
• Perfect	preservation:	
NONE

Background

Naturalistic	Driving	Study	(NDS)	à Transportation	Research	Board	of	US	Academy	of	Sciences

• goal	of	NDS:	determine	role	of	driver	performance	& behavior	in	transportation	safety
• SHRP2	dataset: 1.2	million!	hours	naturalistic	video	

• cameras	(at	16	Hz)	in	car	
• ~	3100	driver-car	volunteers	
• 2-yr	of	driving	

• advantage: opportunities	for	computer	vision,	face	&	gesture	recognition,	video	analytics,	
autonomous	vehicle	research,	transportation	studies	

• limitation:	videos	include	personally	identifiable	information	of	drivers	(e.g.,	facial	video)
• biometrics	application:	de-identification	algorithms

• Automated	Identity	Masking	(AIM)	
• to	obscure	identity	of	drivers	&	preserve	actions

de-identification	methods:	
1. Personalized	Supervised	Bilinear	Regression	Method	for	Facial	Action	Transfer	(FAT)3 by Carnegie	

Mellon	University	 à FAT	mask
2. 3x3	Prewitt	Edge	Filter4 à edge-detection	mask

NOTE	:	face	recognition	ability	in	humans,	in	many	cases,	superior	to	machine	recognition	
algorithms5 à true	test	of	de-identification	performed	by	human evaluators

Research Goals & Questions
1. How	effective	is	de-identification	algorithm?		

• Facial	Recognition	Preservation	experiment	
2. How	effectively	does	algorithm	preserve	actions?	

• Facial	Behavior	Preservation	experiment

Data
Head	Pose	Validation	Dataset	by	VTTI6 – replicated	for	purpose	of	sharing	dataset	with	researchers

1. low	resolution	unmasked	& masked	videos:	36	different	identities;	360	short	(5-6	sec	pre-
processed	video	clips);	each	contains	one	prominent	action	(e.g.,	checking	rear-view	mirror)

2. high	resolution	[4320	x	3240]	color	photos:	36	different	identities;	frontal	&	profile	view

Analysis:
Signal	Detection	Theory:	
measure	d’ & C	
• Accuracy:	d’ =	z(HR)	– z(FA)
• Response	Bias: C	=	0.5	*	[z(HR)	+	z(FA)]

HR:	proportion	of	correct	“known”	
FR:	proportion	of	incorrect	“known”

Definition of de-identification:
• chance	performance	for	masked	videos;	d’	=	0
• effective	(but	not	perfect	masking); d’	unmasked	> d’	masked
• conservative	response:	higher	C;	C	close	to	one
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unmasked	videos FAT	masked	videos edge-detection	videos

Conclusions:
• neither	mask	eliminated	recognition	completely	(d’)
• decrease	in	d’ due	to	decreasing	HR	rather	than	increasing	FA

à fail	to	recognize	known	drivers,	rather	than	incorrectly	recognizing	unknown	drivers
• criterion	changed;	most	conservative	in	Edge-Detection

àalthough	de-identification	was	not	perfect,	identification	was	not	confident

• unmasked:	good	but	not	perfect
• unmasked	>	FAT	&	edge	(p<.0001)
• FAT	&	edge	(p=n.s.)
• d’ FAT	&	edge	>	chance	(p<.0001)

• HR:	same	pattern	as	d’
• HR:	unmasked	>	FAT	>	edge	(p<.01)
• FA:	different	pattern

• all	positive:	conservative	responses
• C:		edge	>	FAT	>	unmasked	(p<.001)

Conclusions:
• largest	errors	in	driver	demographics	✔
• car	actions	preserved	best
• 85%	actions	failed	perfect	preservation✖
• FAT	mask	preserved	actions	better

SUMMARY:
• Computer	vision	should	take	into	

account	recognition	confidence	as	a	
measure	of	identity-masking	
effectiveness.

• perfect	preservation:	
edge: putting	on	hat
FAT: baseball	cap	on,	putting	hat,	
putting	glasses

• perfect	preservation:	
FAT:	age	+66

• perfect	preservation:	
NONE

Facial Behavior Preservation
Goal:	assess	annotation	accuracy	for	driver	action;	compare	“masked”	&	“unmasked”			
driver	action

4	sub-studies:
1. driver	demographics	(e.g.,	male?	18–35	yr	old?)
2. driver	accessories	(e.g.,	using	cell-phone?	putting	on	glasses?)
3. driving-related	annotations	(e.g.,	checking	rear-view	mirror?	looking	down?)
4. car-related	action	annotations	(e.g.,	car	turning	right?	car	ever	stopped?)

Ground-Truth	Annotation	(GTA):	annotation	in	unmasked	videos
Controlled	Comparison	Annotation	(CCA):	annotation	in	FAT	& edge-detection	mask	videos

Analysis	&	Results:
Abs|(average	response	in	GTA	– average	response	in	CCA)|,	for	each	question	(presence	of	an	action	=1,	absence	=	0)

Facial Recognition Preservation
Goal:	assess	recognizability	of	drivers;	compare	“masked”	&	“unmasked”	recognition

Learning	phase:							
n =	18;	still	images,	presentation:	5s	+	2s	blank	page
replay	presentation:	twice;	random

High-resolution	photo
profile	(left)	,	frontal	(right)

Test	phase:
n =	36;	unmasked	& masked	videos	(counter-balanced)
Have	you	seen	this	driver	before?
replay	as	many	times	as	needed.
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