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Introduction
• By	2013,	identity	matching	accuracy	comparable	for	humans	and	machines	for:
• high	resolution,	frontal	views,	(reasonably)	consistent	illumination,	expression	&	appearance	
(Phillips	&	O’Toole,	2014)
• These	algorithms	fail	with	pose	changes	and	large	changes	in	illumination,	etc.	

• 2014-present	->	Deep	Convolutional	Neural	Networks	(DCNNs)	(Krizhevsky	et	al.,	2012)	
• Succeed	on	very challenging	images.

Research	Questions:	
1.)	How	do	DCNNs	perform	on	images	of	people	who	are	disguised?	
2.)	How	do they	compare	to	human	performance?
• Approach—test	face-matching	performance	of	a	DCNN	(Chen,	2016)	on	disguised	faces	with	

FAÇADE	image	database	(Noyes	&	Jenkins,	2016).	
• Compare	Results	to	human	data	from	Noyes	and	Jenkins (2016).
• Contribution—Further	understanding	of	DCNN	representations.	Additional	forensic	implications.

Stimuli
• FAÇADE	image	dataset	
• 26	models—disguised	and	non-disguised.	
• 3	disguise	conditions	for	each	model
• disguised	relative	to	a	specific	reference	image

Evasion:	model	photographed	to	look	unlike	self

Impersonation	Similar:	model	photographed	to	look	like	a	‘similar’	person

Impersonation	Random:	model	photographed	to	look	like	a	‘random’	person

Image	pair	conditions:
Same		and			Different		identity	pairings,
Disguise	and	No	Disguise	image	conditions.

Human	Results	(Noyes	&	Jenkins,	2016)

Algorithm	Methods

Algorithm		Exploratory		Analyses

Clustering

t-SNE	Visualization	 (Van	Der	Maatan	 &	Hinton,	2008)	

Algorithm	Identity	Matching	Simulation

Next	Steps

Conclusions
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Analysis	
Similarity	scores	of	each	image	pair	compared	against	criteria	point	to	
determine	same/different	identity	response.	(chance	accuracy	=	50%)

• DCNN	outperformed	‘unfamiliar’	humans	at	matching	
images	of	people	who	are	not	disguised.	

• DCNN	performance	on	disguised	faces	comparable	to	
unfamiliar	humans.	

• DCNN	show	same	pattern	of	results–higher	accuracy	for	
impersonation	than	evasion.	

• In	comparisons	to	Noyes	and	Jenkins	(2016),	‘familiar’	
humans	still	better	than	machines	on	disguised	pairs.

• Hierarchical	clustering	function
• Height—cluster	number	best	matched	true	number	of	identities
Analysis
Same	identity	pairs—correct	if	placed	in	same	cluster.
Different	identity	pairs—correct	if	placed	in	two	different	clusters.	

• Similarities	with	human	card	sorting	tasks	(e.g.	Jenkins	et	al.,	2011)

• Model	DCNN	as	a	‘familiar’	viewer.	
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