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11.1 Introduction

Nanotechnology has offered hopes for the delivery of new
technologies in medicine and drug delivery, yet a growing
number of voices have begun to express skepticism1 that
these long sought advances may have been over promised.2

Specifically, issues with targeting and delivering payloads
have been called out as being difficult obstacles that still
need to be overcome.3 The reasons for these shortcomings
are multiple and linked to issues with biocompatibility,4

bioaccumulation,5 and pharmacokinetics,6,7 all of which
can be addressed through clever materials chemistry and
bioengineering. The present and persistent issue in nano-
tech, we must remember, is the “tech” and not the “nano.”
Nature has very effectively employed nanoscale delivery
vehicles for highly selective and targeted gene delivery in
the form of viruses. Indeed, their efficacy in delivering
sickness to people has created some skepticism to their use,
but recent efforts to chemically and biologically engineer
“virus-like particles” (VLPs) that take structural cues from
these natural nanoparticles have begun to yield important
new medicines. For instance, one oncolytic viral nano-
particle8,9 has made it to the clinic10e12 and is saving
lives,10,13e15 but many more are in the FDA’s approval
pipeline and even more are active targets of research for
delivery, imaging, stimulation, and biosensing applications.

Viral capsids are extremely useful for these applications
as they are easy to produce and straightforward to employ.
This is simply owing to the biological nature of the VLP,
which imbues five major aspects that define the capsids’

value in these fields: (1) ease of production, (2) ability to
self-assemble, (3) facile modification, (4) biocompatibility,
and (5) immunogenicity. To date, more than 30 different
VLPs have been generated71 through the removal and
replacement of the natural viral genome with a modified set
of genetic material. These “stripped down” versions spon-
taneously assemble in noninfectious72,73 analogs of their
viral parents that lack an ability to self-proliferate while
preserving many of the other native viral traits. VLPs,
typically 15e400 nm,74 can be replicated and purified from
many heterologous expression systems such as bacteria,
plants, and yeast75 to produce ready-to-use nanoparticles
for further modification. These methods of replication
allow for the scalable production of uniform VLPs with a
narrow size distribution, which is crucial for medical ap-
plications. These characteristics permit more precise
loading of cargos inside of the carrier and regularly spaced
functional handles, most commonly lysines, tyrosines,
glutamates, aspartates, and cysteines for the development of
a multifunctional nanocarrier (Table 11.1). Multiple con-
jugates can also be attached as a cargo to VLPs, thanks to
the multivalency of these subunits that make up the virus
including bimodal imaging agents,76 targeted bio-
sensors,77,78 and shielded drug carriers.79,80 Biodistribution
studies have been performed using a few of the icosahedral
VLPs, which show the particles mostly accumulate in the
liver and spleen81,82 and are usually cleared within 24 h.83

These carriers can be further modified to help determine
their in vivo fate by installing moieties designed to alter the
surface charge of the particle84,85 or stealth capability86e88
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TABLE 11.1 Examples of bioconjugation reactions on popular virus-like particles.

Residue Chemical reaction Incorporated material

MS2

Y85 Diazotization Diazonium salt,16 FAM-SE,17 [18F]-benzaldehyde,18 Gd(III)
complex19

Potassium ferricyanideemediated
oxidative coupling

Gold NPs20

T19pAF NaIO4-mediated oxidative coupling AF 488,21 DNA,21 DNA aptamers,22 fibrin,23 peptides,24 PEG,25

porphyrin26

Photolysis/coupling with aniline
groups

DNA27

N87C Thiol-maleimide AF 488,22 AF 680,23 DOTA,25 AF 350,26 Oregon Green 488,26

Gd(III) complex,28 Taxol29

K106, K113, N-
terminus

Isothiocyanate coupling PEG17

TREN-bis-HOPO-TAM ligand19

TMV

Y139 Diazotization and oximation Diazonium salts and alkoxyamines30

Iodogen method Na125I31

Diazotization/CuAAC Gd(DOTA),32,33 Tn antigen,34 pyrene PEG,35 RGD peptide,36

b-cyclodextrin,37 oligoaniline38

E97, E106 Amide formation/CuAAC PEG32

Amide formation Amines30

S123C Maleimide coupling/CuAAC Maleimide derivatives of alkynes followed by azido bearing Tn
antigen,34 maleimide derivatives of thiol-reactive
chromophores39,40

PAG (S123C mutant) Potassium ferricyanideemediated
oxidative coupling

o-aminophenols or o-catechols41
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Qb

K2, K13, K16, N-
terminus

Acylation/CuAAC Tn antigen,42 bovine serum albumin,43 fluorescein,43 triple-
sulfated ligand,44 AF 488,45 AF 568,46 human
holo-transferrin,46 poly(2-oxazoline),47 PEG-C60,

48 oligomanno-
sides,49 LacNAc,50 BPC sialic acid,50 Gd(DOTA)51

M16HPG CuAAC Oligomannosides49

T93AHA CuAAC RGD-PEG,52 biotin52

P22

S39C EDC/NHS Mn porphyrin53

ATRP AEMA54

K118C ATRP THMMA54

Thiol-maleimide Bortezomib55

CUAAC DTPA-Gd56

T183C, M338C, C-
terminus

Thiol MIANS,57 HIV-TAT CPP,58 mCherry59

CPMV

K34, K38,
K82, K99,
K199

CUAAC Peptides,60,61 folic acid,62 fluorescein-PEG,63,64 transferrin,63

GD-DOTA65

EDC/NHS OG 488,61 AF 568,61 AF 555,61 AF647,66,67 PEG,66,67 ferro-
cene,68 peptides69

R82C,
A141/163C

Thiol-
maleimide

Proteins70

AEMA, Aminoethyl methacrylate; AF, Alexa Fluor; CuAAC, copper-catalyzed azide alkyne 1,3-dipolar cycloaddition; MIANS, 2-(40-maleimidylanilino) naphthalene-6-sulfonic acid; PEG, Poly(ethylene
glycol); RGD, arginyl-glycyl-aspartyl; THMMA, tris(hydroxymethyl)methylacrylamide.
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as a means of controlling uptake. This ability to further
functionalize VLPs allows researchers to go one step
further than simply improving capsid stability through the
use of groups like polyethylene glycol (PEG); it allows the
design of smarter delivery vessels that can be targeted to
specific cell types89,90 or introduce stimuli responsive
release.91,92 Recently, more focus has been placed on un-
derstanding the immunogenicity42,93e95 of these particles
and employing them to treat aggressive diseases.14,15 Their
application as vaccines is plausible considering their small
size and ability to illicit an immune response via their re-
petitive epitope display95 that also shows promise as an
innate adjuvant. With these characteristics in mind, this
chapter highlights the advantages VLPs offer to biomedical
applications. Each of the aforementioned characteristics
affords VLPs the ability to overcome limitations associated
with current state-of-the-art technologies. Because most
research has been focused on developing VLPs for imag-
ing, sensing, and drug delivery applications, overviews of
these areas will be presented to demonstrate the charac-
teristics of VLPs that provide specific advantages over
traditional systems. It is worth mentioning that VLPs are
relatively easy for the nonbiologist to produce and require
only a small investment in equipment. A number of
detailed protocols, including video protocols, exist and are
worth reviewing.96e99

11.2 Imaging applications

VLPs are biocompatible macromolecules that bring many
advantages to imaging applications. The monodisperse and
multivalent coat proteins that make up the VLP contain
repeating functional handles from lysine, cysteine, aspar-
tate, glutamate, and tyrosine residues that can be used in
bioconjugation reactions to attach imaging agents to the
virus.100 The monodispersity of the coat proteins allows for
uniformly spaced attachment of many imaging agents to
each VLP for improved resolution.101 Furthermore, the
multivalency of the coat proteins allows for the utilization
of a second functional handle that can be used to attach a
targeting ligand orthogonally for improved localization of
the imaging agent in a desired region of the body.80 In
certain contexts, these attributes make VLPs attractive al-
ternatives to hard nanoparticles, which tend to bio-
accumulate and have limited surface chemistry for
functionalization.102 They also offer atomistically precise
surfaces for functionalization in contrast to polymeric sys-
tems, which are polydisperse and have spatially disordered
functional handles. The proteinaceous makeup of the VLP
can help make conjugated synthetic and inorganic imaging
agents more biocompatible improving the ability of these
agents to translate into in vitro and in vivo studies.103

Additionally, VLPs come in different shapes and sizes that

can be selected for longer retention times which allow for
higher accumulation in the desired area and can extend
imaging time.103 For instance, isotropic VLPs can endure
longer circulation times, whereas anisotropic VLPs can
avoid phagocytosis by macrophages. Additionally, larger
VLPs have been shown to accumulate in tumors because of
the enhanced permeation and retention (EPR) effect. These
characteristics make VLPs good candidates for next-
generation imaging applications.

In this section, we will highlight VLP-based imaging
platforms focusing on fluorescence and magnetic resonance
imaging (MRI). These two areas of imaging specifically
have drawn the interest of many research groups who work
with VLPs. Through their work, they have been able to
increase the brightness and localization of fluorescent
probes as well as increase the relaxivity rates of commonly
used lanthanide-based contrast agents. A few examples of
these advances in imaging technology are discussed in the
following section.

11.2.1 Fluorescent and optical probes

One of the earliest applications of VLPs in biotechnology
was to use them as fluorescent nanoparticles for cell imag-
ing. By attaching fluorescent dyes to the multivalent surface
of a VLP, the local density of the small molecule fluo-
rophores creates brighter imaging agents for higher-
resolution imaging.100 Furthermore, by reacting at specific
sites on the protein that are physically separated in space,
collisional quenching between adjacent fluorophores can be
avoided, thereby improving the brightness of the nano-
particle. Small molecules can be conjugated to VLPs
through a variety of high-yielding bioconjugation re-
actions.100 For instance, EDC/NHS chemistry can be used to
attach small molecules to lysine residues, diazonium
coupling for tyrosine residues, carbodiimide chemistry for
glutamate residues, and maleimides for cysteine residues.104

More recently, “rebridging reactions” on VLPs have made
the disulfide bridge an amenable functional handle.105

Some of the first work done on creating fluorescent
VLPs for in vitro imaging applications came out of the
Manchester group. Lewis et al. attached106 120 Alexa Fluor
555 molecules to each CPMV (cowpea mosaic virus)
without any self-quenching of the fluorophores. This con-
jugate was determined to be much brighter compared with
conventional imaging agents made from polystyrene
nanospheres carrying the same dyeddemonstrating a
practical benefit over polymeric systems. Because the
multivalency of the VLP coat proteins allow for the
attachment of a dye to one functional handle and a targeting
ligand to another,107 it is possible to make bright targeted
probes using two-relatively straightforward chemical re-
actions. For example, Carrico et al. demonstrated108 that
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M13 phage could be modified with both Alexa Fluor 488
and antibody fragments to epidermal growth factor receptor
(EGFR) or human epidermal growth factor receptor 2
(HER2) to target imaging of breast cancer cells for diag-
nostic applications (Fig. 11.1). In vitro studies demon-
strated the selective uptake of the targeted VLPs in cells
expressing EGFR or HER2 by flow cytometry as well as
localized fluorescence of the VLP conjugate in these cells
by confocal microscopy. This works provides a very strong
example of how targeted VLPs can be used in high-
resolution fluorescence imaging.

VLPs come in different shapes, sizes, and charges that can
be selected for and employed as a targeting function for the
imaging agent. For instance, positively charged VLPs
encourage cell uptake;69 larger VLPs are more likely to
accumulate in tumors due to the EPR effect,109 and elongated
VLPs avoid phagocytosis by macrophages.110 Bruckman
et al. utilized32 the elongated rod shape of the plant viral
nanoparticle, tobacco mosaic virus (TMV), to target vascular
cell adhesion molecule (VCAM)-1 for imaging of athero-
sclerosis. The elongated shape (300 ! 18 nm) of the VLP
enhances the ability of the nanoparticle to bind to the flat walls
of the arteries displaying VCAM-1.

As this technology matures, new chemistries are
demanded to increase the number of fluorophores and
conjugate handles for targeting ligands to help increase the
scope and utility of VLPs. For instance, recent work from
Chen et al. established105 a high-yielding method to con-
jugate a variety of dibromomaleimide handles to the di-
sulfide bonds that bridge the pores of the VLP Qb.
Disulfides are typically structurally vital to protein tertiary
structure, but Chen’s approach effectively retained the
covalent bond character. Furthermore, the resulting five-
membered ring that bridges the disulfide is itself fluores-
cent. The resulting dithiomaleimide cores are modestly
bright yellow fluorophores, which allow the conjugates to
be imaged in vitro (Fig. 11.2) while concurrently allowing
for additional functional handles or PEG chains.

In conclusion, the conjugation of fluorescent dyes to the
VLP capsid can improve the resolution of fluorescent im-
aging due to the high loading capabilities and monodisperse
display of the dye on the VLP. Similarly, the same charac-
teristics of the VLP capsid can be exploited to obtain high
contrast MRI. In the next section, wewill discuss some of the
advantages VLPs offer for MRI contrast agents.

11.2.1.1 Contrast agents

Contrast-enhanced MRI is an imaging technique that uses
contrast agents to greatly exacerbate the relaxation of water
molecules compared with their environment making them
appear either very bright (T1 contrast) or very dark (T2
contrast). Paramagnetic contrast agents, such as gadolinium
(Gd3þ) ions, are commonly used to increase contrast (T1)

by altering relaxation times.111 How well a given contrast
agent works is related to a number of physical phenomena,
one of which can be altered by simply attaching the small
molecule to something very large. Large macromolecules,
like VLPs, have slow rotational dynamics in solution
compared with small molecules.112e114 Quite generally,
though exceptions exist, there is an inverse relationship
between the rate of rotational dynamics (rotational corre-
lation time) and the relaxation rate (relaxivities) denoted as
rn n ¼ 1, 2 for T1 or T2 of a contrast agent. Consequently,
one way to improve the overall ability of a given small
molecule contrast agent is to stick it onto something very
big. One of the first examples of VLPs used to augment T1
contrast was done by Qazi et al., who attached an impres-
sive 1900 chelated Gd3þ ions to P22 to achieve high
relaxivity values, specifically r1,ionic ¼ 21.7 mM/s and
r1,particle ¼ 41,300 mM/s at 298 K, 0.65 T (28 MHz).56 This
improves the localization density of the contrast agents and
lowers the threshold detection limit of imaging agents used
in MRI.115

Additionally, the large size of VLPs can be harnessed to
slow the tumbling rate of contrast agents to improve MRI
resolution. Prasuhn et al. conjugated51 223 Gd(DOTA)
molecules to the exterior surface of CPMV and 153 to the
exterior surface of Qb. This resulted in a doubling of the
relaxivity of Gd as compared with the FDA-approved
Magnevist MRI contrast agent. The improved relaxivity
is attributed to the limited rotational movement and diffu-
sion associated with large VLPs. Similarly, Liepold et al.
utilized111 the large size of the 28 nm cowpea chlorotic
mottle virus (CCMV) to conjugate up to 360 Gd(DOTA) to
the exterior lysines on each capsid for a slowed tumbling
rate and improved r1 and r2 relaxivities as compared with
free gadolinium ions (Fig. 11.3).

Another method to improve the effectiveness of contrast
agents is to incur rigidity within the chelated Gd3þ. This
can be achieved by conjugating Gd(DOTA) to a functional
handle on a VLP. Bruckman et al. found33 that Gd(DOTA)
conjugated to the tyrosine residues on the surface of
TMV-improved relaxation threefold compared with free
Gd(DOTA) and twofold when conjugated to the glutamate
residues on the interior surface (Fig. 11.4). According to the
authors, conjugation to the tyrosine residues offered higher
rigidity compared with the more flexible carboxylic acids
from the glutamate residues, which correspondingly
enhanced the Gd(DOTA) relaxivity, though an alternative
explanation might also include the slower water diffusion
through the internal pore of TMV.

The multivalent functional handles on the VLP also
allow for the conjugation of a targeting ligand for locali-
zation of the contrast agents in a specified region of the
body. Hu et al. created116 a TMV bimodal imaging agent
that targeted prostate cancer cells. To do so, Cy7.5 and
Dy(DOTA) were conjugated to the interior glutamate
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FIGURE 11.1 The N-terminus of phages was conjugated to fluorophores. The phage-displayed antibodies targeted breast cancer cells by recognizing
epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2). It is shown in (A) that the phageefluorophore conjugate
was able to specifically recognize the EGFR and HER2 epitopes as determined by flow cytometry. It is shown in (B) that the phageefluorophore conjugate
targets breast cancer cells with the EGFR or HER2 for visualization by confocal microscopy. Reproduced with permission from Carrico ZM, Farkas ME,
Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB, N-Terminal labeling of filamentous phage to create cancer marker imaging agents.
ACS Nano 2012;6(8):6675e6680.

FIGURE 11.2 (A) Synthesis of Qbemaleimide conjugates with a variety of functional groups. (B) In vitro fluorescence imaging by confocal micro-
scopy of biologically relevant Qb conjugates. The yellow fluorescence is from the five-membered dithio-maleimide rings created in the bioconjugation
reaction. Reproduced with permission from Chen Z, Boyd SD, Calvo JS, Murray KW, Mejia GL, Benjamin CE, Welch RP, Winkler DD, Meloni G, D’Arcy
S, Gassensmith JJ. Fluorescent functionalization across quaternary structure in a virus-like particle. Bioconjug Chem 2017;28(9):2277e2283.
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FIGURE 11.3 The relaxivities of “free” gadolinium ions (GdCl3) are compared with gadolinium ions conjugated to the VLP cowpea chlorotic mottle
virus. (A) shows the attachment of Gd. The triangles represent the free Gd, and the squares represent the conjugated Gd. (B) shows the r1 values, and
(C) shows the r2 values. It is clear from both (B) and (C) that the conjugated gadolinium ions have higher relaxivities suggesting that the slowed tumbling
rate improves the efficacy of the contrast agent. Reproduced with permission from Liepold L, Anderson S, Willits D, Oltrogge L, Frank JA, Douglas T,
Young M. Viral capsids as MRI contrast agents. Magn Reson Med 2007;58(5):871e879.

FIGURE 11.4 Gd(DOTA) is attached to the exterior tyrosine residues to form (eGd-TMV) and interior glutamate residues to form (iGd-TMV). The
attachment sites are highlighted in (A). At 60 MHz, the slope of eGd-TMV shown in plot (B) gives an r1 value of 18.4 mM/s which is threefold higher
than free Gd(DOTA) (4.9 mM/s at 60 MHz). At 60 MHz, the slope of iGd-TMV shown in plot (C) gives an r1 value of 10.7 mM/s which is twofold higher
than free Gd(DOTA). These plots suggest incurred rigidity of the Gd(DOTA) after conjugation to the VLP with the highest rigidity and relaxation values
when conjugated to the exterior tyrosine residues. Reproduced with permission from Bruckman MA, Hern S, Jiang K, Flask CA, Yu X, Steinmetz NF.
Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J Mater Chem B 2013;1(10):1482e1490.
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residues of TMV for NIR imaging and MRI. PEG and
DGEA were conjugated to the tyrosines on the exterior
surface for a biocompatible probe that specifically images
prostate cancer.

Another bimodal imaging agent using TMV was
designed by Dharmarwardana et al. in which FITC was
conjugated76 to the exterior tyrosine residues for fluores-
cence imaging and TEMPO was conjugated to the interior
glutamates for MRI (Fig. 11.5). Uniquely, this MRI probe
is also a superoxide sensor as the organic radical contrast
agent, TEMPO, is reduced in in vitro and in vivo envi-
ronments into an MRI silent state, but upon oxidation by
superoxide, it functions as a “turn on” MRI sensor. This
allows the sensor to “turn on” in T1 and T2 weighted im-
aging. The reduced state is MRI inactive, showing up as
dark (T1) or light (T2), while the oxidized state is MRI
active. This sensor can be used to show areas of high
concentrations of superoxide, which exist in certain injury
states. In the following section, the use of VLPs in sensor
applications is discussed.

11.3 Virus-based sensors

Development of biological detection systems has received a
considerable amount of attention in the biomedical field
owing to its vital importance in clinical diagnosis and
treatment. However, many available biosensors such as
enzyme, cell-based, electrochemical, and color-based sen-
sors suffer from limited sensitivity, selectivity, reliability,

simplicity, and stability to detect and identify biological
targets with high levels of certainty.116e118 Accordingly,
there is a pressing need for the invention of advanced
biorecognition probes to overcome these challenges. VLPs
have been employed as a sensing platform, thanks to their
ease of synthetic and genetic modification to their coat
proteins, which can be used to enhance the binding affinity
for specific targets to solve selectivity and sensitivity
problems. Moreover, by strategically engineering or func-
tionalizing the multivalent surface of a viral capsid, these
particles are able to detect multiple analytes such as pro-
teins, DNA, virus, antibodies, etc. Because VLPs are
monodisperse, they allow the attachment of precise and
high amounts of target analytes to the capsid giving high
accuracy, rapid detection, and significant response to signal
amplification. In the following sections, we will review
some examples of different virus-based sensors.

11.3.1 Enzyme-based biosensors

An enzyme-based biosensor is an analytical tool that de-
tects changes in the enzymatic activity of a substrate.
Therefore, the presence of high amounts of enzyme as a
molecular recognition element can enhance response signal
toward the target molecule, resulting in a highly sensitive
sensor with a short detection time. Moreover, using highly
specific enzymes toward the desired target allows for
enhanced selectivity of the sensor. At present, there are
several examples of selective and sensitive enzyme

FIGURE 11.5 The virus-like particle tobacco mosaic virus (TMV) is shown to work as both an MRI contrast agent and a fluorescent probe. (A) TEMPO
is conjugated to the exterior surface of TMV and works as a contrast agent for MRI imaging (orange pentagon). FITC is conjugated to the interior surface
of the TMV and is used for fluorescent imaging (green star). Together the TMV conjugate can be used in both MRI (B) and fluorescence imaging
(C) applications. Reproduced with permission from Dharmarwardana M, Martins AF, Chen Z, Palacios PM, Nowak CM, Welch RP, Li S, Luzuriaga MA,
Bleris L, Pierce BS, Sherry AD, Gassensmith JJ. Nitroxyl modified tobacco mosaic virus as a Metal-free high-relaxivity MRI and EPR active superoxide
sensor. Mol Pharm 2018;15(8):2973e2983.
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biosensors, such as the glucose biosensor that generally
uses glucose oxidase (GO) to catalyze oxidation of b-D-
glucose.119 Although these sensors are selective, they suffer
from instability, high detection limits, and high production
costs.120 These limitations result from poorly absorbed
enzymes, environmental changes (pH and temperature),
low enzyme activity, and low signal detection.

To address these problems, there are several reports on
integration of available probes with VLPs.121e124 A recent
example is coupling,125 the enzyme modified TMV to a Pt
sensor chip for amperometric detection of glucose. For
this purpose, a streptavidin-conjugated glucose oxidase
([SA]-GOD) complex was immobilized on the surface of
biotinylated TMV through bioaffinity binding. The func-
tionalized TMV was loaded on the Pt electrode which
caused a significant increase in enzyme density on the
surface of the sensor chip. The result is higher glucose
signal, lower detection limit, and high enzyme activity.

Additionally, VLPs can be used as a specific sensing
platform for b-galactosidase. Nanduri et al. has shown that77

the filamentous bacteriophage 1G40 has high binding affinity
to galactosidase which can be used for sensitive and specific
detection of this enzyme. They immobilized IG40 on a gold
surface of SPR SPREETATM sensor chip and compared the
sensor performance with an F8-5 as a control phage
(nonspecific to b-gal). Their data showed a 10-fold enhance-
ment in detection response compared with control phage.

Additionally, the surface of VLPs exposes thousands of
identical binding sites that permit the attachment of a large
number of enzymes to the viral capsid in a spatially controlled
manner. Conjugated enzymes maintain their structure and
catalytic activity, both of which are required for a sensitive

enzyme-based probe. One example of the conjugation of en-
zymes to a VLP for the development of a probe was shown by
Poghossian et al. In this study, theydemonstrated124 the strong
immobilization of penicillinase enzyme on TMV via biotin
and streptavidinepenicillinase binding affinity. The modified
TMV was loaded on Al-p-Si-SiO2-Ta2O5 as an electrolyte
insulator semiconductor to build a highly sensitive and stable
biosensor (Fig. 11.6). The modified sensor is able to detect
penicillin concentrations in the range of 0.1e10 mM with a
50 mM lower detection limit.

VLPs have great potential for successful integration
with other sensors owing to their desirable properties such
as coupling biological elements like enzymes, high thermal
and chemical stability, and lack of toxicity. This will help
with the emergence of novel sensors with promoted per-
formance like the analyte detection over low concentration
range, high specificity, and stability.

In addition to use of VLPs in developing the enzyme-
based sensors, they can be applied as a color-based probes
and use different optical techniques (fluorescence spec-
trometry, UV/Vis, chemiluminescence) for biomolecular
interaction analysis and specific detection and identification
of a variety of biological analytes. In the following section,
we will show the examples of VLPs as a colorimetric sensor.

11.3.2 Colorimetric biosensors

Colorimetric biosensors produce human and machine-
readable color changes in response to biological analytes.
General drawbacks of these sensors tend to be poor selec-
tivity and relatively low sensitivity, which limit their clin-
ical applications; therefore, there is a need for new

FIGURE 11.6 Schematic structure of modified tobacco mosaic virus (TMV) and penicillin biosensor. TMV modified with biotin groups to conjugated
penicillinaseestreptavidin (SA-P). The sensor is built up by immobilization of functionalized TMV on a pH-sensitive Ta2O5 gate EIS. The probe can
detect hydrolysis of penicillin through monitoring the changes in hydrogen ion concentration (pH) near the surface of Ta2O5. The result is a change in the
surface charge of Ta2O5 gate and the depletion capacitance in the silicon, which leads to changes in the overall capacitance of the EIS biosensor.
Reproduced with permission Poghossian A, Jablonski M, Koch C, Bronder TS, Rolka D, Wege C, Schoning MJ. Field-effect biosensor using virus
particles as scaffolds for enzyme immobilization. Biosens Bioelectron 2018:110, 168e174.
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architectures to enhance sensitivity toward bioanalytes.
VLPs can be engineered chemically and genetically to
promote intrinsic affinity toward a specific analyte. For
example, Oh and coworkers introduced78 a selective and
stable colorimetric probe for the detection of different types
of antibiotics by using the self-assembly properties of a
genetically engineered nonlytic M13 VLP. In this study, an
M13 was functionalized with the WHW peptide to have
1000 copies of tryptophan (W) histidine (H) tryptophan
(W) sequences which can act as a receptor for antibiotics.
Target binding causes the quasi-ordered bundles of phage
matrices to swell or shrink, which induces a change in the
optical scattering properties on the chip surface following
interaction with different target antibiotics (Fig. 11.7). This
scattering of light results in an apparent color, even though
no chromophores are present.

For early disease diagnostics, there is critical need for
tools to sense and measure different biological molecules,
proteins, and biomarkers on cancerous cells. To date,

several colorimetric sensors such as enzyme-linked
immunosorbent assay (ELISA) and cell-based ELISA
(CELISA) have emerged for this purpose; however,
because of the limited number of attached enzymes and
high dissociation constant between antibody and antigen,
their detection limit is in the nanomolar range.126,127

Recently, VLPs have offered several improved colorimetric
sensing systems with higher response signals.128e131 For
example, Brasino et al. improved127 ELISA sensing per-
formance by dually decorating a filamentous bacteriophage
Fd with antibodies for specific antigen detection and
horseradish peroxidase to generate an amplified colori-
metric signal. In another work, Wang et al. successfully
designed131 a “CELISA” using a modified TMV to detect
folate receptors overexpressed on cancer cells. For this
purpose, the exterior surface of TMV was modified with
platinum nanoparticles as a peroxidase surrogate and folic
acid as a cancer cell targeting mechanism. When the
modified TMV binds to cancer cells that overexpress folic

FIGURE 11.7 Schematic illustration of colorimetric sensor composed of filamentous M13 modified with WHW peptide. (A) The self-assembly
properties of M13 has been used to make liquid crystalline thin films by the pulling technique. (B) The RGB signal intensity was changed in the
presence of different antibiotics at different temperatures owing to changes in the M13-based bundle nanostructure. (C) Principal component analysis
(PCA) was used to show discrimination ability of the sensor for different antibiotics (cephalosporin, penicillin, and rifampin). Modified with permission
from Moon JS, Park M, Kim WG, Kim C, Hwang J, Seol D, Kim CS, Sohn JR, Chung H, Oh JW, M-13 bacteriophage based structural color sensor for
detecting antibiotics. Sens Actuators B Chem 2017:240, 757e762.
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acid receptors, superoxide is supplemented to provide a
colorimetric indicator of which cells are cancerous.
Consequently, modification of VLPs has afforded a new
color biosensing system that could be used for biomedical
applications and diagnostics assays. Another example is an
M13 bacteriophageeDNA conjugated system that has been
developed130 by Domaille et al. for protein detection. In
this study, acyl hydrazone linkages were utilized for DNA
sequence incorporation, which led to a strong and detect-
able change in absorption signal (410 nm) on interaction
with IgG as a model protein. Thus, by using the phage as a
sensing platform, they created a rapid and extremely sen-
sitive tool for protein detection in the range of
0e1000 fmol.

11.3.3 Electrochemical biosensors

Electrochemical biosensors are involved in the generation
or consumption of electrons over an interaction between
biochemical receptors and an electrochemical transduction
element. Although these sensors are usually selective and
sensitive toward target biomolecules, they suffer from
narrow temperature ranges, limited half-life, and high
background signal. In recent decades, VLPs have received
much attention for their thermal stability and robustness.
Combining VLPs as a sensing receptor with analytical
methods such as electrochemical methods can be a reliable
way to simultaneously increase electrochemical sensor
performance and improve sensor stability. For instance,
Ghodssi and coworkers developed132 a novel electro-
chemical biosensor for schizophrenia analysis. In this
study, they modified the surface of electrode with TMV,
nickel, and gold following introduction of ssDNA

for Neuregulin-1 gene detection. The modified probe
showed a high surface area with strong current change on
DNA hybridization, which lead to an 8-fold increase
in signal and 9.5-fold enhancement in biosensing
performance.132

Coating VLPs on the surface of electrodes is a way to
increase the electrode surface area, thus allowing for a
higher electrochemical signal, decreased signal to noise
ratio, and greater sensitivity. For example, a new imped-
ance sensor was developed133 by Zang et al. that applied
FLAG-tagemodified TMV on an electrode surface by
capillary action and surface evaporation for label-free
antibody detection. Thus, owing to the high surface to
volume ratio of TMV nanotubes and several hundred
available binding sites on its surface, a high peptide density
could anchor to the electrode, which maximized antibody
detection (Fig. 11.8).129

Additionally, VLPs can be used as a sensing platform
for biomarker and cancer cell detection. One example is the
immobilization of a filamentous M13 phage on the surface
of a modified Si3N4 chip by reacting the N terminal domain
of the phage coat protein with an aldehyde group on the
chip surface to make a light addressable potentiometric
sensor (LAPS). Jia et al. showed134 the sensor is able to
detect human phosphatase of regenerating liver-3(hPRL-3)
at concentrations of 0.04e400 nM and mammary adeno-
carcinoma cell (MDAMB231) at concentrations of
0e105 cells/mL through specific binding to the phage,
which had been evolved via phage display, and subsequent
change of the output voltage of LAPS. Therefore, integra-
tion of bionanoreceptors with conventional electrochemical
methods can be an effective strategy for improving sensor
performance.

FIGURE 11.8 A) Three-dimensional schematic of modified tobacco mosaic virus (TMV) expressing cysteine residues and receptor peptide FLAG-tag.
(B) Surface functionalization of TMV-FLAG. (C) Antibody detection in the sensor system. Reproduced with permission from Zang F, Gerasopoulos K,
Brown AD, Culver JN, Ghodssi R. Capillary Microfluidics-Assembled virus-like particle bionanoreceptor Interfaces for label-free biosensing. ACS Appl
Mater Interfaces 2017;9(10):8471e8479.
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VLPs can act as a key component in different bio-
sensing systems. Their potential for incorporation with
different nanomaterials and analytical methods give many
opportunities for scientists to expand this area of research
and progress biomedical and particularly diagnostic appli-
cations. One approach is drug delivery by stimuli respon-
sive VLPs which can show high efficacy and specificity for
cargo delivery in the targeted location on sensing a
particular stimulus.135 In the following section, we will
discuss this application of VLPs.131

11.4 VLPs as drug delivery vehicles

Effective drug delivery requires that the desired cargo passes
several transport barriers from the site of introduction into
the patient until it has reached its intended destination while
avoiding off-target effects. Unfortunately, there are many
barriers to successful delivery. The reticuloendothelial sys-
tem hampers dosage efficacy especially if the materials have
long circulation times which subsequently leads to faster
clearance from the body. Additionally, cellularly targeted
drugs need to permeate the membrane and avoid or survive
endosomal trafficking before it releases its cargo.136 Several
nanoscale platforms are being investigated for drug delivery
as nanoparticle based therapeutics as a result of their small
size137 and favorable pharmacokinetics,7,138 which offer
solutions to many of the problems associated with conven-
tional drug administration. Despite growing interest in their
use and development, the number of FDA approved nano-
particle drugs is limited, and more than half of the formu-
lations currently undergoing trial are liposomal.139 These
systems have been shown to suffer from rapid and dose-
dependent clearance from the body140e144 and conflicting
results on the efficacy of attaching targeting ligands.145,146

VLPs, on the other hand, are capable of accomplishing this
task by carrying a diverse set of therapeutic cargos ranging
from nucleic acids,130,147e151 genes,152,153 aptamers,154,155

therapeutic drugs,156e162 larger proteins,163,164 to den-
drimers,165,166 while still being amenable to further
functionalizationdsome have even been cleared for use by
the FDA.75 This paves a path for drug delivery to make
further advancements through the utilization of a robust and
tunable carrier to circumvent the issues plaguing current
delivery methods.

11.4.1 Cargo loading

As discussed in previous sections, VLP geometries can play
an important role in targeting and cell specificity. Because
the shape of nanoparticles is known to alter their pharma-
cokinetics, the VLP geometry makes for a uniquely tunable
parameter for drug delivery. For instance, small icosahedral
nanoparticles diffuse well into tissues but have smaller
cargo capacities while their larger, filamentous counterparts

are better suited for aligning with vessel walls, though they
do not infiltrate cells as well. Fortunately, many viral cap-
sids can be modified to create a more suitably sized or
shaped carrier. For example, rodlike VLPs such as TMV
and M13, which use their RNA to self-assemble, can be
tuned to specific sizes by adjusting the length of their RNA.
Icosahedral viruses, CCMV in particular, has been shown to
exhibit an increase in capsid size from 27 to 30 nm linearly
as the pH is varied from 5 to 7.167,168 Asensio et al. has gone
one step further and shown169 that a single amino acid
changedS37Pdchanges the assembly of MS2 capsid
proteins from 27 nm capsid with T ¼ 3 symmetry to a much
a smaller 17 nm capsid with T ¼ 1 symmetry. Further
investigation on the effects of drug loading was performed
by Cadena et al. to elucidate170 the effects of increasing
cargo size on the formation of icosahedral VLPs. They have
found that varying lengths of RNA from 140 to 12,000 nt
can be completely encapsulated while causing a change in
capsid size. For shorter strands, the RNA is packaged into
24 and 26 nm capsids, while a single stand of RNA greater
that 4500 nt is packaged by two or more 26e30 nm capsids
showing that just changing the length of the structural RNA,
various lengths, and sizes of VLPs can be achieved to
predetermine the cargo capacity for delivery applications.
Utilizing VLPs allows for increased and precise drug
loading, which remediates issues with low and inaccurate
dosing. Rurup et al. have demonstrated171 a method of
predicting the loading of VLPs using teal fluorescent pro-
teins (TFPs) and CCMV where more than 10 3 nm TFPs
can be loaded inside of the 18 nm cavity of the viral capsid
(Fig. 11.9). Through the use of homo-FRET, they have
determined that tethering the TLPs to the capsid proteins
yields more predictive and controlled loading behavior
increasing the number of fluorescent proteins from 6din the
coiled coil systemdto 20 dimeric units when directly bound
to the CPs. This information lays some of the ground work
for further progress in the use of VLPs as a drug carrier.

11.4.2 Drug delivery

Encapsulating therapeutics within a nanoparticle offers
protection from rapid clearance from the body and the
harsh cellular environments that would normally degrade
free small molecules before reaching their target destina-
tion. The ease of functionalization of VLPs allows for the
design of smarter drug delivery vehicles including stimuli
responsive release. For example, work by Chen et al.
utilizes91 VLP Qb, first functionalized with an azide linker
on the surface exposed to NH2, handles via EDC coupling
followed by a CUAAC reaction to attach the photo-
cleavable Dox group. The as-synthesized VLP encoun-
tered solubility issues so to remedy this, they further
functionalized the surface by adding a second functional
groupdPEG 1K or 2K through dibromomaleimide
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chemistry. The final VLP is a soluble, low toxicity carrier
that shows cytotoxicity on stimulation with UV light
which cleaves the linker, activating Dox release in the
cells. The Steinmetz group has also done160 extensive
work showing that the conjugation of molecules such as
Dox can be attached and successfully delivered to cells.
They have made use of the VNP CPMV decorated with
covalently bound Dox on the exterior surface demon-
strating that the functionalized particle in low doses is
more cytotoxic than free Doxorubicin and exhibits a time-
delayed release. This work has also determined that the
CPMV-Dox particles get trafficked to endosomal com-
partments, as seen in Fig. 11.10 in HeLa cells, where the
proteinaceous carrier is degraded, and the drug molecules
are released into the cellular environment.

11.4.3 Targeting

The addition of a targeting functionality offers several ad-
vantages over nontargeted drugs. Mainly they consist of

reducing the side effects associated with damage to healthy
tissues and enhancement of uptake into afflicted cells.
Targeting can be approached in either a passive or active
manner depending on the nature of the particle in use and
the functionalities incorporated into its design. Passive
targeting includes (1) the EPR effect, (2) approaches
relying on the tumor microenvironment, and (3) intra-
tumoral delivery.89 The EPR effect is a phenomenon where
increased permeability of the tumor vasculature is com-
bined with poor lymphatic drainage, which makes it diffi-
cult for high molecular weight carriers to be removed from
the tumor environment. EPR coupled with release based on
the tumor microenvironment or an external stimulus offers
some solution to healthy tissue damage and has been
demonstrated across nanomedicine to be effective.79

Many of these functionalities are applicable to VLPs
that can be further modified to increase targeting speci-
ficity. Active targeting of a drug delivery system allows for
the preferential accumulation into specific cells that can be
selected for by a variety of tumor markers, such as small

FIGURE 11.9 (A) Schematic representation of the different design principles described in this work for the rational loading of CCMV. The first
approach utilizes leucine zipper like E-coils tethered to monomeric TFP (mTFP) or dimeric TFP (dTFP), which form electrostatic interactions at pH 7.5
with the complementary K-coil tethered to CCMV. The formed complex is referred to as TECK and dTECK, respectively. The second approach utilizes a
genetically engineered TFP peptide linker-CCMV fusion protein, when complexed, referred to as HTC. In all cases, lowering the pH to 5.0 promotes the
encapsulation of TFP cargo inside CCMV. (B) Typical capsid TFP loading as a function of percentage of complex (TECK, dTECK, or HTC) in assembly.
(C) Schematic explaining how homo-FRET works. Reproduced with permission from Rurup WF, Verbij F, Koay MST, Blum C, Subramaniam V,
Cornelissen JJLM. Predicting the loading of virus-like particles with fluorescent proteins. Biomacromolecules 2014;15(2):558e563.
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peptides and antigens as well as cell surface receptors45 and
biomarkers. These moieties have been used throughout the
literature to up the chances of delivery to maligned
cellsdsparing the healthy ones. In an effort to increase
specificity in delivery, targeting molecules have been
employed such as folic acid or small peptides like cyclic
RGD. For instance, Stephanopoulos et al. has con-
structed172 an MS2 capsid where they have attached
aptamers specific to Jurkat leukemia T cells onto engi-
neered p-aminophenylalanine (paF) groups followed by the
conjugation of porphyrins on onto the interior cysteines that
generate reactive oxygen when irradiated with blue light
(Fig. 11.11). Approximately 20 aptamers were attached per
capsid increasing the targeting specificity of the VLP. This

dual-modal delivery system was shown to localize only in
the Jurkat cells when cocultured with other cells and suc-
cessfully and selectively initiated apoptosis through pho-
toredox ROS generation.

11.5 Vaccines

Vaccines are continually used as a method of disease
treatment and prevention since their inception by making
use of inactivated native viral proteins to bolster our im-
mune systems against foreign bodies. VLPsdlacking their
viral genomedproduce similar immune responses to those
of native, infectious diseases. The highly organized struc-
ture of the VLP surface presents several repeating amino

FIGURE 11.10 (A) Imaging of CPMV-DOX
in HeLa 3 h postincubation. CPMV is shown in
red, nuclei are shown in blue, and DIC overlay is
shown in gray. (B) Time course study showing
cellular uptake of CPMV using confocal scan-
ning microscopy; CPMV was immunostained
(pseudocolored in green). Endolysosomes pseu-
docolored in red. Nuclei are shown in blue. Scale
bar is 50 mm. (C) Colocalization analysis (white)
of CPMV and Lamp-1 staining. Scale bars are
50 mm. Reproduced with permission from Alja-
bali AA, Shukla S, Lomonossoff GP, Steinmetz
NF, Evans DJ. CPMV-DOX delivers. Mol Pharm
2013;10(1):3e10.
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acid sequences which can cross-link B-cell receptors
which, in turn, quickens the activation of antibody re-
sponses.93 In addition, the encapsulated genome itself is
capable of activating toll-like receptors and further eliciting
an immune response with the added benefit of including a
customized genetic cargo. Several VLP-based vaccines,
such as human papilloma virus (HPV) and hepatitis B, are
already on the market, but many more are under develop-
ment.173 The Bachmann group has conducted extensive
work utilizing the Qb VLP to study its immunogenicity
showing that the particle alone can transport a therapeutic
while behaving as an adjuvant all in one by developing
vaccines for influenza,174 respiratory allergies,175 and
smoking cessation,176 reporting as much as 100% antibody
response to the injection in clinical trials. They have even
gone one step further as to show the efficacy of modifying
the surface of the VLP Qb with Fel d1 (Fig. 11.12), a cat
allergen to induce a protective immune response without
the additional threat of inducing anaphylaxis in mice.94 In
this study, to determine whether QbeFel d1 inhibited mast
cell degeneration (which signals immune-stimulated
destruction of invasive materials) in an antigen specific
manner, BALB/c mice were vaccinated subcutaneously
with Qb or QbeFel d1. When challenged 2 weeks later,
mice treated with QbeFel d1 hardly showed an immune

response after inoculation of free Fel d1 indicating suc-
cessful immune memory without adverse effects. This is an
important step forward in the medical field as they have
shown that VLP-based vaccines may be used as a safe,
effective, and customizable method to produce vaccines.

Virus-based vaccines share some of the same problems
encountered with any vaccine. Even with efficient immune
responses, they rely on the longevity of the host response. In
addition, use of VLPs has shown more promise than many
other subunit vaccines because they are conformationally
the most similar to the native virus yet are safer as they lack
genetic material and thus cannot reproduce. The use of other
virus-based particles such as HPV and influenza virus has
sparked an interest in the further development of VLPs
particularly in increasing the efficacy in these particles.

11.6 Conclusion

VLPs offer many advantages to biological applications. In
this chapter, we have discussed some of the important
characteristics of VLPs that can be harnessed to advance
biomedical fields such as imaging, sensing, and drug de-
livery. There are still some issues in using VLPs in
biomedical applications, in particular they are immunogenic,
which means repeated exposure will change the

FIGURE 11.11 Construction of a multivalent cell-targeted photodynamic therapy vehicle using recombinant bacteriophage MS2. Cysteine residues on
the capsid interior were modified using porphyrin maleimide 1 (rendered in purple), enabling the generation of singlet oxygen on illumination at 415 nm.
Exterior p-aminophenylalanine (paF) residues were coupled to phenylene diamineemodified DNA aptamers to bind tyrosine kinase 7 receptors.
Reproduced with permission from Stephanopoulos N, Tong, GJ, Hsiao SC, Francis MB. Dual-surface modified virus capsids for targeted delivery of
photodynamic agents to cancer cells. ACS Nano 2010;4(10):6014e6020.
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pharmacokinetics in individual patients. This drawback is
not unique to VLPs and is an issue for polymers as
well.177,178 In context of cost, they will be more expensive
than synthetic nanomaterials, though they are expressed in
Escherichia coli in high yields, which would make their
eventual scale up in a process setting relatively practical. In
imaging applications, the large size of VLPs is helpful in
attaching a substantial amount of dye or contrast agent, and
monodisperse subunits reduce self-quenching for high-
resolution imaging. The functionalizability of VLPs owed
to their multivalent subunits can also be used to increase
bioprobe sensitivity while maintaining stability of the con-
jugate. Lastly, the biocompatibility and encapsulating ability
of VLPs for drug delivery helps encourage the accumulation
of drugs in a specified region with reduced clearance.
Because VLPs are relatively new nanocarriers, the extent of
the benefits they offer for biomedical applications has yet to
be realized.
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