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Semantic processing and response inhibition
Hsueh-Sheng Chianga, Michael A. Motesa, Raksha A. Mudarc, Neena K. Raoa,
Sethesh Mansinghania, Matthew R. Brierd, Mandy J. Maguireb,
Michael A. Kraute and John Hart Jra

The present study examined functional MRI (fMRI) BOLD

signal changes in response to object categorization during

response selection and inhibition. Young adults (N = 16)

completed a Go/NoGo task with varying object

categorization requirements while fMRI data were

recorded. Response inhibition elicited increased signal

change in various brain regions, including medial frontal

areas, compared with response selection. BOLD signal

in an area within the right angular gyrus was increased

when higher-order categorization was mandated. In

addition, signal change during response inhibition varied

with categorization requirements in the left inferior

temporal gyrus (lIT). lIT-mediated response inhibition

when inhibiting the response only required lower-order

categorization, but lIT mediated both response selection

and inhibition when selecting and inhibiting the response

required higher-order categorization. The findings

characterized mechanisms mediating response inhibition

associated with semantic object categorization in

the ‘what’ visual object memory system. NeuroReport
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Introduction
Depending on the circumstances, actions might require

higher-order or lower-order semantic categorization [1].

For example, driving often requires rapidly and correctly

determining whether something that appears on the road

merits rapid braking or not. The default response is to

brake, but when an object is recognized as innocuous (e.g.

leaves, a plastic bag, etc.), the prepotent response to

brake can be inhibited. Response inhibition of this type is

operationalized in the Go/NoGo paradigm [2], and

involvement of semantic object categorization during

Go/NoGo tasks has been shown to influence neural

mechanisms underlying response inhibition/selection

with electroencephalographic measures [3–5].

To probe brain regions mediating response selection and

inhibition contingent upon semantic categorization, in

the present study, participants completed a Go/NoGo

task with varying semantic categorization requirements

while functional MRI (fMRI) data were collected.

Participants responded to objects (e.g. cars, tools, etc.)

but not to animals (e.g. dogs, cows, etc.) in the

superordinate categorization task, but participants re-

sponded to a single car or any car but not to a single dog

or any dogs in the object identification tasks. Thus, the

study allowed for the identification of regions sensitive to

degrees of semantic categorization during selection and

inhibition of responses.

Methods
Participants

All participants (N = 16; women = 10; age range 19–34

years, M = 23.5 years) were right-handed, prescreened for

neurological or psychiatric diseases and medication, and

provided written informed consent, as per the University

of Texas at Dallas and University of Texas Southwestern

Medical Center Institutional Review Boards.

Stimuli and experimental procedures

Participants completed three versions of a Go/NoGo task

where the categorization requirements differed across the

versions, adapted from Maguire et al. [3]. Across versions,

participants were asked to respond as quickly and

accurately as possible to stimuli (right index finger press

on an MR-compatible button box) on Go trials but not to

respond on NoGo trials. For the superordinate categor-

ization version [i.e. the object/animal (OA) stimulus set],

Go stimuli consisted of 160 different exemplars of objects

(i.e. 40 food items, 40 cars, 20 clothing items, 20 kitchen

items, 20 body parts, and 20 tools) and 40 different

exemplars of animals of varying visual typicality (e.g. dog,

cat, dolphin, etc.). For the two object identification

versions, Go stimuli consisted of an exemplar of a specific
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car [i.e. single car (SC) stimulus set] or 40 different

exemplars of cars [i.e. multiple car (MC) stimulus set],

and NoGo stimuli consisted of a specific dog or 10

different exemplars of dogs, for the SC and MC stimulus

sets, respectively. Response inhibition and selection

in Go/NoGo tasks are affected by temporal variability in

stimulus onsets [6,7]; thus, fixed stimulus durations

(300 ms) and interstimulus intervals (1700 ms) were

used, and each task lasted for about 7 min (see

Supplementary Materials for details, Supplemental digi-

tal content 1, http://links.lww.com/WNR/A253).

Image acquisition

Using a Philips 3 T scanner (Philips Medical System,

Best, the Netherlands) and a standard eight-channel

head coil, a T1-weighted MPRAGE (60 sagittal 256� 256

slices; voxel size = 1 mm3) and echo-planar imaging

(EPI) (33 transaxial 64� 64 voxel slices; voxel size =

3.44� 3.44� 4 mm; TR = 1.5 s; TE = 25 ms; flip angle =

601; each run had 289 EPI images) were acquired.

Image analysis

Using AFNI software (NIMH/NIH, Bethesda, Maryland,

USA) [8], EPIs were slice-time corrected, motion

corrected (excluding participant data if motion exceeded

3 mm in transition or 21 in rotation, N = 3), and spatially

smoothed (full-width at half-maximum = 6 mm Gaussian

kernel). The BOLD data for each voxel for each run were

then scaled so that the regression parameter estimates

would be expressed in terms of percent signal change (i.e.

100� yt/My, yt is the BOLD signal at time t, My is the

mean of the time series).

For each participant, signal change was then estimated

using conventional, modified linear regression for

fMRI [9]. Regressors were constructed by convolving a

gamma-variate function (b = 8.6, c = 0.547; maximal

amplitude = 1.0; [10]) with impulse functions at the

onsets of correct NoGo trials and an equivalent number of

correct Go trials. Baseline was implicit and not modeled,

assumed to have a 0% signal change after previous scaling.

Although temporal variability in stimulus onsets affects

inhibition and selection [6,7], temporal regularity in

interstimulus intervals can lead to extreme collinearity,

and possibly singularity, between canonical-based fMRI

Go and NoGo regressor models to the point where linear

regression is not accurate and in the case of singularity

where it is computationally impossible [11,12]. To optim-

ize signal detection and reduce potential collinearity, a

covariate was created using correct Go trials not used in

the above-described Go regressor. For this covariate, trial

gamma functions were modulated for both amplitude and

duration by the reaction time (RT) for each trial.

Creating canonical Go and RT-modulated Go regressors

allowed for Go-trial signal-changes estimates with an

equivalent number of trials used to estimate NoGo-trial

signal change and induced temporal variability into the

regression design matrix to avoid collinearity issues while

still accounting for signal-change variability associated

with RT-modulated Go regressors. Nuisance regressors

for incorrect trials (including RTs beyond±2.5 SD from

the mean), motion, and temporal drift (i.e. linear,

quadratic, and cubic trends) were also included in the

design matrix. Signal-change matrices were spatially

normalized to a Talairach–Tornoux template. With FSL

linear and non-linear spatial transformation func-

tions [13], each participant’s MPRAGE was fit to a

Talairach–Tornoux template brain. The warping para-

meters were then applied to the signal-change matrices

(see Supplementary Materials for details, Supplemental

digital content 1, http://links.lww.com/WNR/A253).

The spatially normalized beta matrices were then used

for voxel-wise two factorial repeated-measures analyses of

variance (two levels of Response Condition: Go/NoGo;

three levels of Categorization Task: SC/MC/OA), with a

cluster-wise 90 voxel threshold applied, cluster-level of

P = 0.05, and voxel-level of P = 0.005 on the basis of the

simulations with a smoothing kernel of full-width at half-

maximum = 6 mm [14]. Post-hoc follow-up tests for the

main and interaction effects were restricted to voxels

with peak F-values within the clusters. One-sample

t-tests, comparing the mean signal change to zero (i.e.

no signal change), were also used to determine whether

significant ‘activation’ or ‘deactivation’ was present for any

condition in the post-hoc analyses.

Results and discussion
RT and accuracy were analyzed using separate 2� 3

analysis of variance (two Response Conditions and three

Categorization Tasks). Go RT differed significantly be-

tween categorization tasks [F(2, 30) = 40.2, P < 0.001].

Participants were slower in the OA (M = 467.7, SD = 72.3

ms) than in the SC (M = 380.9, SD = 63 ms) and MC

(M = 388, SD = 60.7 ms) tasks, t(15) = 6.98, P < 0.001 and

t(15) = 7.38, P < 0.001, respectively. Accuracies were signif-

icantly greater in Go (M = 99.4, SD = 0.8%) than in NoGo

(M = 89.9, SD = 7.7%), F(1, 15) = 26.64, P < 0.001, and

across categorization tasks, F(2, 30) = 26.52, P < 0.001.

However, these main effects were qualified by a significant

Response Condition�Categorization Task interaction,

F(2, 30) = 6.12, P = 0.016. Further tests showed that Go

accuracies remained relatively high, with no significant

difference across all three tasks, F(2, 30) = 0.37, P = 0.67,

but NoGo accuracies differed significantly across tasks,

F(2, 30) = 4.35, P = 0.022, with SC significantly higher

than OA, t(15) = 2.76, P = 0.015 (Table 1). Overall, with

involvement of category-level processing introduced in the

OA task, Go RT was slower and NoGo accuracy was lower.

The main effects of response condition for BOLD signal

(Fig. 1) were shown to be in the left middle occipital

gyrus, right supramarginal gyrus, right inferior occipi-

tal gyrus, right middle temporal gyrus, right inferior
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frontal gyrus, left precentral gyrus, left middle cingulate

cortex, right middle frontal gyrus, right precentral gyrus

(in the above clusters NoGo trials elicited greater BOLD

signal change than did Go trials; also NoGo trials had

increased activation from baseline; Supplementary Table,

Supplemental digital content 2, http://links.lww.com/WNR/
A254), left postcentral, right cerebellar vermis, left

angular gyrus (AG), and right parahippocampal gyrus (in

the above clusters, Go responses elicited greater BOLD

signal than did NoGo stimuli; also, Go trials had increased

activation from baseline, except for the left AG and right

parahippocampal gyrus; Supplementary Table, Supple-

mental digital content 2, http://links.lww.com/WNR/A254).

The BOLD findings associated with NoGo/Go differ-

ences are consistent with previous literature [15,16] and

show greater responses on NoGo trials than on Go trials,

spanning from posterior (parietal and occipital) regions to

more anterior (frontal) regions. This widespread network

has been suggested to be involved in stimulus recognition,

maintenance, and manipulation of stimulus–response

associations and response inhibition [15]. Go responses

elicited activity in the left precentral gyrus and right

cerebellum, reflecting the roles of these regions in motor

execution and coordination [15]. Interestingly, one focus

in the medial frontal area (middle cingulate cortex, BA32,

in close proximity to pre-Supplementary Motor Area, or

pre-SMA, BA6; Supplementary Table, Supplemental

digital content 2, http://links.lww.com/WNR/A254) showed

greater than baseline activation for both Go and NoGo

trials. The finding is consistent with the hypothesis of

the medial frontal areas playing a role in both response

selection and inhibition [17]. Nevertheless, we also found

this medial frontal activation to be significantly higher in

NoGo than Go, suggesting that some additional recruit-

ment would still be needed to mediate response

inhibition.

A main effect of categorization task was observed in the

right AG (rAG; Fig. 2). Lower BOLD signal change

occurred in the SC task compared with the other tasks

[post-hoc comparisons: MC > SC, t(31) = 6.14, P < 0.001;

OA > SC, t(31) = 3.04, P = 0.005]. There was also a

statistically significant difference between MC and OA

[MC > OA, t(31) = 3.06, P = 0.005]. Significant activation

against baseline was observed in both MC [M = 0.367,

t(31) = 6.64, P < 0.001] and OA [M = 0.216, t(31) =

5.49, P < 0.001], but not SC [M = 0.05, t(31) = 1.08,

P = 0.288]. To put the results in context, when the object

categorization requirements became more complex, from

the SC task to MC and OA tasks, the rAG showed a

greater degree of signal increase. This effect was not

associated with the need to stop a response, as both Go

and NoGo trials elicited similar magnitudes of signal

change within each type of task. The potential role of the

rAG, in the vicinity of intraparietal sulcus and superior

temporal sulcus as part of the parietal regions along the

dorsal stream of visual processing, could thus be

associated with an increase in visuospatial/perceptual

variability [18–20] required for higher-order object

categorization.

A significant Response Condition�Categorization Task

interaction was observed in the left inferior temporal

gyrus (Fig. 2). Significantly greater BOLD signal change

was observed on NoGo compared with Go trials for both

SC, t(15) = 4.75, P < 0.001 and MC, t(15) = 5.35,

P < 0.001, but signal change did not differ significantly

between Go and NoGo trials for OA, t(15) = 0.14,

P > 0.1. Significant activation against baseline was tested

by one-sample t-tests with each peak voxels at the

participant level and was observed on NoGo trials in SC

[M = 0.214, t(15) = 3.71, P = 0.002], MC [M = 0.207,

Table 1 Means (SDs) of percent accuracy and reaction times
across tasks

Experiment Go correct (%) NoGo correct (%) Reaction times (ms)

SC 99.5 (0.9) 92.5 (4.4) 380.9 (63.0)
MC 99.5 (0.8) 90.8 (8.4) 388.0 (60.7)
OA 99.3 (0.6) 86.4 (8.7) 463.7 (72.3)

MC, multiple car task; OA, object animal task; SC, single car task.

Fig. 1
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Main effect of response condition

10 mm 20 mm
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R

30 mm 40 mm

L

Regions that showed the main effect of response condition (Go/NoGo). Yellow/red colors indicate increased signal change. The color bar
represents the range of F-values (from 10.8 to 122). Coordinates are represented in Talairach space (Z-axis) and shown in neurological convention.
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t(15) = 4.06, P = 0.001], and OA [M = 0.13, t(15) = 3.15,

P = 0.007], but for Go trials only in the OA condition

[M = 0.127, t(15) = 3.65, P = 0.002]. It appears that lIT

mediates semantic processing related to inhibition even

when lower-order categorization is required. In other

words, higher-order categorization elicits lIT activation

for both selection and inhibition, but lower-order

categorization elicits lIT activation only during inhibition.

Semantic categorization of objects has been shown to

involve multiple brain areas, including several frontal and

temporal regions. However, IT and ventral temporal (VT)

areas have previously been observed to mediate categoriza-

tion in object identification and recognition tasks [21–25].

Furthermore, IT/VT have been proposed to mediate levels

of categorization (i.e. superordinate through subordinate)

through differential responses to conceptual versus percep-

tual object processing [21,23,25].

Our finding that lIT mediates object identification on

NoGo trials (but not Go trials) suggests that lIT-

mediated semantic/conceptual processing is involved in

inhibition under lower-order categorization requirements.

Although previous studies have shown increased activity

in the IT/VT regions during NoGo trials, even in the

absence of any component of explicit semantic memory

in the task [15], none of these studies varied depth of

cognitive processing during a Go/NoGo task. Our data

suggest that the IT/VT regions play a potential role in

mediating and facilitating object processing in response

to increased cognitive demand in processing stimuli that

require inhibiting a prepotent response.

Conclusion
Activity in the left inferior temporal region is engaged in

superordinate categorization, irrespective of Go or NoGo

conditions. This same region is engaged only in NoGo but

not in Go trials during object identification requiring not as

much semantic processing as superordinate categorization

does. This suggests regional specialization in the ‘what’

visual object memory system for semantic processing that

might also mediate response inhibition in relation to objects.
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