
Social Networks:
Analyzing Social Information in Deep Convolutional Neural Networks Trained for Face Identification

Social	Traits
• Humans	make	social	trait	inferences	from	
faces	readily	[1]	and	rapidly	[2]
• Trait	inferences	predict	important	decisions	
(e.g.,	voting	preferences)	[3,	4]
• Social	traits	can	be	generated	from	models	of	
face	structure	and	reflectance	[5,	6]
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DCNNs	modeled	after	primate	visual	cortex

• Network	used	in	this	study	
contains	6	convolutional	
layers,	3	fully	connected	
layers	[9]

• State-of-the-art	performance	
on	challenging,	
unconstrained	IJB-A	dataset	
[10]
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Collected	ratings
for	18	Social	Traits

11	Unique
Dimensions

Averaged	highly	correlated	
traits:
• talkative,	energetic
• warm,	sympathetic,	soft-

hearted,	trusting,	
helpful,	reliable

• efficient,	thorough

Social	Trait	Ratings

Human	ratings	of	social	traits	for	faces	
• 280	face	images
• 18	traits	from	Big	Five	Factors	of	Personality	[9]
• 20	sets	of	ratings	per	face
• responses	averaged	across	participants
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Goal	1:
Measure	similarity	
between	human	and	

computer	trait	
predictions	made	

from	identity-trained	
DCNNs

Goal	3:
Predict	individual	

social	trait	
inferences	from	top-
level	DCNN	features

Participants:
• n =	80	(60	female)
• Mean	age	=	21

Stimuli:
• 280	images,	194	identities
• 204	female,	76	male
• Caucasian
• neutral	expression
• Ratings	collected	for	front-
facing images

• N x	K “feature	matrix”	obtained	from	DCNN
• N x	M “trait	matrix”	obtained	from	averaged	

participant	responses
• Predict	trait	matrix	from	feature	matrix	using	

linear	regression
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• Remove	L features	(n =	140)	with	low	learned	weights,	
re-train	model
• Keep	only	features	important	for	trait	prediction

• Columns	in	the	final	trait	matrix	are	computer	
predictions	of	columns	from	original	data	matrix
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Verify	Structure	of	Face	
Trait	Space	(e.g.	[5])

• principal	component	analysis	of	human	trait	ratings
• created	“trait	space”

• 2	significant	principal	components:
• 1st component	interpreted	as	approachability
• 2nd component	interpreted	as	dominance

• Predictions	made	from	non-frontal	DCNN	
features

DCNNs	for	Face	Identification
• State-of-the-art	for	face	identification	[7]	and	
generalize	over	viewpoint,	illumination,	etc.
• “Top-level”	DCNNs	features	retain	non-identity	
information	(e.g.,	pose,	image	quality)	[8]
• Do	face-identification	features	also retain	social	
trait	information?

DCNNs	modeled	after	primate	visual	cortex
• Early	layers	model	V1-V4,	final	layers	model	IT	cortex
• For	face	identification,	final	DCNN	layer	stores	

abstract	identity	code	<- face	representation

Trait-Profile	Predictions	

Individual	Trait	Predictions	

Predict	Social	Trait	Inferences

• Similarity	between	human-generated	and	computer-predicted	trait	vectors	
measured	using	cosine	distance

• Accuracy	of	individual	trait	predictions	measured	
using	R2 between	human-generated	and	
computer-predicted	values

• Error	between	human	ratings	and	predicted	traits,	plotted	against	a	null	distribution
• All	traits	predicted	significantly	above	chance
• Blue	line:	α	=	0.002
• Red	line:	predicted	value

• Cosine	similarity	between	human-generated	
trait	profiles	and	computer	predictions:

Goal	2:
Measure	accuracy	of	
trait	predictions	

using	DCNN	features	
from	non-frontal	

images
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R2 Between	Human	Inferences	
and	Computer	Predictions

• Different	traits	
predicted	to	
different	extents

• All	trait	inferences	
predicted	above	
chance
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Conclusions

Human	trait	
inferences	can	be	
predicted	from	the	

top-level	features	of	a	
DCNN	trained	for	face	

identification

Conclusion	1

Trait	inferences	
assigned	to	frontal	

faces	can	be	
predicted	from	DCNN	
features	generated	
for	both	frontal	and	
non-frontal	faces

Conclusion	2

Top-level	DCNN	
features	for	face	

identification	retain	
robust	trait	

representation	– each	
individual	trait	
predicted	above	

chance

Conclusion	3

Null	distribution:
𝝰 =arccos(	0.078)

Using	K	features:	
𝝰 =	arccos(0.353)

Using	K	– L features:	
𝝰 =	arccos(0.533)

• DCNN	representation	
allows	for	state-of-
the-art	identification	
• Not	independent	of	
image	information,	
social	traits


