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Deep	Convolutional	Neural	Networks	(DCNNs)
•Robust	across	image	conditions	(view,	illumination,	etc.)
•Modeled	after	primate	ventral	visual	stream	[1,2]

• Early	layers	->	V1
• Intermediate	layers	->	V4
• Final	layers	->	IT	[3,4]

Network
•High-performing	face	identification	network	[11]

• 101	–layered	ResNet [12],	trained	on	nearly	6	million	images	of	58,000	identities
• 512-dimensional	final	output	representation

Conclusions

Methods
• randomly	sampled	sets	of	features	from	
output	representation
• computed	ROC	curves	of	each	sample	on	face-
identification,	gender	classification,	and	
viewpoint	prediction	tasks	using	the	“in	the	
wild”	IJB-C	dataset	[13]
• > 141,332	images,	3,531	identities

Approach
•Random	feature	deletion
•Re-evaluate	identity,	gender,	

viewpoint	information	in	subspaces	
of	varying	dimensionalities

Features	in	Primate	Visual	System
• Low-level	visual	features	retinotopic &	semantically	
interpretable	(e.g.,	edge	detectors)	[7]
• Face	identification	->	high-level	vision,	categorical	codes	[8]
• Link	between	visual	receptive	fields	and	features	less	clear

•Categorical	representation	of	faces	not	well	understood
• Neurons	tuned	to	features	[9]
• CNNs	“directions	in	a	space”	interpretable/meaningful	features	[10]

• Image	information	(e.g,	viewpoint)	retained	despite	identity	training	[5]
•Distribution	of	information	in	top-level	code?

• Identity,	gender	(subject	variable)	[6],	viewpoint	(image	variable)	[5]

Goal
Probe	distribution	of	

identity,	gender,	viewpoint	
across	individual	units	in	

DCNN	top	layer
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• Identification	accuracy	maintained	when	
sampling	very	few	randomly	chosen	features
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• Top-level	feature	units	spread	identity	information	efficiently
• All	units	contain	identity	information,	random	combinations	of	units	lead	
to	good	performance

•Coding	of	gender	and	viewpoint	make	sense	in	context	of	[6]
• Hierarchy	of	clustering	according	to	identity/image	variables

•Robust	code	for	face	identity
•Many	sources	of	identity	information,	many	solutions

•Gender	prediction	accuracy	decreases	
gradually	with	size	of	sampled	features

•Viewpoint	prediction	accuracy	declines	
sharply	when	fewer	features	sampled

Conclusions


