NSF Grant for ML Modeling
Apr 20, 2024 | News
Laboratory measurements will accurately describe surface skin friction drag, but they fall short when it comes to pressure forces. The digital twin model will augment the experimental setup by providing pressure forces. This integrated approach will provide unique insight into wave-induced modulations of the total wind stress (sum of tangential and pressure stresses at the air-water interface) under a range of wind-wave conditions. A data-driven sea-state-dependent surface flux parameterization will be developed by examining these modulations, leveraging recent advancements in machine learning technology. The model will be tailored for large-eddy simulations of wind over ocean wavefields in strongly forced conditions. This approach is expected to significantly advance the fundamental understanding of air-sea fluxes and improve parameterizations of wind stress over the ocean.
Read more at National Science Foundation.