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Numerous studies have found evidence for corticolimbic theta band electroencephalographic (EEG) oscil-
lations in the neural processing of visual stimuli perceived as threatening. However, varying temporal
and topographical patterns have emerged, possibly due to varying arousal levels of the stimuli. In addi-
tion, recent studies suggest neural oscillations in delta, theta, alpha, and beta-band frequencies play a
functional role in information processing in the brain. This study implemented a data-driven PCA based
analysis investigating the spatiotemporal dynamics of electroencephalographic delta, theta, alpha, and
beta-band frequencies during an implicit visual threat processing task. While controlling for the arousal
dimension (the intensity of emotional activation), we found several spatial and temporal differences for
threatening compared to nonthreatening visual images. We detected an early posterior increase in theta
power followed by a later frontal increase in theta power, greatest for the threatening condition. There
was also a consistent left lateralized beta desynchronization for the threatening condition. Our results
provide support for a dynamic corticolimbic network, with theta and beta band activity indexing pro-
cesses pivotal in visual threat processing.

Published by Elsevier Inc.
1. Introduction

Quickly processing threatening objects present in the environ-
ment is vital for survival. In humans, this initial response is medi-
ated through the limbic system, which includes phylogenetically
ancient pathways (LeDoux, 1998; Phelps & LeDoux, 2005). How-
ever, there are tightly intertwined interactions between cognitive
and emotional processes in that threatening information can mod-
ulate early attentional allocation (Carretie, Hinojosa, Martin-
Loeches, Mercado, & Tapia, 2004). Consequently, emotional stimuli
reflexively engage corticolimbic systems and these contemporane-
ous processes influence perception and promote adaptive behavior
(Bradley, 2009; Ferrari, Bradley, Codispoti, & Lang, 2011).

Processing of threatening visual stimuli involves various com-
plex functions including sensory processing, attention, decision
making, and memory. In the last decade a growing number of
studies have utilized emotionally evocative stimuli, characterizing
various attributes of these stimuli (Lang, Bradley, & Cuthbert,
1999). Two key factors commonly assessed are valence and arou-
sal. Valence refers to the direction of behavioral activation accord-
ing to the motivational system that is activated, appetitive (toward
pleasant emotion) or the defensive (away from unpleasant emo-
tion). Valence modifies allocation of attentional resources and
can heighten sensory processing of environmental cues; this
occurs at both early and late stages of visual processing (Lane,
Chua, & Dolan, 1999). Arousal is orthogonal to valence and refers
to the intensity of the emotional activation (Lane et al., 1999;
Lang et al., 1999).

Electrophysiological markers have been used to probe process-
ing of emotionally evocative stimuli, revealing a possible process-
ing bias for threatening stimuli. For instance, many early event-
related potentials (ERP), such as frontal N1, suggest that attention
is more readily oriented toward threatening information. However,
some posit that the arousal dimension of stimuli recruits atten-
tional mechanisms, and that the frontal N1 potential reflects arou-
sal influences and not basic affective recognition in general
(Olofsson, Nordin, Sequeira, & Polich, 2008). More recently it has
been shown that when arousal influences are controlled for there
is still a processing bias for threatening stimuli over positive
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stimuli, suggesting selective processing for threatening stimuli
(Sun, Sun, Wang, & Gong, 2012).

Compared to the number of studies that use traditional ERP
analysis to study brain responses to threatening stimuli (for review
see Olofsson et al., 2008), there are relatively few studies using
event-related spectral perturbations (ERSP), a complementary
approach (Makeig, 1993). The utility of ERSP for studying neural
network activity is based upon strong evidence for oscillatory
dynamics as a mechanism of information processing in the brain
(Buzsaki, 2006; Cannon et al., 2013; Uhlhaas et al., 2009; Varela,
Lachaux, Rodriguez, & Martinerie, 2001; Womelsdorf et al.,
2007). Theta activity is of particular interest because studies show
oscillations in this frequency band relate to both encoding and
retrieval threat processes. To illustrate, in animal models encoding
of threat results in increased theta activity between neurons in the
lateral amygdala and the CA1 region of the hippocampus
(Bienvenu, Busti, Magill, Ferraguti, & Capogna, 2012; Pape,
Narayanan, Smid, Stork, & Seidenbecher, 2005; Seidenbecher,
Laxmi, Stork, & Pape, 2003), and during emotional arousal neurons
in the amygdala produce theta activity (Paré, Collins, & Pelletier,
2002). Furthermore, cortical theta activity also indexes semantic
retrieval (Hart et al., 2013), with theta topography being deter-
mined by the semantic properties of the object (Bastiaansen,
Oostenveld, Jensen, & Hagoort, 2008), and fMRI studies show that
threat is a feature within visual semantic object memory (Calley
et al., 2013).

Electrophysiological studies utilizing threat paradigms report
heterogeneous topography in regards to theta oscillations, and
resolving this discordance is of interest. Some studies have
reported increased posterior theta synchronization for threatening
visual stimuli (Aftanas, Reva, Varlamov, Pavlov, & Makhnev, 2004;
Aftanas, Varlamov, Pavlov, Makhnev, & Reva, 2001a; Aftanas,
Varlamov, Pavlov, Makhnev, & Reva, 2002; Sun et al., 2012), while
others have reported larger frontal theta synchronization (Balconi,
Brambilla, & Falbo, 2009). One possible explanation for the previ-
ously reported posterior or frontal topographical theta activity in
processing threatening or negatively valenced visual stimuli could
be that the different paradigms used stimuli that elicited different
levels of arousal (high and low). Some investigators have posited
that emotionally laden stimuli are initially processed by the amyg-
dala in an automatic and nonconscious manner (without the need
of attention) by bypassing the neocortex (Pessoa & Adolphs, 2010;
Tamietto & de Gelder, 2010). On the other hand, the prefrontal cor-
tex may play a key role in threat processing given its role in inte-
grating information, especially in relation to memory processes,
through various connections with other cortical and subcortical
areas (Miller & Cohen, 2001). Since corticolimbic theta activity is
involved in both the encoding and retrieval step of visual object
processing, controlling for arousal influences appears to be an
important consideration in clarifying this issue to better under-
stand threat processing.

While the majority of studies regarding electrophysiological
aspects of threat processing have focused on theta activity, delta,
alpha, and beta power changes may also index relevant neural pro-
cesses; subsequently, should be investigated for a more encom-
passing understanding of threat processing. To illustrate, positron
emission tomography (PET) studies show a metabolic relationship
between frontal cortical delta and subcortical thalamic activity,
and in EEG studies it is argued that the functional significance of
delta is related to motivational processes (Alper et al., 2006;
Knyazev, 2012; Knyazev, Slobodskoj-Plusnin, & Bocharov, 2009).
Also, frontal delta power increases have been observed in response
to highly arousing images but not to low-arousal images (Balconi
et al., 2009). Alpha activity reflects selective cortical inhibition,
which plays a role in signal amplification, and recently has been
shown to play a specific role in affective attention (Uusberg,
Uibo, Kreegipuu, & Allik, 2013). Beta activity, purportedly repre-
senting cortico-cortical local information processing (Jensen
et al., 2005), has been associated in studies with a negativity bias.
For example, there is early beta activity in visual cortices in
response to negative images (Güntekin & Bas�ar, 2010; Keil,
Stolarova, Moratti, & Ray, 2007). Furthermore, studies considering
patterns of delta and beta activity have been linked to both vigilant
and avoidant responses to threat (Putman, 2011; Putman, Arias-
Garcia, Pantazi, & van Schie, 2012).

The overarching aim of this study is to utilize data-driven sta-
tistical techniques to elucidate spectral, spatial, and temporal
electrical patterns during an implicit threat processing task.
One goal of this study is to control the arousal dimension, allow-
ing for isolation of the valence component, and investigate theta
power changes during implicit threat processing. We predict that
there will be early differential theta power changes for the emo-
tionally valenced stimuli, and that with arousal influences con-
trolled for, there will be greater theta power changes in
posterior occipital regions for the threatening stimuli compared
to the non-threatening stimuli. In addition, we will utilize data
driven statistical techniques to characterize delta, alpha, and beta
band power changes for an encompassing account of visual
threat processing.
2. Materials and methods

2.1. Participants

Thirty-two healthy, right-handed adults between the ages of
19–30 years old (M = 24.01, 19 female) participated in the study.
None of the subjects reported neurological impairments. The data
from six subjects were excluded, either because of major move-
ment artifact or excessive noise, or because they did not complete
the task. Our final cohort thus comprised 26 subjects (19 female).
Students were given course credit for a psychology course in
exchange for participation. All gave informed consent prior to par-
ticipation in accordance with the Institutional Review Board of The
University of Texas at Dallas.
2.2. Stimuli

We used 90 colored pictures chosen from the International
Affective Picture Set (IAPS) set of normed pictures as well as 22
additional pictures selected for the categories of combat scenes
(N = 16) and weapons (N = 6) (Calley et al., 2013). These additional
pictures were chosen to be of comparable visual complexity and
resolution to the set from the IAPS. Each picture was then modified
to create a matched, scrambled visual stimulus by randomizing the
phase information and recombining it with the original picture’s
magnitude information (Haxby, Hoffman, & Gobbini, 2002).

The stimuli were derived from two groupings on the pleasant-
ness scale (IAPS scales), one clustered at the pleasant end and
the other at the unpleasant end of the scale. They were also chosen
from a variety of categories.

The real pictures comprised eight groups of items from six dif-
ferent categories, as follows:

1a. Animals – threatening (N = 16).
1b. Animals – nonthreatening (N = 16).
2a. Nature scenes – threatening (N = 8).
2b. Nature scenes – nonthreatening (N = 8).
3a. Combat – threatening (N = 16).
3b. Pleasant situations – nonthreatening (N = 16).
4. Weapons – threatening (N = 16).
5. Food – nonthreatening (N = 16).
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Importantly, arousal was not a confounding feature between
the threatening (M = 3.23, SD = .39) and nonthreatening (M = 3.11,
SD = .38) groups as overall arousal was not different between these
two groups, (t(110) = 1.65, p = .10). A more detailed account of
stimuli selection and ratings can be found in Calley et al. (2013).

2.3. Behavioral procedures

The 224 pictures of real and nonreal ‘‘scrambled’’ items were
pseudo-randomized and presented individually using a Neuroscan
system (Compumedics, Inc.) The stimuli were re-randomized and
presented on a computer screen approximately 1 meter in front
of the subject. Each stimulus was presented for 2700 ms, with a
pseudo-random jittered inter-stimulus interval average of
2300 ms. Subjects were instructed to push a button under their
right index finger to indicate that they perceived an item to be real
(an item they recognized), and to push a button under their right
middle finger for a nonreal item (a scrambled image).

2.4. Behavioral analysis

Two subjects were excluded from the behavioral analysis
because of equipment problems; however, they remained in the
ERSP analysis because we had verification that they were perform-
ing the task as they had appropriate reaction times and accuracy
rates in the condition where the response system was working.
Reaction times and accuracy rates were analyzed to investigate dif-
ferences between task explicit processing of the real versus scram-
bled images, and implicit processing of the threatening versus the
non-threatening images.

2.5. EEG recording

Continuous EEG was recorded from a 64-electrode Neuroscan
Quickcap using Neuroscan SynAmps2 amplifiers and Scan 4.3.2
software with a reference electrode located near the vertex. Data
were sampled at 1 kHz with impedances typically below 10 kX.
Additionally, bipolar electrooculogram (EOG) was recorded from
two electrodes to monitor blinks and eye movements (positioned
vertically at the supraorbital ridge and lower outer canthus of
the left eye). The continuous EEG data were offline high-pass fil-
tered at 0.5 Hz and low-pass filtered at 30 Hz using a finite impulse
response (FIR) filter.

2.6. EEG pre-processing

We analyzed the EEG using scripts developed in our lab that
implement functions from EEGLAB version 12 (http://
www.sccn.ucsd.edu/eeglab, Delorme & Makeig, 2004) running
under Matlab 7.11.0 (The MathWorks, Inc.). Preprocessing consisted
of down-sampling to 512 Hz, removing data recorded from poorly
functioning electrodes, and correcting for stereotyped artifacts
including eye blinks, lateral eye movements, muscle, line noise,
and heart rate using the ‘‘Runica’’ algorithm (with the ‘extended’, 1
option, Delorme & Makeig, 2004; Jung et al., 2000), an implementa-
tion of the logistic infomax independent component analysis algo-
rithm of Bell and Sejnowski (1995). Stereotyped artifacts were
identified by visual inspection of the spatial and temporal represen-
tation of the independent components. Continuous data were then
segmented into 2 s non-overlapping epochs spanning from 500 ms
before to 1500 ms after the presentation of the visual stimuli. Epochs
containing high amplitude, high frequency muscle noise, and other
irregular artifacts were removed. Only trials to which the subject
responded correctly and those without artifacts were subjected to
further analysis, retaining on average 75% of all epochs. Lastly, miss-
ing electrodes were interpolated and data were re-referenced to the
average reference (Junghöfer, Elbert, Tucker, & Rockstroh, 2000).

2.7. Event-related time–frequency analysis

To assess changes in spectral power that occur after stimuli pre-
sentation, we calculated event-related spectral perturbations
(ERSP; Makeig, 1993) using the newtimef function of EEGLAB tool-
box. Thirty linearly spaced frequencies from 1 to 30 Hz were esti-
mated using hanning FFT tapering in 50 time windows (�384 to
895 ms). We performed single-trial baseline correction using the
prestimulus interval as baseline (Grandchamp & Delorme, 2010).

2.8. STAT-PCA

We utilized an extension of STAT-PCA, a data-driven statistical
technique, which incorporates both inferential statistics and data
reduction (Spence, Brier, Hart, & Ferree, 2013). More specifically,
a mixed-effects general linear model (GLM) was used to assess dif-
ferences between each of the conditions (threat, nonthreat, and
scramble), and a principal components analysis was used to reduce
data dimensions for interpretation of statistical results.

Log normalized squared absolute values at each space, time, fre-
quency point (STF) were calculated and used as input for the infer-
ential stage of STAT-PCA. Our experiment has one independent
variable, condition, with three levels (threat, nonthreat, and scram-
ble). The statistical model can be written as Psck = l + bs + cc + esck

where P is the observed power at a given space–time–frequency
point; s = 1, . . ., 26 subjects; c = 1, . . ., 3 conditions; and k = 1, . . .,
tsc a variable number of trials in each subject and condition. This
is a mixed-effects linear model with subjects as a random effect,
bs, and condition as a fixed effect, cc. F statistics for each STF point
were calculated to assess the influence of the experimental condi-
tions on log power, and planned t-contrasts were calculated from
differences between the real and scramble conditions, as well as
differences between the threatening and non-threatening condi-
tions. Mean differences between conditions were masked by t-sta-
tistics that were significant at the 0.01 level. The linear models
were implemented by the mixed procedure in SAS 9.2 (Cary, NC).

After the inferential stage, the masked mean difference estimates
were stored as an STF array of 62 electrodes, 30 frequency bands, and
35 time points, which were submitted to a sequential or unfolding
PCA. For this analysis, frequencies were subjected to PCA before
space and time by reshaping the STF array into a matrix such that
the columns indexed frequency and the rows indexed space and
time. PCA was performed and returned a set of eigenvalues and
eigenvectors (factor loadings), which were subjected to Parallel
Analysis (Horn, 1965) to determine the number of factors to retain.
This estimates the eigenvalues of a structure-free matrix, and only
eigenvalues above the 95% confidence intervals of the null distribu-
tion were retained. The retained eigenvectors were varimax rotated
and used to calculate the factor scores by projecting the original
dataset onto the eigenvectors. The factor scores corresponding to
each spectral factor were reshaped such that the columns index elec-
trodes and the rows index time points. PCA was performed on this
matrix and factor retention was determined. The resulting eigenvec-
tors represent topographies and their corresponding factor scores
represented the time courses (Ferree, Brier, Hart, & Kraut, 2009).
3. Results

3.1. Behavioral results

Reaction times for the real images (M = 872.59 ms,
SD = 183.76 ms) were significantly longer compared to the
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scrambled images (M = 756.90 ms, SD = 137.78 ms), (t(23) = 4.43,
p < .001, one-tailed; Calley et al., 2013). Reaction times for the
threatening images (M = 890.74 ms, SD = 197.13 ms) were not sig-
nificantly longer compared to those for the non-threatening
images (M = 854.91 ms, SD = 185.38 ms), (t(23) = 1.67, p = .10).
There were not significant differences in accuracy in either the real
(M = .93, SD = .09) versus scrambled (M = .92, SD = .11)
(t(23) = �0.67, p = .51), or the threat (M = .93, SD = .10) versus non-
threatening (M = .93, SD = .08) stimuli (t(23) = �0.52, p = .61).

3.2. Event-related time–frequency results real versus scramble

The contrast of the real images versus the scrambled images
resulted in early widespread changes in occipital region electrodes.
More specifically, four STF components were retained. The first STF
component comprised early, 400–500 ms, alpha (peak 10–11 Hz)
activity over bilateral occipital regions (Fig. 1a) The second STF
component was very similar to the first in both time and topogra-
phy, but had a spectral peak at 18 Hz (Fig. 1b). The third STF com-
ponent was early, 50–200 ms, theta (peak 7 Hz) activity over
occipital cortices (Fig. 1c). Finally, the fourth component was delta
Fig. 1. STAT-PCA results for the task condition, real versus scramble. (a–d) Space
time frequency (STF) Component 1–4, spectral PCA loadings plotted from the first
PCA (left); spatial PCA loadings plotted on topoplot from the second PCA (center);
temporal PCA scores plotted as function of time (right). (a) STF Component 1 with a
spectral peak at 11 Hz, spatially over bilateral occipital regions, temporally maximal
around 400 ms. (b) STF Component 2 with a spectral peak at 18 Hz, spatially over
bilateral occipital regions, temporally maximal around 400 ms. (c) STF Component
3 with a spectral peak at 7 Hz, spatially over bilateral occipital regions, temporally
maximal around 150 ms. (d) STF Component 4 with a spectral peak at 2 Hz,
spatially over prefrontal regions, temporally maximal around 450 ms.
(peak 2–3 Hz) activity over prefrontal regions around 300–500 ms
(Fig. 1d).
3.3. Event-related time–frequency results threat versus nonthreat

In the present study our primary focus was on the differences
between the responses to stimuli perceived as threatening and
the responses to the nonthreatening stimuli. The following results
pertain to the resulting t statistics from the contrast of threatening
versus nonthreatening images. The PCA decomposition was per-
formed on the estimated mean difference matrix of the two condi-
tions, threat versus nonthreat, masked at a significance level of
0.01. This yielded three STF components.

The first STF component is loaded in the theta band with a peak
at 6 Hz. Spatially, this theta activity is left lateralized predomi-
nantly around FT7 and FC5. Temporally, this activity peaks at about
575 ms post stimulus (Fig. 2a). Spectrograms at FC5 and FT7 show
that there is greater theta power for the nonthreatening condition
about 500–600 post stimuli presentation (Fig. 2b).

The second STF component is loaded in the beta1 band with a
peak at 18 Hz. Spatially, this beta activity is localized around FC3,
with maximal activity around 475 ms post stimulus (Fig. 3a). Spec-
trograms at FC3 show that there is a larger decrease in beta power
in the threat condition (Fig. 3b).

The third STF component is loaded in the theta band with a peak
at 5 Hz. Spatially this theta activity has maxima over two regions,
one frontal around FPZ and one posterior around O1. The time factor
has three peaks, one early around 300 ms, the second around
475 ms, and the third around 650 ms (Fig. 4a). Spectrograms show
that at electrode O1 there are early theta power changes from 200
to 500 ms after stimulus presentation with greatest power increase
for the threat condition (Fig. 4c). Electrode FPZ shows theta power
changes from 400 to 700 ms post stimulus, again with greatest
power increase for the threat condition (Fig. 4b).
Fig. 2. STAT-PCA results for conditions threat versus nonthreat with corresponding
spectrograms per condition. (a) Space time frequency (STF) Component 1, spectral
PCA loadings plotted from the first PCA (left); spatial PCA loadings plotted on
topoplot from the second PCA (center); temporal PCA scores plotted as function of
time (right). STF Component 1 with a spectral peak at 6 Hz, spatially left lateralized,
temporally maximal around 550 ms. (b) Spectrograms at FC5 for each condition,
scramble, nonthreat, and threat, show greatest ERSP theta synchronization for the
nonthreat condition corresponding to STF Component 1.



Fig. 3. (a) Space time frequency (STF) Component 2, spectral PCA loadings plotted
from the first PCA (left); spatial PCA loadings plotted on topoplot from the second
PCA (center); temporal PCA scores plotted as function of time (right). STF
Component 2 with a spectral peak at 18 Hz, spatially maximal at FC3, temporally
maximal around 475 ms. (b) Spectrograms at FC3 for each condition, scramble,
nonthreat, and threat show greatest ERSP beta desynchronization for the threat-
ening condition corresponding to STF Component 2.

Fig. 4. (a) Space time frequency (STF) Component 3, spectral PCA loadings plotted
from the first PCA (left); spatial PCA loadings plotted on topoplot from the second
PCA (center); temporal PCA scores plotted as function of time (right). STF
Component 3 with a spectral peak at 5 Hz, spatially maximal at two locations FPZ
and O1, temporally maximal at 3 time points, 300 ms, 475 ms, and 650 ms. (b)
Spectrograms at FPZ for each condition, scramble, nonthreat, and threat, show
greatest ERSP theta synchronization for the threatening condition at the later
temporal maximum. (c) Spectrograms at O1 for each condition, scramble,
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4. Discussion

We investigated ERSP spatiotemporal dynamics during an
object recognition task (real versus scrambled images) to help clar-
ify the neural substrates of implicit visual threat processing. While
controlling for arousal, we found various spatial and temporal dif-
ferences for threatening compared to nonthreatening. This
includes an early posterior increase in theta power, a later frontal
increase in theta power, and a consistent left lateralized beta
desynchronization, all greatest for the threatening condition.
nonthreat, and threat, show greatest ERSP theta synchronization for the threatening
condition at the two earlier temporal maximums.
4.1. Real versus scrambled images

We found spectral differences between the real versus scram-
bled images with greater theta and alpha power changes for the
real images in occipital regions early after visual stimuli presenta-
tion. In addition, there was an early increase in delta power for the
real images in the prefrontal cortices. The topography and timing
of these spectral differences suggest that they are primarily due
to basic visual processing of real versus scrambled, or meaningless,
images. However, there is a confound of task imposed processing
in that we asked the subjects to focus explicitly on distinctions
between real and scrambled images. Recently, delta activity has
been suggested to play a role in motivational processes (Knyazev,
2007; Knyazev, 2012), and while this assignment still remains
speculative, the delta band changes we found may reflect the influ-
ence of the explicitly assigned task, as opposed to the properties of
the stimuli that we were exploring.
4.2. Threat-theta

Spatially, various topographical patterns of EEG power changes,
particularly within the theta band, have been associated with emo-
tional/threatening stimuli (Aftanas et al., 2001a; Aftanas et al.,
2002; Aftanas, Pavlov, Reva, & Varlamov, 2003; Balconi et al.,
2009). Temporally, emotional stimuli (e.g. threatening or pleasant)
have been proposed to be ‘‘privileged’’ in the competition for pro-
cessing resources, are prioritized in perception, and impede other
cognitive operations (Brosch & Grandjean, 2013; Sun et al.,
2012). We show that viewing an object which is perceived as either
threatening or nonthreatening results in an early (300–475 ms)
increase in theta-band EEG power over the occipital lobes, with
the greatest power changes for the threatening images. Also, we
show that there is a later (600 ms) theta power increase over the
frontal region for both threatening and nonthreatening images,
again with the greatest theta increase for the threatening images.
This is unlikely to be secondary to the arousal characteristics of
the stimuli as the threatening and nonthreatening stimuli had
comparable arousal ratings. The theta power increase is in keeping
with the findings in animal studies that theta synchrony between
the amygdala and hippocampus is associated with encoding of
threat with a stimulus (Pape et al., 2005; Seidenbecher et al.,
2003) and detectable in the amygdalo-hippocampal complex asso-
ciated with fearful memory processing (Narayanan et al., 2007;
Narayanan, Seidenbecher, Sangha, Stork, & Pape, 2007).

Due to limitations in interpreting spatial sources of cortical EEG
signal, it is difficult to conclude whether or not the amygdala
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directly influences the observed, presumed cortical activity. How-
ever, several studies provide support for such a conclusion, in that
there is a role for the amygdala in mediating modulatory activity
on sensory cortices (Amaral, Behniea, & Kelly, 2003; LeDoux,
1996; Phelps & LeDoux, 2005). For example, ERP’s recorded from
preoperative patients with medial temporal lobe epilepsy revealed
that the magnitude of early (200 ms) and later cortical components
(500–600 ms) in response to fearful faces systematically varied
with degree of amygdala damage (Rotshtein et al., 2010). Other
studies show that there is an automatic response to threat in the
amygdala, irrespective of experimental manipulations of atten-
tional diversion (Pourtois, Spinelli, Seeck, & Vuilleumier, 2010).
The amygdala activity reported in that study followed a distinct
time course with early emotion modulation starting at 140 ms
post-stimulus onset, and later modulation starting at 700 ms.
Depth electrode potential studies show an early selective response
to fear in the amygdala at about 200 ms with later responses
recorded at occipital, temporal, and frontal cortices at 300–
1000 ms (Krolak-Salmon, Hénaff, Vighetto, Bertrand, &
Mauguière, 2004). In addition, intracranial electrophysiological
data recorded from the human amygdala shows prominent theta
frequency band changes during 200–500 ms while subjects are
being presented with emotionally valenced stimuli (Meletti et al.,
2012). These findings overall are consistent with the temporal
and spatial dynamics found in the current study, with early poster-
ior theta oscillations and later frontal theta oscillations during the
implicit processing of threatening versus nonthreatening visual
stimuli.

We posit that the posterior theta EEG phenomena we observe
relate to amygdalar activity, either directly or indirectly, and play
a role in visual semantic memory. The theta power increases we
are reporting are in the same frequency band as are the power
increases between the amygdala and hippocampus when threat
is first encoded as a salient feature of an object (Seidenbecher
et al., 2003). Our previous fMRI study, utilizing the same paradigm,
shows that threat is a feature in visual semantic memory (Calley
et al., 2013), and EEG theta power increases index semantic mem-
ory retrieval (Bastiaansen et al., 2008). The posterior theta power
may either be locally generated, triggered by theta synchronization
from the amygdala that we cannot detect from scalp recording, or
the amygdala triggers this occipital cortical theta response without
generating an intrinsic theta rhythm on its own (Pape et al., 2001).
In regards to the frontal theta activity, we suggest that frontal theta
power may play a more modulatory role because of the later time
course. For example, frontal theta is involved in prefrontal control
and in overriding Pavlovian learning biases (Cavanagh, Eisenberg,
Guitart-Masip, Huys, & Frank, 2013). Other studies have shown
that frontal regions attenuate amygdala responses to threat
(Hariri, Mattay, Tessitore, Fera, & Weinberger, 2003; Rosenkranz
& Grace, 2001).

The theta activity we recorded may be part of a coordinating
corticolimbic network. For example, in the cognitive domain theta
activity generally is indicative of an orienting function as EEG theta
power typically increases with increasing task difficulty (Bas�ar,
1999; Bas�ar, Bas�ar-Eroglu, Karakas�, & Schürmann, 2001;
Sakowitz, 2001). Furthermore, theta band activity plays a role in
integrating neural activity in response to emotional stimuli across
sub-cortical (amygdala) and cortical structures, both frontal and
visual cortices (Knyazev, 2007; Lewis, 2005a; Lewis, 2005b;
Maratos, Mogg, Bradley, Rippon, & Senior, 2009; Meletti et al.,
2012; Paré et al., 2002). Cortical regions such as the medial pre-
frontal cortex (mPFC) play a prominent role in threat behavior as
well as regulatory mechanisms. More specifically, the dorsal mPFC
plays a role in both expression and encoding of threat, while ven-
tral regions are linked to the inhibition of threat-related behavior
(Courtin, Bienvenu, Einarsson, & Herry, 2013). Frontal theta is a
sensitive index of prefrontal control and can reflect the application
of top-down control (Cavanagh et al., 2013). Evidence suggests that
the amygdala influences perceptual systems, possibly through
white matter pathways (Catani, Jones, & Donato, 2003;
Sabatinelli, Bradley, Fitzsimmons, & Lang, 2005). Lastly, in multi-
modal models of semantic organization (Hart & Kraut, 2007; Hart
et al., 2013) medial visual cortices show threat to be a feature in
visual object memory (Calley et al., 2013), and the occipital theta
found in the current study shows temporal dynamics expected
for semantic memory retrieval. Taken all together, we associate
different cognitive functions for the differing temporal and topo-
graphical theta power changes. Specifically, the early posterior
theta detected may be a reflection of amygdalar-related activity
and the later posterior theta may index semantic memory retrieval,
while the frontal theta activity may serve a more modulatory role.
4.3. Threat-beta

We also consistently observed event related desynchroniza-
tion (ERD) in the beta band with greater ERD for threatening
compared to nonthreatening or scrambled images (Fig. 3b). Stud-
ies show that implicit processing of aversive, but not nonthreat-
ening, stimuli is associated with activity in the dorsal (vision for
action) processing stream, because perception of aversive stimuli
may mandate rapid behavioral response (Knyazev et al., 2009).
Other studies support the notion that this left lateralized beta
ERD reflects part of the orienting reflex, a complex body response
to externally presented stimuli including changes in heart rate,
skin conductance, and motor preparation (Barry, 2006; Pavlov,
1927). To illustrate, early beta ERD reflects visually induced pre-
paratory activity in motor cortex networks, and is often accompa-
nied by changes in heart rate (Pfurtscheller et al., 2013). In
addition, other studies have found short-lasting early (�500 ms)
beta ERD after action-coded visual stimuli (Doyle, Yarrow, &
Brown, 2005; Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller,
Scherer, Müller-Putz, & Lopes da Silva 2008; Ramautar,
Romeijn, Gómez-Herrero, Piantoni, & Van Someren, 2013; Solis-
Escalante, Müller-Putz, Pfurtscheller, & Neuper, 2012;
Tzagarakis, Ince, Leuthold, & Pellizzer, 2010; Zhang, Chen,
Bressler, & Ding, 2008), related to motor planning, response inhi-
bition, and uncertainty. Overall, our data and others’ support the
idea that the orienting reflex is mediated by a network of activity
which has evolved to increase the likelihood of survival upon
encountering environmental items that are considered threaten-
ing (Bradley, 2009). As this is the first study, to our knowledge,
to show such robust left lateralized beta band ERD during threat
processing, this phenomenon merits further investigation.
4.4. Nonthreat-theta

Through data-driven statistical analysis we found a left lateral-
ized theta power increase, greatest for the nonthreatening com-
pared to the threatening conditions, around 500 ms. We suggest
that this later theta activity is in response to the positive affect
of the nonthreatening images, as left lateralized activity is associ-
ated with approach related motivation and is often found in
response to pleasantly valenced stimuli (Aftanas et al., 2001b;
Davidson, Pizzagalli, Nitschke, & Kalin, 2003). However, a potential
limitation to this study is that the current cohort consisted of pri-
marily women. Some have suggested that there are gender differ-
ences in processing affective images; however, to date, there has
yet to be a systematic assessment of gender differences (Cahill,
2006; Fujita, Diener, & Sandvik, 1991; Kring & Gordon, 1998;
Rozenkrants & Polich, 2008).
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5. Conclusion

In conclusion, while previous studies have found either isolated
posterior or frontal theta activity in response to threatening
images, we found differential topographical theta power changes
as a function of time. More specifically, when arousal influences
were controlled for there was an early posterior increase in theta
power for threatening compared to nonthreatening images and
then a later frontal increase in theta power. We also found a con-
sistent beta ERD in response to the threatening images. Thus, theta
and beta band activity index processes that play a prominent role
in coordinating information processing at different time scales.
Previous studies suggest a role for subcortical structures in threat
detection with a recent emphasis on cortical regions playing a
more modulatory role, specifically in regards to theta activity.
Our results support the conclusion for such a network in threat
processing. In addition, our results support a multimodal account
of semantic memory with threat as a feature in visual semantic
memory. Evaluating this network and modifying its response prop-
erties may provide diagnostic or treatment value in individuals
with disorders characterized by abnormal processing of stimuli
perceived as threatening.
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