

A Perceptual Space for Describing Human Bodies

Female Bodies: Axes 1 & 2

Component 1: 38.41%

Male Bodies: Axes 1 & 2

Matthew Q. Hill, Carina A. Hahn, Alice J. O'Toole

ales

fe

The University of Texas at Dallas

Problem

• people commonly describe bodies using descriptors (e.g. skinny, curvy, heavyset, stocky, fit, muscular, built, petite) – Can descriptions be used to reverse engineer a representational space to describe body similarities?

Goals

- create multidimensional representation of human body shapes based on perceptual
- map shape variation across individual bodies using body feature descriptors
- represent both bodies and body descriptor terms in a common multidimensional space

Long Term Goals

- relate perceptual body spaces to physical body spaces (e.g., from laser scans of bodies, Freifeld & Black, 2012)
- map body descriptions onto perceptual and physical body spaces

Background

- Adaptation and Norm-based Coding Studies of Body Perception
- identity aftereffects within two bodies (Rhodes, Jeffery, Boeing, & Calder, 2013)
- weight & gender adaptation invariant for viewpoint and pose
- virtual bodies from space of 2000 laser scans (Sekunova, et al., 2013) • silhouettes of bodies yield gender adaptation aftereffects (Palumbo, Laeng, & Tommasi, 2013)
- rectangle width adaptation does not explain weight adaptation (Hummel, et al., 2012)

Approach

- participants rate the applicability of body descriptor terms to a large number of bodies • correspondence analysis (Greenacre, 2010) separately to male and female body descriptions
- shared perceptual body and feature descriptor space: male and female bodies
- enables visualization of feature terms and bodies in common space

Method

60 undergraduate students (30 male)

- 224 identities: 164 female, 60 male (O'Toole,
- Harms, Snow, Hurst, Pappas, & Abdi, 2005) 2 images per identity: one standing, one
- walking (448 images total) blurred to obscure facial identity

Procedure

- each participant rated 75 identities on 27
- feature descriptors
- total 2,025 judgments

Body Feature Descriptors

body size terms

big, small, short, tall, heavyset, stocky, skinny, petite

global shape terms

round (apple), rectangular, long, pear-shaped, curvy

fitness terms

• lean, fit, muscular, built, sturdy

local feature terms

• long legs, short legs, long torso, short torso, broad shoulders

averageness terms

average, proportioned

masculine, feminine

Correspondence Analysis

- multivariate technique similar to principal component analysis
- used for categorical rather than continuous variables
- visualization of cross-tabular

Rating scale

simultaneous visualization of

observations and variables

Feature Term Pilot Study

Method

12 undergraduate students (6 female)

Procedure

each participant gave open ended ratings of bodies used in main experiment

Feature selection

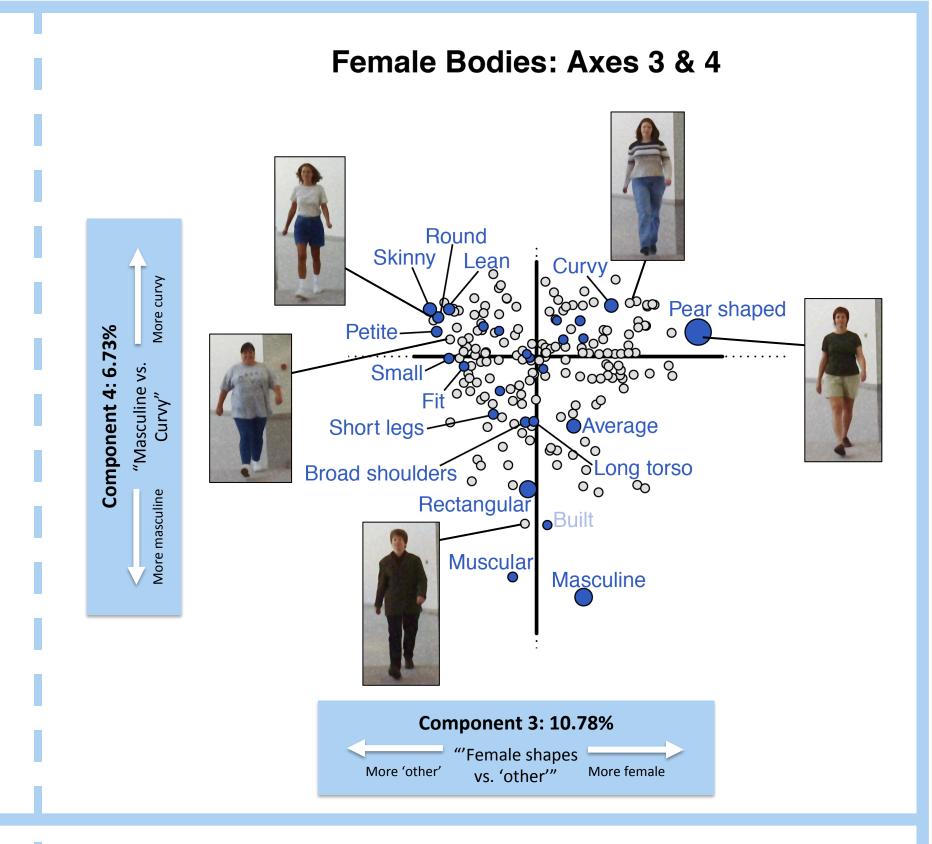
Exploratory Analysis

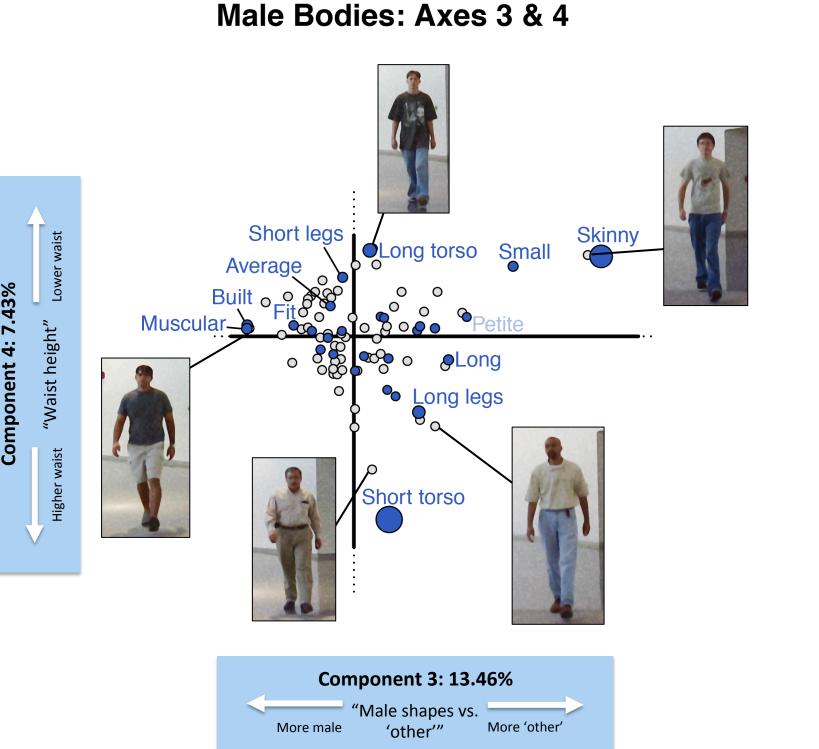
- . does not apply applies somewhat
- size, global shape, fitness, local feature, averageness, gender applies perfectly
 - descriptor terms chosen based on: frequency of use within each category

Results

Interpretation

Axis	Female		Male
1	weight	←→	weight
2	height	\longleftrightarrow	height
3	female shapes vs. "other"	←→	male shapes vs. "other"
4	masculine vs. curvy	X . X	waist height
5	waist height		toned vs. average

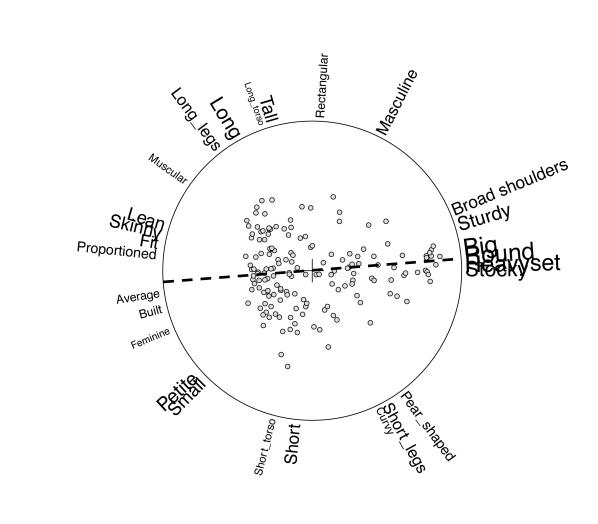

Contributing descriptor terms


Female Bodies: Axes 1-4				
	AXIS			
big, heavyset, round (apple), stocky	axis 1	skinny, lean, proportioned		
short, short legs, small, petite, pear-shaped	axis 2	tall, long, long legs		
skinny, round (apple), lean, petite, small, fit	axis 3	pear-shaped, curvy		
masculine, rectangular, average, broad shoulders, muscular, long torso, short legs	axis 4	curvy		
long torso, pear-shaped, short legs	axis 5	short torso, long legs		

Male Bodies: Axes 1-4				
	AXIS			
heavyset, round (apple), big, stocky	axis 1	skinny, lean, fit		
short, average, short legs, small, feminine, short torso	axis 2	tall, big, fit, muscular		
skinny, long, small, long legs	axis 3	muscular, built, fit		
long torso, short legs, skinny, average	axis 4	short torso, long legs		
fit, muscular, small, built, lean, skinny, short torso	axis 5	average, tall, long		

eminine Small <u>e</u> σ **Component 1: 31.88%**

"Weight" More heavy



Conclusions

- possible to reverse engineer a body similarity space from body feature descriptors
- resulting spaces interpretable in the context of the feature terms
- common and gender-specific components for male and female body spaces
- space can be applied to generate similarity measures from verbal descriptions of bodies
- rating data can be used to generate verbal descriptions when physical measurements are known

Future

- test perceptual validity of body space using adaptation paradigm
- use space to find real "opposite" bodies (in progress)

References

Freifeld, O., & Black, M. J. (2012). Lie bodies: a manifold representation of 3D human shape. In Computer Vision–ECCV 2012 (pp. 1-14). Springer Berlin Heidelberg.

Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational

Hummel, D., Grabhorn, R., & Mohr, H. M. (2012). Body-shape adaptation cannot be explained by adaptation to narrow and wide rectangles. Perception, 41(11), 1315-1322.

O'Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R. & Abdi, H. (2005). A video database of moving faces and people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 812-816.

Palumbo, R., Laeng, B., & Tommasi, L. (2013). Gender-specific aftereffects following adaptation to silhouettes of human bodies. Visual Cognition, 21(1), 1-12.

Rhodes, G., Jeffery, L., Boeing, A., & Calder, A. J. (2013). Visual coding of human bodies: Perceptual aftereffects reveal norm-based, opponent coding of body identity. Journal Of Experimental Psychology: Human Perception And Performance, 39(2), 313-317.

Sekunova, A., Black, M., Parkinson, L., & Barton, J. S. (2013). Viewpoint and pose in body-form adaptation. *Perception, 42*(2), 176-186.