct comparison with PCA-ANOVA, only difference-
mode STAT-PCA is shown. Table 3 shows that six triplets were retained
for both N=25 and N=24. Most importantly, the matrix is very nearly
the identity matrix, i.e., not only were the same triplets obtained, but
they were retained in the same order. Table 3 was recomputed for
each of the 25 subjects separately, and similar results were obtained
for nearly all subjects. To quantify this, we generated the summary
statistics as described above, exactly as they were calculated for PCA-
ANOVA. The mean value was 0.9648. The values obtained from PCA-
ANOVA and STAT-PCA were compared using a one tailed t-test and
found to be significantly different (t(24)=1.8655; p=0.0371). This
implies that STAT-PCA is highly stable to deletion of a random subject,
which helps insure reproducible results.

Task-related factors in STAT-PCA

For our group of 25 subjects, STAT-PCA produced two common-
mode (CM) triplets and six difference-mode (DM) triplets. Because the
goal of this paper is to illustrate the methodology, and establish the
internal consistency of the principle components with respect to the
original data, only three examples are presented here. A thorough
description of all the components and their interpretation as cognitive
processes will be presented elsewhere. For each triplet below, thick
curves represent factor loadings, and thin curves represent the group-
averaged PSD at particular frequencies and electrodes as noted. In
topographic plots, the color scale is dark for small values, red for
intermediate values, and white for large values. The display of
electrodes on the head model is slightly compressed, so that inferior
occipital electrodes are also visible.

Fig. 5 shows common-mode triplet CM (1,1,1). The spectral loading
has a prominent peak at 11 Hz, with a smaller peak near 2 Hz. The
spatial loading is spread over occipital–parietal cortex, and is slightly
left-lateralized to peak at electrode PO3. The temporal loading is
shown with the group-averaged, common-mode PSD at 11 Hz and
electrode PO3 (thin line). Both the loading and data start near zero, fall
abruptly until 1 s, then return toward baseline through the rest of the
epoch. The temporal loading matches the group-averaged data
remarkably well, confirming the internal validity of this factor, and
showing that this triplet reflects ERD not ERS.

Fig. 6 shows difference-mode triplet DM (4,1,1). The spectral factor
has a single, prominent peak at 29 Hz. The spatial topography has two
distinct peaks, bilaterally distributed in frontal electrodes F5 (left) and
ble 3
AT-PCA: subject deletion

riplet similarity metrics for entire subject group (N=25) and one subject deleted
=24) in STAT-PCA. Calculations for N=24 gave six significant triplets consistently.
Ta
ST

T
(N



Fig. 5. STAT-PCA triplet CM (1,1,1). The temporal factor (thick line) is plotted with the group-averaged PSD at 11 Hz and electrode PO3 (thin line).
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AF4 (right). Because the display of the electrodes is slightly compressed,
F5 is actually more lateral than indicated in the graph. The temporal
factor (thick solid line) is shown with the group-averaged, difference-
mode PSD at 29 Hz, for electrodes F5 (thin solid line) and AF4 (thin
dashed line). The time course of this factor and both electrodes are
nearly identical. This supports the validity of finding this bifocal map,
and suggests functional coupling between these locations.

Fig. 7 shows difference-mode triplets DM (1,1,1) and DM (1,1,2). The
spectral factor is peaked at 1 Hz, falling to zero by 9 Hz. This low-
frequency power is not merely an artifact due to spectral leakage from
the zero-frequency bin, because 1) we used linear detrending to
compute power spectra, and 2) difference-mode involves subtracting
two conditions and the amount of spectral leakage should not depend
strongly upon condition. The topography has a primary peak at
electrode PO7, and a secondary peak at electrode AF3, perhaps
extending to AF4. The temporal factor (thick solid line) is plotted with
the group-averaged, difference-mode PSD at 1 Hz, for electrodes PO7
(thin solid line) and AF3 (thin dashed line). Overall, the temporal
behavior of electrode PO7 and electrode AF3 are quite similar,
although PO7 is larger for tb0.5 s. The difference in the temporal
factors is that DM (1,1,1) reflects the late behavior that peaks around
t≈1.3 s, while DM (1,1,2) reflects the early behavior that is confined to
tb0.5 s. An explanation of how and why PCA separated these two
temporal factors is given in the Discussion.

Discussion

Time–frequency analysis of multi-electrode EEG data in cognitive
studies yields high-dimensional numerical results spanning space,
time, frequency, conditions and subjects. There is a clear need to
reduce and summarize these data, with the goal of isolating distinct
neural processes involved in the task. Our initial attempt to extend the
established technique of PCA-ANOVA to the frequency domain
revealed three main shortcomings: 1) isolation of non-task-related
Fig. 6. STAT-PCA triplet DM (4,1,1). The temporal factor (thick solid line) is plotted along with
AF4 (thin dashed line).
differences between conditions (e.g., 60 Hz noise), 2) sensitivity to the
precise definition of baseline power, and 3) sensitivity to the deletion
of a single subject. We developed a new approach, called STAT-PCA,
which advocates within-subject statistical testing followed by PCA.
STAT-PCAwas demonstrated to remedy all three of the short-comings
of PCA-ANOVA, and yield components that have visible agreement
with the group-averaged data. Upon close consideration, it makes
intuitive sense that isolating task-related differences in single subjects
improves the performance of PCA, because PCA always arranges the
largest contributors to variance in its first few components. Only if the
interesting data features are also the largest data features will PCA
arrange them properly. Furthermore, STAT-PCA requires that a power
difference reach significance in the single subject before it can
contribute to the covariance matrix, while PCA-ANOVA considers all
contributions that may or may not be significant within single
subjects. For this reason, we propose that STAT-PCA is conceptually
more rigorous than PCA-ANOVA. Finally, STAT-PCA permits the study
of activity that is not only different between conditions, but also
common to both conditions.

Sequential PCA produces factors that branch like a tree. The first
PCA, in this case spectral, gives several factors. For each spectral
factor, the second PCA, in this case spatial, gives one or more factors.
For each spatial factor, the third PCA, in this case temporal, gives one
or more factors. In this way, sequential PCA can tease apart features
of the data that differ only at lower levels. An example of this is DM
(1,1,1) and DM (1,1,2), which share spectral and spatial factors, but
have different temporal factors. At first this separation may seem
arbitrary, but it occurred presumably because of structure in the
covariance matrix. The fact that this separation is visible in the
group-averaged data provides corroborating evidence that this
separation is valid. It is therefore a success of STAT-PCA to
disambiguate these factors, and we interpret them as distinct
physiological processes that likely have distinct interpretations in
terms of cognitive processing as well.
the group-averaged, difference-mode PSD at 29 Hz, for electrodes F5 (thin solid line) and



Fig. 7. STAT-PCA triplets DM (1,1,1) and DM (1,1,2). The temporal factor (thick solid line) is plotted with the group-averaged, difference-mode PSD at 1 Hz, for electrodes PO7 (thin solid
line) and AF3 (thin dashed line).
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Varimax rotation was applied to spectral, spatial, and temporal
dimensions. By definition, it produces eigenvectors that are concen-
trated on a few elements, but those elements need not be proximal to
each other. In the spectral domain, most factor loadings had a single,
prominent peak, with one or more small sub-peaks. This situation is
consistent with prior knowledge that task-related cortical oscillations
tend to be relatively narrow-banded, and different bands tend not to
overlap. In the spatial domain, Varimax rotation produces maps
involving few electrodes, but these electrodes need not be adjacent, as
seen in Figs. 6 and 7. In the temporal domain, the loadings tended to be
less compact, reflecting sustained neural oscillations during the task.
Despite this tendency, temporal factors may be compact, as seen in
Fig. 7.

Unlike the standard method PCA-ANOVA, which requires multi-
ple subjects as samples for the ANOVA, a major strength of the new
method, STAT-PCA, is the ability to analyze single subjects. Because
the goal of the present paper was to compare STAT-PCA with PCA-
ANOVA, however, we applied the two methods on equal footing,
focusing on group analysis. It might be supposed that, because PCA is
a variance-based technique, multi-subject PCA would be more
sensitive to inter-subject differences than commonalities. We argue
against this possibility on several grounds. First, we showed stability
of the factors under deletion of single subjects, thus no single subject
(remembering that some subjects can be considered outliers) overly
influences the results. Second, in Figs. 5–7 the high correlation
between temporal factors (thick lines) and group-averaged power
(thin lines) confirms that the STAT-PCA factors reflect the group-
averaged behavior. Third, we have begun a follow up study in which
we have done single-subject analysis using STAT-PCA, and have
found preliminarily that the major factors that emerge for the group
are visible in most of the single subjects. Beyond these points, group
analysis provides advantages over single-subject analysis, because
only in group analysis is the last (temporal) dimension submitted to
PCA. As noted above, Fig. 7 shows how, for a particular spectral and
spatial factor, the temporal PCA identified two temporal factors. In
order to do this last (temporal) PCA, we had to use subjects as
samples. When doing single-subject STAT-PCA, the last (temporal)
factors must be obtained as the scores of the previous (spatial) PCA,
thus there can be only one temporal factor for each spatial factor. For
this reason, it would not have been possible to separate the two
temporal factors shown in Fig. 7 in single subjects. Future work will
investigate thoroughly the relationship between group and single-
subject analyses, especially because the latter is necessary for clinical
diagnosis.

A related approach, multi-way or parallel factor (PARAFAC)
analysis, has also been applied to reduce space–time–frequency data
(Miwakeichi et al., 2004). Because it operates on all three dimensions
simultaneously, it avoids the issue of ordering in sequential PCA.
Although PARAFAC is receivingmuch recent attention in the literature,
its structure is such that each spectral factor is associated with only
one spatial and temporal factor. It seems unlikely that PARAFAC would
have separated the two processes shown in Fig. 7. Furthermore, it is
often noted that PARAFAC solutions are unique, avoiding the rotation
ambiguity in PCA. Practically speaking, however, the use of PARAFAC
depends upon several choices, including the number of factors to
retain, and constraints between factors in each dimension: orthogon-
ality, positive-definiteness, and compactness. In this sense, the results
of PARAFAC analysis are not unique, and more work is required to
understand the effects of these constraints and the relationship of
PARAFAC with PCA.

Beyond the internal consistencies of STAT-PCA that are the emphasis
of this paper, at least one of the triplets found here is consistent with
published findings in this task. DM (4,1,1) showed that electrodes F5 and
AF3oscillate in the range20–35Hz, andhavenearly identical timecourse.
First, this frequency band was found in this same task using intra-cranial
electrodes (Slotnick et al., 2002). Second, electrode F5 was found
previously by applying PCA-ANOVA to ERP analysis of the same data
set (Brier et al., 2008). Third, the time duration (0.75–1.5 s) is the same as
that of the ERP. Findingwhat appears to be the same neural process with
ERPand time–frequencyanalysis gives further credibility to our approach
developed here, and provides new ideas for how to clarify its functional
role in semantic processing. Because electrodes F5 andAF3oscillate at the
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same frequency and share the same time course, we hypothesize that
coherence analysis or phase synchrony analysis (Lachaux et al.,1999)will
show these areas to be coupled in the frequency band 20–35 Hz.

In summary, STAT-PCA provides a basis for the reduction of the
results of time–frequency analysis of multi-electrode EEG data into
concise components that facilitate cognitive interpretation. It repre-
sents a paradigm shift for the integration of PCA with statistical
testing, by advocating statistical tests in single subjects prior to PCA. In
this way, PCA is relegated to a purely descriptive role. As a result of the
statistical test occurring first, the factors retained do not need to be
subjected to further statistical testing, which previously has been
highly subjective. We conclude that STAT-PCA represents an exten-
sible platform for the analysis of event-related spectral changes in
cognitive experiments, as well as an adaptive platform for future
developments that should include higher-dimensional (i.e., more than
two-condition) experimental designs.
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Appendix A

Implementation of PCA

In each step of the PCA, the time-varying PSD values are arranged
in a matrix with variables denoting the PCA dimension, e.g., spectral,
spatial, or temporal, and rows denoting the concatenation of the
remaining variables, conditions (PCA-ANOVA only), and subjects.
Given a data matrix X, where rows denote samples and columns
denote variables, the first step of PCA is to subtract the column-means,
i.e., for each column separately the mean across rows is subtracted:

YuX−X :

(Because rows denote samples, the column-mean may be interpreted
as the sample-mean for each variable.)

This mean-subtracted data matrix Y has a singular value decom-
position:

Y−USVT

where U is an orthogonal matrix with columns equal to the left
eigenvectors, S is a diagonal matrix of singular values, and V is an
orthogonal matrix with columns equal to the right eigenvectors. By
definition, an orthogonal matrix satisfies UTU=1; the orthogonality of
the matrix U is accomplished by the orthonormality of each column of
U. The number of non-zero singular values is equal to the lesser of the
number of samples or variables.

The covariance matrix is defined:

CuYTY = USVT� �T
USVT� �

= VS2VT

where the normalization factor (equal to the number of samples
minus one) has been ignored in its definition, because an overall
constant does not affect the decomposition. The last equality arises
from the orthogonality of the matrix U. In the language of PCA, the
right eigenvectors are called the factor loadings, and the elements of
S2 are called the eigenvalues.
The factor scores W are obtained by projecting the data onto the
orthonormal basis comprised of the factor loadings:

WuYV =US

where the second equality results from the SVD of Y. The factor scores
are not merely the left eigenvectors, but include the singular values. In
this way, the weight, i.e., the singular value, with which each
eigenvector in U enters into the mean-subtracted data is included in
the corresponding score vector.

Varimax rotation is applied to the factor loadings V, resulting in the
rotated factor loadings:

V V= RV :

Varimax rotation preserves inner products between the eigenvec-
tors in V, i.e., orthogonality and normalization, so R is an orthogonal
matrix. Many applications of PCA consider only the factor loadings, so
the effect of rotation on the factor scores is not considered. In the
results presented here, the factor scores were derived by projecting
the mean-subtracted data onto the rotated factor loadings:

W V= YV V:

Only in this way can the original data be considered to be
comprised of the resulting factor scores and factor loadings:

W VV VT = YV VV VT = Y:

Keeping track of the rotation matrix R explicitly:

W VV VT = YRV½ � RV½ �T
= YRVVTRT

= YRRT

= Y

where the third equality arises from the orthogonality of V, and the
last equality arises from the orthogonality of R. In each step of the PCA,
therefore, a subset of the factor loadings were retained and rotated.
For each rotated factor loading, the corresponding factor score was
computed by projecting the data matrix onto that loading. Each of
these ‘rotated’ scores was reshaped to form a new data matrix for the
next step of PCA.
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