

MARYLAND

Social Networks: Analyzing Social Information in Deep Convolutional Neural Networks Trained for Face Identification

Connor J. Parde¹, Ying Hu¹, Carlos Castillo², Swami Sankaranarayanan², and Alice J. O'Toole¹ ¹The University of Texas at Dallas, ²University of Maryland

Deep Network Architecture		
Layer	Kernel Size/Stride	#Parameters
Conv1	11x11/4	35k
Conv2	5x5 / 2	614k
Conv3	3x3 / 2	885k
Conv4	3x3 / 2	1.3M
Conv5	3x3 / 1	885k
Conv6	3x3 / 1	590k
Fc6	1024	9.4M
Fc7	512	524k
Fc8	10575	5.5M
Softmax Loss		19.8M

Verify Structure of Face Trait Space (e.g. [5])

- principal component analysis of human trait ratings • created "trait space"
- 2 significant principal components:
- 1st component interpreted as *approachability*
- 2nd component interpreted as *dominance*

Social Trait Space Assertive Lazy Efficier Quiet

Approachability: 40.408%

Null distribution: **α** =arccos(0.078)

- Error between human ratings and predicted traits, plotted against a null distribution
 - All traits predicted significantly above chance
 - Blue line: $\alpha = 0.002$

Red line: predicted value

Individual Trait Predictions

Trait-Prediction Error

R² Between Human Inferences and Computer Predictions

U LA 0

< M traits >

• Different traits predicted to different extents

• All trait inferences predicted above chance

Conclusion 1

Conclusions

Human trait inferences can be predicted from the top-level features of a DCNN trained for face identification

Conclusion 2

Trait inferences assigned to frontal faces can be predicted from DCNN features generated for both frontal and non-frontal faces

Conclusion 3

Top-level DCNN features for face identification retain robust trait representation – each individual trait predicted above chance

- DCNN representation allows for state-ofthe-art identification
- Not independent of image information, social traits

References

[1] Bruce, V., & Young, A. (1986). Understanding face recognition. British journal of psychology, 77(3), 305-327

[2] Bar, M., Neta, M., & Linz, H. (2006). Very first impressions. Emotion, 6(2), 269. [3] Todorov, A., Mandisodza, A. N., Goren, A., & Hall, C. C. (2005). Inferences of competence from faces predict election outcomes. Science, 308(5728), 1623-1626.

[4] Rule, N. O. Ambady, N. (2008). The face of success: Inferences from chief executive officers' appearance predict company profits. Psychological Science: A Journal of the American *Psychological Society/APS*, 19, 109–111.

[5] Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 11087-11092.

[6] Walker, M., & Vetter, T. (2009). Portraits made to measure: Manipulating social judgments about individuals with a statistical face model. Journal of Vision, 9(11), 12-12.

[7] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to humanlevel performance in face verification. In *Proceedings of the IEEE conference on computer vision* and pattern recognition (pp. 1701-1708).

[8] Parde, C. J., Castillo, C., Hill, M. Q., Colon, Y. I., Sankaranarayanan, S., Chen, J. C., & O'Toole, A J. (2017, May). Face and Image Representation in Deep CNN Features. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on (pp. 673-680). IEEE. [9] Gosling, S. D., Rentfrow, P. J., & Swann Jr, W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in personality, 37(6), 504-528.

[10] Sankaranarayanan, S., Alavi, A., Castillo, C. D., & Chellappa, R. (2016, September). Triplet probabilistic embedding for face verification and clustering. In Biometrics Theory, Applications and Systems (BTAS), 2016 IEEE 8th International Conference on (pp. 1-8). IEEE.

Acknowledgements

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.