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Abstract—Face recognition algorithms based on deep convo-
lutional neural networks (DCNNs) have made progress on the
task of recognizing faces in unconstrained viewing conditions.
These networks operate with compact feature-based face repre-
sentations derived from learning a very large number of face
images. Although the learned feature sets produced by DCNNs
can be highly robust to changes in viewpoint, illumination, and
appearance, little is known about the nature of the face code
that emerges at the top level of these networks. We analyzed
the DCNN features produced by two recent face recognition
algorithms. In the first set of experiments, we used the top-level
features from the DCNNs as input into linear classifiers aimed at
predicting metadata about the images. The results showed that
the DCNN features contained surprisingly accurate information
about the yaw and pitch of a face, and about whether the input
face came from a still image or a video frame. In the second set of
experiments, we measured the extent to which individual DCNN
features operated in a view-dependent or view-invariant manner
for different identities. We found that view-dependent coding was
a characteristic of the identities rather than the DCNN features–
with some identities coded consistently in a view-dependent way
and others in a view-independent way. In our third analysis, we
visualized the DCNN feature space for 24,000+ images of 500
identities. Images in the center of the space were uniformly of
low quality (e.g., extreme views, face occlusion, poor contrast, low
resolution). Image quality increased monotonically as a function
of distance from the origin. This result suggests that image
quality information is available in the DCNN features, such that
consistently average feature values reflect coding failures that
reliably indicate poor or unusable images. Combined, the results
offer insight into the coding mechanisms that support robust
representation of faces in DCNNs.

I. INTRODUCTION

Face recognition algorithms based on convolutional neural

networks and deep learning show considerable robustness to

changes in imaging parameters (e.g., pose, illumination, and

resolution) and facial appearance (e.g., expression, eyewear).

This robustness accounts for the impressive gains made by

CNNs on the problem of unconstrained face recognition [1],

[2], [3], [4], [5], [6]. Performance on datasets such as LFW

[7], [8], IJB-A [9], [10], and Mega-Face [11] offer evidence

that face recognition by machines can, in some cases, approach

human performance [1]. Indeed, human recognition of familiar

faces (e.g., friends, family) operates in highly unconstrained

environments and over changes in appearance and age that

can span decades. This kind of performance remains a goal of

automated face recognition systems.

Although humans remain a proof-of-principle that highly

invariant face recognition is possible, the underlying nature of

the face representation that supports invariance in humans is

poorly understood. The nature of the representation captured in

DCNN features is similarly elusive. The goal of this paper is

to characterize the features that emerge in a DCNN trained

for face recognition so as to better understand why they

are robust to yaw, pitch, and media type (still image or

video frame). The approach we take is to first examine the

extent to which the “robust” feature sets that emerge in a

CNN retain information about the original images. As we

will see, DCNNs that show considerable robustness to pose

and media type retain detailed information about the images

they encode, even at the deepest and most compact level of

the network. Second, we explore the view-dependency and

media-dependency characteristics of DCNN features. Third,

we examine cues within the structure of a DCNN feature space

that can provide information pertaining directly to an image’s

quality.

II. BACKGROUND AND PROBLEM

The problem of image-invariant face perception has been

studied for decades in both computer vision [12] and psy-

chology. Traditionally, two classes of models have been con-

sidered: a.) representations that capture 3D facial structure

and b.) representations based on collections of 2D, image-

based views of faces. The former can enable specification of

appearance across arbitrary affine and non-affine transforma-

tions. The latter can show invariance in any given instance

via interpolation to image representations taken in conditions

similar to that of the probe image. Notably, this requires “ex-

perience” with enough diverse views to be successful across

a range of possible probes. Active appearance models [13]

comprise an intermediary class, which relies on class-based

knowledge of faces, including 3D structure and reflectance-

map information for many examples. Although these models

can achieve impressive performance in computer graphics

representations made from single images, they are not practical

for face recognition as they are computationally intense and

require high quality, 3D data on diverse classes of faces.

The recent gains made in face recognition can be tied both

to the computational power of DCNNs and to the quality and

quantity of the training data now available from web-scraping.

In theory, the goal of a DCNN is to develop an invariant

representation of an individual’s face through exposure to

a wide variety of images showing that person in different

settings, with different poses, and in images that vary in

quality. Given enough data, it is expected that the network will

be able to learn a representation of an individual that does

not rely on these non-static, image-level attributes. Instead,
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the intent is that the learned features represent the invariant

information in a face that makes the face unique.

The fact that DCNNs support robust recognition across

image transformation does not preclude the possibility that

the features used to code faces in these networks also retain

information about the image properties. Rather, DCNNs may

succeed across appearance-related and image-related variation

by incorporating both identity and image parameters into the

face codes. This code may support the separation of image

and identity for identity verification. This separation may

ultimately be achieved at a post-DCNN stage via another type

of classifier that operates on image or person representations

extracted from the deepest, most compact layer of the DCNN.

The motivation for the present work came from visualizing

the way single identities cluster in a low-dimensional space

derived from the top-level features produced by two recent

DCNNs [9], [10]. These DCNNs were developed to work

on the JANUS CS2 dataset, an expanded version of the

IJB-A dataset [14]. We describe the architecture of the two

DCNNs in detail in the methods section. For present purposes,

this visualization was done by first applying t-Distributed

Stochastic Neighbor Embedding (t-SNE) [15] to the top level

features of each network to produce a flattened, 2-dimensional

space. t-SNE is a dimensionality reduction technique that

uses stochastic probability methods to preserve the high-

dimensional Euclidean distances between data points while

embedding them in a low-dimensional space. We then used

the 2-dimensional t-SNE output for each image as a pair of

coordinates, allowing us to plot each image on a 2-dimensional

map such that every image was surrounded by its nearest

neighbors from the learned feature face. We visualized single

identities that had large numbers of images available in the

Janus CS2 dataset. Figure 1 shows the t-SNE space for the top

level features of 140 CS2 images of Vladimir Putin, extracted

from the two DCNNs. Both plots exhibit roughly separable

clusters of profile and frontal images of the subject. The blue

curves were hand-drawn onto the visualizations to indicate the

position of an approximate border.

The clustering patterns seen in Figure 1 suggest that the

top-level features produced by both of these DCNN net-

works preserve salient, view-related information captured in

the original image, while still clustering by identity. More

generally, this suggests that DCNNs contain a deeper-than-

expected representation of the original image in their top-level

features. See [16] for a similar finding in a DCNN for object

recognition. Notably, the clustered images of Putin still varied

substantially in other appearance- and image-based attributes

(e.g., age, illumination).

In what follows, we quantify the clustering behavior of

image-based attributes in these two DCNNs. This paper is

organized as follows. In Section III, we present the networks

and the datasets analyzed. In Section IV we use the top-level

features of the DCNNs as input into linear classifiers aimed at

predicting metadata about the images including yaw, pitch, and

media type (still image or video). In Section V, we analyze the

extent to which top-level features operate invariantly across

Fig. 1. These figures show the t-SNE visualization of the top level DCNN
features for 140 images of Vladimir Putin from the Janus CS2 dataset. The
visualizations are based on the 320 top-level DCNN features from Network
A [9] (top) and the 512 top-level DCNN features from Network B [10].

viewpoint and media type. In Section VI, we examine the

top-level feature space’s organization in the context of image

quality.

The contributions of this study are as follows. We show

that:

• Image quality can be “read out” from the top-level fea-

tures. This readout can be used to eliminate or attenuate

the contributions of low quality image data.

• Individual identities are coded either robustly across

viewpoint (invariantly) or with feature dissociations for

different viewpoints (variantly). These different types of

codes can be detected from the top-level features and be

used to predict network accuracy on an individual item

basis.

• Image properties such as yaw and pitch are available

“for free’ from a network trained for identity. No special

training is necessary. These attributes can be obtained

from an image’s top-level feature descriptor.

• In scientific terms, the nature of the representation that
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TABLE I
NETWORK A

Name Filter Size/Stride Output Parameters
conv11 3x3x1/1 100x100x32 .28K
conv12 3x3x32/1 100x100x64 18K
pool1 2x2/2 50x50x64

conv21 3x3x64/1 50x50x64 36K
conv22 3x3x64/1 50x50x128 72K
pool2 2x2/2 25x25x128

conv31 3x3x128/1 25x25x96 108K
conv32 3x3x96/1 25x25x192 162K
pool3 2x2/2 13x13x192

conv41 3x3x192/1 13x13x128 216K
conv42 3x3x128/1 13x13x256 288K
pool4 2x2/2 7x7x256

conv51 3x3x256/1 7x7x160 360K
conv52 3x3x160/1 7x7x320 450K
pool5 7x7/1 1x1x320

dropout (40%) 1x1x320
fc6 10548 3296K

softmax cost 10548
total 5006K

emerges in DCNNs is inconsistent with the assumption

that DCNNs eliminate information about the image to

directly code identity.

III. GENERAL METHODS

A. Description of DCNN’s

We analyzed the feature-space produced by two DCNNs

(Network A, [9]; Network B, [10]) using the JANUS CS2

dataset. Both networks approach the problem by constructing

a feature-based representation of all input images using a

DCNN. For present purposes, we discuss only the training

of these two networks since our analysis focuses only on the

top-level features produced by either network. Full details on

these networks are available elsewhere.

The base architectures of the DCNNs appear in Tables I

and II. In both networks, parametric ReLU (PReLU) were

used as the activation function. In Network A, a learned

feature space was developed from scratch and produced a 320-

dimensional feature vector for each input image. The second

network (Network B) builds upon the AlexNet model [17] and

assigns each input image a 512-dimensional feature vector. At

its lower levels, Network B initially assigns weights based on

the values generated by AlexNet and then trains its higher

layers using the CASIA-Webface database. Network A also

uses CASIA-Webface for training and does so for all layers

in the network.

B. CS2 Dataset

The images used for the analyses discussed in this paper

were sourced from the JANUS CS2 dataset. This dataset

includes approximately 25,800 images of 500 subjects. CS2 is

an expanded version of the IARPA Janus Benchmark A (IJB-

A) [14], a publicly available “media in the wild” dataset. Some

key features of the IJB-A dataset include: full pose variation, a

mix of images and videos, and a wider demographic variation

of subjects than is available in the LFW dataset. The dataset

TABLE II
NETWORK B

Layer Kernel Size/Stride Parameters
conv1 11 x 11/4 35K
pool1 3 x 3/2
conv2 5 x 5/2 614K
pool1 3 x 3/2
conv3 3 x 3/2 885K
conv4 3 x 3/2 1.3M
conv5 3 x 3/1 2.3M
conv6 3 x 3/1 2.3M
conv7 3 x 3/1 2.3M
pool7 6 x 6/2

fc6 1024 18.8M
fc7 512 524K
fc8 10548 10.8M

Softmax Loss Total 39.8M

was developed using 1,501,267 crowd sourced annotations.

Baseline accuracies for both face detection and face recogni-

tion from commercial and open source algorithms are available

in [14].

The original IJB-A dataset included metadata from crowd-

sourcing. Here we used metadata provided by the Hyperface

system described in [18]. The Hyperface system provides key-

point locations to aid in face detection, as well as estimated

measurements of face pose (yaw, pitch, and roll).

Of the 25,800 items in the CS2 dataset, we omitted 1,298

items from our analysis. This was due to either Network A’s

or Network B’s inability to compute features for one of these

images, or Hyperface’s inability to compute the pose of the

subject within an image. This left us with 24,502 items that

could be considered when training classifiers to predict each

metadata attribute of interest.

IV. PREDICTING IMAGE-RELATED METADATA FROM THE

DCNN FEATURES

For each experiment described in this section we used a

bootstrap method to predict different image-related metadata

attributes from the top-level features produced by Network

A and Network B. Predictions were computed using a linear

discriminant analysis (LDA) classifier. We performed 20 itera-

tions of the bootstrap test for each metadata attribute. For each

iteration, we randomly selected 18,000 image descriptors to

use as training data. We tested the classifier on the remaining

6,502 items. The reported results display the average accuracy

of the classifier across the 20 bootstrap iterations.

A. Predicting Yaw

The yaw values provided by the Hyperface system for the

CS2 dataset describe the yaw angle of the face in an image.

Yaw values are measured in degrees and can vary from -90

(left profile) to +90 (right profile). A yaw value of 0 indicates

a frontal pose. Both Network A and Network B employ pre-

processing steps to produce a mirrored version of all left-

facing images, so that the range of yaw scores is limited to

include only positive values. Therefore, we used the absolute

value of the yaw scores provided by Hyperface as output
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TABLE III
YAW AND PITCH PREDICATION ACCURACY

Network Yaw Pitch
A +/-8.06 degs. (sd. 0.078) 77.0% correct
B +/-8.59 degs. (sd. 0.071) 71.5% correct

for the classifier. In each bootstrap iteration, a classifier was

trained to predict the Hyperface yaw values from the DCNN

features. Prediction accuracies for both Networks A and B

appear in Table III and are surprisingly high. Both networks

predict the yaw to within 9 degrees, and are consistent across

bootstrap iterations.

B. Predicting Pitch

Pitch estimates for the CS2 dataset were provided by

Hyperface and are measured in degrees. Positive pitch scores

indicate an upward-looking face, and negative scores indicate

a downward-looking face. A score of 0 indicates that a face is

looking directly at the camera. The majority of images in the

CS2 dataset depict faces with a relatively centered pitch. Given

the low frequency of data points with particularly high or

low values, we chose to categorically code the pitch scores in

this experiment as either centered or deviating. Centered pitch

was defined to include all values between -8 and +8 degrees.

Deviating pitch was defined to include all values outside of

the centered range.

Using the top-level DCNN features as input, we predicted

whether each image in the CS2 data set showed a face with

either centered pitch or deviating pitch. The pitch-prediction

scores output by the LDA classifier were continuous values

from 0 (centered) to 1 (deviating). These values were rounded

to the nearest integer (0 or 1) to obtain the final prediction

values. The results appear in Table III and are reported as

percent correct. As with yaw, the ability of the top-level DCNN

features to predict the category of pitch (centered or deviating)

of the face in an image was unexpectedly accurate (77.0% and

71.5% correct for Networks A and B, respectively).

C. Predicting Media Type

The media type is provided for all images in the CS2

dataset. Each image originated as either a still photograph or

a video frame. An image’s media type might be considered a

proxy-measure for some aspects of image quality. In the CS2

dataset, the images that originated as still photographs often

have better illumination or higher resolution. The images that

originated as video frames often come from lower-quality data

sources (such as CCTV footage).

We assigned a score of 1 to all images in the CS2 dataset

that originated as still photographs, and a score of 0 to all

images that originated as video frames. We then applied the

bootstrapped classification method to predict media type from

the top-level DCNN features produced by both Network A and

Network B. The predictions for our test data were continuous

values from 0 to 1. These were rounded to the nearest integer

(0 or 1) to obtain the prediction values. The results appear

TABLE IV
MEDIA TYPE

Network Media Type
A 87.1% (sd. 0.004)
B 93.3 % (sd. 0.002)

in Table IV and are reported as percent correct. Predictions

using the DCNN features were highly accurate and consistent

for both networks.

Fig. 2. Heat map illustration of view-dependent DCNN features for Network
A displayed for each identity in the database with at least 20 frontal and 20
profile images (top). Heat map illustration of the quality-dependent top-level
DCNN features for each identity in the database with at least 20 still images
and 20 video frames (bottom).

D. Interim summary

The classification experiments showed that metadata from

individual images, including yaw, pitch, and media type, was

available in the top level DCNN features of both Network A

and Network B.

In the next section the goal was to analyze the extent

to which individual features operate invariantly, or at least

robustly, across pose and media type.
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Fig. 3. Image clusters of two individuals (Bono and G. Bush) who were both
coded with a majority of view-independent features (312 and 289 of 320
respectively). These clusters show mixed viewpoints aligned closely, which
may correspond to distinctive features (e.g. Bono’s sunglasses) that are easy
to detect across variable views.

V. CNN FEATURES AND INVARIANCE: ARE FEATURES

INVARIANT OR ARE PEOPLE INVARIANT?

A. View (In)variance Coding

We developed an index of feature robustness to examine

whether specific features in the learned feature space var-

ied across frontal and profile poses. First, we sub-selected

identities in the database (n = 38) for which there were at

least 20 frontal images and 20 profile images. Second, within

each of these identities, for each of the 320 DCNN features

in Network A, we computed a t-test to determine whether

the feature’s values differed significantly between frontal and

profile images of that particular individual. We set the alpha

level for statistical significance at 0.0001561. The resultant p-

values act as an of index of feature invariance for an individual.

The results of this analysis are displayed in the top-panel heat

map in Figure 2 and are surprising. In the figure, individual

identities are displayed across columns and individual features

are displayed across rows. We anticipated that individual

features would consistently code identities in either a view-

dependent or view-invariant way. This would have produced

horizontal bands in the heat map, suggesting the consistency

of a feature across identities. Instead we found the inverse.

Individual identities were coded in either a view-dependent

or view-invariant way across features. This is indicated by

the vertical, banded lines evident in the heat map. More

formally, the percentage of features that differentiated faces by

viewpoint for an individual was as high as 55.31%. Individual

features did not consistently code in a view-dependent or view-

independent manner.

To further interpret the results shown in these heat maps,

we visualized the most- and least-differentiated identities by

selecting the most strongly banded columns from the heat

map. Two examples of the most invariant identities appear

in Figure 3, showing Bono and Pres. George W. Bush. For

Bono, 90.31% of the 320 features were undifferentiated by

viewpoint; for Bush, 97.5 % were undifferentiated. These

clusters show mixed viewpoints aligned closely–possibly re-

flecting the presence of distinctive identity features that are

1This is a two-tailed alpha level of 0.05, Bonferroni corrected for 320
multiple comparisons.

Fig. 4. Results of t-SNE applied to the DCNN top level features of Network
A for all 24,502 images (top). An array of the 129 images closest to the
center of the space (0.05%) in Network A. The upper-left image is the image
closest to the center, and each image’s distance from the center grows as you
progress across the rows (bottom).

easy to detect across all views (e.g. Bono’s oddly tinted

sunglasses). Alternatively, when visualizing identities with the

most variant features, many subjects show strongly separated

clusters containing small ranges of similar views. This latter

pattern resembles what we saw in Figure 1 for Vladimir Putin.

The main point, though, is that identity is determining whether

the features are organized in a view-dependent or view-

invariant manner. Some identities are marked most strongly

by characteristics which are static across shifts in pose, while

others are marked by the way certain traits appear when seen

from different viewing angles.

To determine the extent to which the nature of an identity

code (view-variant or view-invariant) affects performance in

a face recognition algorithm, we conducted the following

experiment. We selected the 7 identities coded most invariantly

over view-change. Next we compared the performance of

Network A on template comparisons involving pairs of these
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Fig. 5. Identity verification performance of Network A for template pairs
where both identities are coded view-invariantly versus for all other template
pairs. View-invariance of an identity is characterized by feature values across
its images that do not dissociate for frontal and profile views.

7 identities against template comparisons involving pairs of all

other identities. Note that a template is defined as a variably

sized set of images and video frames of an individual identity,

and that the contents of the templates were specified by

the Janus protocol. The results of these comparisons appear

in Figure 5 and show a strong advantage for recognizing

identities that are coded invariantly, over those in which feature

values dissociate for frontal and profile images.

B. Media Type (In)variance Coding

We repeated the same approach from the previous section

to examine the way media type is coded across features and

individuals, developing an index of feature robustness across

still images and video frames. First, we sub-selected identities

in the database (n = 34) for which there were at least 20 still

images and 20 video frames. Second, within each of these

34 identities, for each of the 320 top-level DCNN features

produced by Network A, we computed a t-test to determine

whether a feature’s values differed significantly for images of a

particular individual pulled from either a still image or a video

frame. We again set the alpha level for statistical significance

at 0.000156. In this case, the p-values act as an index of the

feature’s invariance for coding media type. The results of this

analysis are displayed in the bottom-panel heat map in Figure

2 and echo what is seen in the heat map distinguishing frontal

and profile views. Individual identities tend to be coded in

either a media-dependent or media-independent manner.

VI. WHEN DCNN FEATURES FAIL THEY LEAVE A TRAIL

We returned to the use of t-SNE to help visualize the feature

spaces of our two recognition networks. This time, rather than

analyzing the feature space for a single individual, we applied

t-SNE to the DCNN top level features for all 24,502 images

in the JANUS CS2 dataset (see Figure 4, top). This was used

as an exploratory analysis to help us visualize the DCNN

feature space in more detail. The primary insight gained from

this visualization is that the images located near the center

appear to be of extremely poor “quality”, where quality refers

to a wide range of issues that would make the person in the

image difficult to detect or identify. We therefore examined the

images in order of closeness to the center of the raw feature

space. We defined the center of the feature space to be equal to

the space’s origin, where all feature values are zero. Figure 4

(bottom) shows an array of the 129 images closest to the center

of the space (0.05%) produced by Network A, arranged across

the rows and starting from the image closest to the center. As

seen in the array, the images closest to the center of the feature

space are affected by a range of problems including extreme

views, strong occlusion, blurring, distortion, and lack of an

identifiable face.

Does distance from the center of the DCNN feature space

index image quality? To examine this, we pulled images from

different distances to the center of the space. We ranked the

images according to their distance from the origin. Figure

6 shows 129 sampled images from each of the 20th, 50th,

and 90th percentiles of these ranked distances. This figure

illustrates that face quality seems to increase with distance

from the center of the DCNN feature space.

VII. CONCLUSIONS

The analyses discussed in this paper point to the following

conclusions. First, the top-level features produced by DCNNs

trained for face recognition retain a surprising amount of

information about the original input image. Yaw, pitch, and

media type were readily available in the top-level DCNN codes

of both networks we examined and could be classified with

high accuracy.

Second, when characterizing the extent to which individual

top-level DCNN features coded either view-dependent or

view-invariant information about faces, we found that the

tendency to develop a view-dependent code was a character-

istic of the identities rather than the features. This suggests

that some identities in this dataset present with appearance-

based characteristics that are easy to detect and code across

viewpoint, whereas other identities are marked by character-

istics that tend to vary according to view. The data-dependent

manner in which these face codes are produced is intriguing

because it suggests that DCNNs and the human visual system

alike might need to exploit both types of codes in order to

operate efficiently and accurately in unconstrained viewing

conditions. Notably, this general finding of data-dependency

also held for media type. Some identities are consistently

coded across different media types, while other identities have

more disparate codes.

Finally, we made the unexpected finding that an image’s

distance from the origin of the DCNN’s top-level feature space

could be used to index the quality of an image. Further, the

tendency for low-quality images to cluster at the origin of

the feature space was notable since the degraded quality em-

anated from many distinct sources. This allows for the generic

identification of images with limited or unusable information
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Fig. 6. Images (n=129) sampled at the 20th (top), 50th (middle), and 90th

(bottom) percentiles of ranked distances from the origin. Face image quality
seems to increase with distance from the center of the DCNN feature space.

about a particular identity. Because low quality images cluster

around the origin and quality increases with distance from the

origin, we might speculate that feature descriptors with a large

magnitude reflect robust identity information. This suggests a

new method for screening out poor quality imagery in DCNNs.

In summary, a more in-depth look at the compact top-level

feature codes learned by DCNNs trained for face recognition

gave insight into the nature of the learned representation.

These analyses point to data-dependent flexibility in the type

of codes that emerge at the DCNNs top level, as well as the

possibility to separate low- and high-quality imagery.
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