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Abstract— Accurate position feedback from a resolver is highly critical for high-performance field-oriented control 
(FOC) drives, and eccentricity in resolvers negatively affects the drive performance. The current unbalance intensity 
(CUI) of permanent magnet synchronous motors (PMSM) is a known criterion to evaluate drive stability and can be 
caused by position feedback error. In this paper, the eccentric resolver operation is comprehensively investigated, 
and the corresponding CUI is analytically evaluated. Accordingly, the error limit is defined for an acceptable operation 
under eccentricity without derating the motor control. For this purpose, the relationship between the (a) resolver’s 
physical geometry, (b) magnitude and the angle of the stator current, and (c) resolver accuracy are presented through 
surrogate modeling. Using the proposed analytical current model, the resolver geometry is updated in order to improve 
the eccentricity tolerance and accuracy and lower the CUI. An optimized rotor design is built, and its accuracy and 
effect on CUI mitigation are experimentally verified. 

 
Index Terms— Eccentricity, Current Unbalance, Permanent Magnet Synchronous Motor (PMSM), Field Oriented Control 

(FOC), Resolver, Rotor Angle Error, Surrogate Modeling. 

 

 

I.  Introduction 

ERMANENT magnet synchronous motors (PMSMs) are 

highly attractive due to their high efficiency and power 

density [1]. Position sensors such as hall-effect sensors, 

encoders, and resolvers are used for high performance PMSM 

control [2]. Among these, hall-effect sensors are relatively 

inexpensive yet provide very poor resolution [3]. Encoders have 

high accuracy and moderate costs, but their accuracy is 

significantly degraded in nonideal environments due to their 
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sensitive and fragile physical construction [4], which limits 

their applicability for electric vehicles (EVs). Thus, resolvers 

are more attractive due to their high precision and resilience to 

extreme warmth, dust, moisture, noise, and vibrations [1]. 

Variable reluctance (VR) resolvers are most commonly used 

for EVs due to their simple rotor structure and lack of brushes 

and slip rings [5]. The resolver’s rotor is mounted on the 

motor’s shaft, while the resolver’s stator can be integrated to 

the motor stator. Thus, any faulty condition in the motor will 

have a negative effect on the resolver, regardless of whether it 
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results from aerodynamic, electromagnetic, or electrical 

sources [6]. Eccentricity has the largest effect on resolver 

accuracy among its fault categories, as it can significantly affect 

the flux density in the air gap and the magnetic behavior of the 

resolver [1]. Additionally, excessive vibrations resulting from 

eccentricity can further degrade resolver accuracy. Static 

eccentricity can be observed even in brand-new electric 

machines due to manufacturing or installation imperfections, 

which results in a bent shaft, bearing wear out, and finally 

dynamic eccentricity [5]. Static eccentricity results when the 

stator axis is displaced relative to the rotor and rotation axes. 

Displacing the rotor axis relative to the stator and rotation axes 

leads to dynamic eccentricity [7]. The impacts of eccentricity 

on resolver accuracy have been previously evaluated [7], [8], 

but the impact of rotor angle error on the drive control 

performance has not been investigated. Since the resolver error 

can significantly degrade the drive control stability, it should be 

evaluated in conjunction with the resolver error. 

The mitigation and diagnosis of rotor angle errors in PMSM 

drives, and the impacts on the motor performance, efficiency 

and DC-link voltage oscillations are reported in [9]. However, 

when evaluating the impacts of rotor angle error, the error is 

often chosen arbitrarily, rather than being linked to the error of 

a particular sensor [9], [10], [11], [12]. As these studies have 

largely considered faults that produce a relatively small error, 

the effect of rotor angle error is negligible in the constant-flux 

region. These studies were in the field-weakening region, where 

rotor angle error effect has a more significant impact [10], [11], 

[12]. The current unbalance (CU) in PMSM drives caused by 

the rotor angle error is not covered by the previous studies. A 

CU leads to higher losses and temperature, which can damage 

the winding insulation and reduce efficiency. 

Numerous algorithms are used in motor drive control 

systems to mitigate the effect of rotor angle error, such as 

polynomial estimation [13] and minimizing direct-quadrature 

(dq) axis currents [14]. Also, the resolver nonidealities in 

healthy conditions are usually considered by resolver to digital 

converter (RDC) algorithms for improving its signal voltages 

and drive stability [15]. The rotor angle error diagnosis in 

PMSM control is commonly based on the faulty sensor signals 

[7] or the stator currents [16]. However, it is also important to 

predict the impacts of rotor angle error on drive performance. 

Additionally, designing a resolver with high tolerance for 

nonidealities could be more effective than implementing a 

control algorithm to mitigate the effect of the errors. 

Accordingly, numerous configurations have been suggested 

and designed to improve resolver accuracy, especially in faulty 

conditions [17], [18]. However, simultaneously considering the 

resolver error effects on the motor control drive system yields a 

more effective design, which was previously neglected. 

This paper investigates the effect of faulty resolver 

conditions on the excitation current, the signal voltages, and its 

accuracy. Then, the resolver rotor angle error effect on stator 

currents and CU is investigated analytically and 

comprehensively. This analytical modeling enables a more 

straightforward analysis of resolver fault effects. Thus, it can be 

used for optimizing the resolver configuration by considering 

the faulty conditions and current unbalance intensity (CUI) in 

the PMSM drive system. For this purpose, surrogate modeling 

is used to show the connection between (1) resolver physical 

geometry, (2) the magnitude and angle of the stator currents, 

and (3) resolver accuracy. Then, this surrogate model is used in 

a Multi-Objective Surrogate-Based Optimization (MOSBO) to 

choose an optimal resolver rotor contour. In order to validate 

the proposed concept, the designed rotor contour is 

manufactured, and its accuracy and effect on stator currents CU 

mitigation are verified experimentally. 

II. RESOLVER FAULTY CONDITIONS ANALYSIS 

Theoretically, the winding inductances should be pure 

sinusoids. However, in practice and especially in resolver 

eccentricity conditions, nonidealities will emerge in the 

windings inductances. Thus, the self inductance of the 

excitation winding (𝐿𝑒) and the mutual inductances between the 

excitation windings and the signal windings (𝑀𝛾𝑒) of the 

resolver windings can be written as Fourier series as [2] 

{

𝐿𝑒(𝜃𝑟) = 𝐿𝑒0 + ∑𝐿𝑒𝑛 sin(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑒𝑛)

𝑀𝑠𝑒(𝜃𝑟) = 𝑀𝑠0 +∑𝑀𝑠𝑛 sin(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑠𝑛)

𝑀𝑐𝑒(𝜃𝑟) = 𝑀𝑐0 + ∑𝑀𝑐𝑛 cos(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑐𝑛)

  (1) 

where 𝜃0 is the rotor angle shifting, the Fourier series 

coefficients are 𝐿𝑒0, 𝑀𝑠0, 𝑀𝑐0, 𝐿𝑒𝑛 , 𝑀𝑠𝑛, and 𝑀𝑐𝑛 and the 

Fourier series angles are 𝜑𝑒𝑛, 𝜑𝑠𝑛, and 𝜑𝑐𝑛. Moreover, 𝜃𝑟 is the 

electric rotor angle of resolver. The signal currents are 

negligible compared to the excitation current, so the flux 

linkages can be rewritten as [2] 

{
𝜆𝑒 = 𝐿𝑒(𝜃𝑟)𝑖𝑒

𝜆𝑠/𝑐 = 𝑀𝑠𝑒/𝑐𝑒(𝜃𝑟)𝑖𝑒
 (2) 

where 𝜆𝛾 is the flux linkage and 𝑖𝑒 is the excitation current. 

Then, the signal voltages are written as: 

𝑣𝑠/𝑐 = 𝑑𝜆𝑠/𝑐 𝑑𝑡⁄   (3) 

where 𝑣𝑠 and 𝑣𝑐  are the sine and cosine signal voltages, 

respectively. As the excitation windings are fed by a high-

frequency AC voltage; the excitation current and voltage are 

written as 

{
𝑖𝑒 = (𝑣𝑒 − 𝑑𝜆𝑒 𝑑𝑡⁄ ) 𝑅𝑒⁄
𝑣𝑒 = 𝑣𝑚 cos𝜔𝑒𝑥𝑡

  (4) 

where 𝑅𝑒 is the excitation winding resistance and 𝑣𝑒 is the 

excitation voltage. Additionally, as 𝐿𝑒(𝜃𝑟) is approximately 

constant [2], 𝑑(𝐿𝑒(𝜃𝑟))/𝑑𝜃𝑟 = 0  holds. Thus, 𝑖𝑒 can be 

written as (5) [19], where 𝑖𝑚𝑒  is the magnitude and 𝛼𝑒 the phase 

angle of 𝑖𝑒. Substituting (5) into (2) for calculating (3) leads to 

(6) [19]. As the faulty resolver conditions will lead to resolver 

signal voltages degradation, (6) is rewritten as (7). For the sake 

of simplicity, the effect of signal voltage degradations is 

investigated separately and independently through RDC [20]. A 

summary of the above degradations' effect on revolver signal 

voltages and rotor angle extraction is given in Table I, where 𝐴1 



First Author et al.: Title  3 

 

 

is main order of 𝑢𝑠, 𝐵𝑛 are the Fourier series coefficients, 𝐾 is 

the transformer coefficient, 𝜁 is the effect of magnitude 

inequality, 𝜉 is the effect of the angle shifting not being exactly 

90 degrees, and 
𝑘1

𝑘
 and 

𝑘2

𝑘
 are DC offset effects.  

In the following study, a 1-X VR resolver with a constant 

turn non-overlapping winding (CTNOW) configuration is 

evaluated. The maximum and minimum airgaps are  

𝐺𝑚𝑎𝑥 = 2 mm and 𝐺𝑚𝑖𝑛 = 0.5 mm, respectively. The 

considered resolver is shown in Fig. 1. Using a 1-X resolver 

provides advantages, such as absolute rotor position 

information and compatibility with a wide range of motor pole 

numbers. The odd harmonic orders of signal voltages emerge 

even in healthy conditions, and faulty conditions intensify their 

magnitude [8]. On the contrary, the even harmonic orders will 

emerge exclusively when the fault occurs [8]. Thus, the 

eccentricity will cause the intensifying of the 3rd and 5th orders 

and the emergence of the 2nd order in signal voltages [18]. 

Moreover, the DC offset was shown to be a symptom of 

eccentricity [7]. According to Table I, the above harmonic 

orders of signal voltage will lead to 1st, 2nd, and 4th harmonic 

orders (𝜃1, 𝜃2, and 𝜃4) in the rotor angle error, �̃�, while their 

magnitude also has a dependency on 𝐴1 [7].   

III. ANALYTICAL MODELING OF THE STATOR CURRENTS IN 

PMSM DRIVE UNDER RESOLVER FAULTY CONDITIONS 

If the severity of the faulty resolver condition is significant, 

the CU of the PMSM can be nonnegligible, which can produce 

variations in the armature magnetic field and reduce efficiency. 

The CUI can be analyzed using the positive, negative, and zero 

sequence currents (𝐼𝑃,𝑁,0). With an ungrounded Y connection in 

the stator windings, 𝐼0 can be neglected [21]. Thus, by applying 

the Fortescue transform, the above symmetrical currents can be 

written as follows, where 𝛼 = 𝑒𝑥𝑝 (
2𝜋

3
𝑗):  

[𝐼𝑃  𝐼𝑁]
𝑇 =

1

3
[1 𝛼 𝛼2

1 𝛼2 𝛼
] [𝐼𝑎  𝐼𝑏 𝐼𝑐]

𝑇  (8) 

In healthy resolver conditions, the main order of the current 

has a higher effect on the current magnitude and angle. Thus, 

using a satisfactory estimate, CUI can only be investigated in 

conjunction with degeneration of the main order of the stator 

currents. Thus, the ideal stator currents (𝐼𝑎,𝑏,𝑐) will be written as  

{

𝐼𝑎 = 𝐼𝑚 sin ( 𝜃𝑒)
𝐼𝑏 = 𝐼𝑚 sin ( 𝜃𝑒 − 2𝜋/3)

𝐼𝑐 = 𝐼𝑚 sin ( 𝜃𝑒 + 2𝜋/3)
. (9) 

where 𝐼𝑚 is the current magnitude and 𝜃𝑒 is the electric rotor 

angle of the motor. Applying the Park transform gives d-q 

currents (𝐼𝑑,𝑞), according to the shown rotating reference frames 

in Fig. 2.  

[𝐼𝑑  𝐼𝑞]
𝑇   =

2

3
𝑇(𝜃𝑒)[𝐼𝑎  𝐼𝑏  𝐼𝑐]

𝑇 (10) 

𝑇(𝜃𝑒) = [
cos(𝜃𝑒) cos (𝜃𝑒 −

2𝜋

3
) cos (𝜃𝑒 +

2𝜋

3
)

−sin(𝜃𝑒) − sin (𝜃𝑒 −
2𝜋

3
) −sin (𝜃𝑒 +

2𝜋

3
)
]  (11) 

[𝐼𝑑 𝐼𝑞] = [0 −𝐼𝑚]  (12) 

The resolver’s faulty conditions will generate nonidealities in 

𝑖𝑒(𝑡) = 𝑣𝑚 cos (𝜔𝑒𝑥𝑡 − tan
−1(

𝐿𝑒𝜔𝑒

𝑅𝑒
)) /√𝑅𝑒

2 + (𝐿𝑒𝜔𝑒)
2 = 𝑖𝑚𝑒 cos(𝜔𝑒𝑥𝑡 − 𝛼𝑒)  (5) 

{
𝑣𝑠 = 𝑑𝜆𝑠 𝑑𝑡⁄ = 𝑑(𝑀𝑠𝑒 × 𝑖𝑒) 𝑑𝑡⁄ ≈  𝑀𝑠𝑒𝑑(𝑖𝑒)/𝑑𝑡 = [−𝑖𝑚𝑒𝜔𝑒𝑥 sin(𝜔𝑒𝑥𝑡 − 𝛼𝑒)] × [𝑀𝑠0 + ∑𝑀𝑠𝑛 sin(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑠𝑛)]

𝑣𝑐 = [−𝑖𝑚𝑒𝜔𝑒𝑥 sin(𝜔𝑒𝑥𝑡 − 𝛼𝑒)] × [𝑀𝑐0 +∑𝑀𝑐𝑛 cos(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑐𝑛)]
  (6) 

{
𝑣𝑠 =  𝐾𝑣𝑚 [

𝑘1

𝑘
+ 𝐴1sin(𝜃𝑟) + ∑ 𝐵𝑛sin(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑠𝑛)

∞
𝑛=1 ] sin(𝜔𝑒𝑡 − 𝛼𝑒)

𝑣𝑐 = 𝐾𝑣𝑚[
𝑘2

𝑘
+ 𝐴1(1 + 𝜁) cos(𝜃𝑟 + 𝜉) + ∑ 𝐵𝑛cos(𝑛[𝜃𝑟 − 𝜃0] + 𝜑𝑐𝑛)

∞
𝑛=1 ] sin(𝜔𝑒𝑡 − 𝛼𝑒)

  (7) 

 
TABLE I 

FAULTY CONDITION EFFECTS ON SIGNAL VOLTAGE DEGRADATION 

Type of  

non-ideality 

Demodulated signal voltages  

degradation 

Position error  

harmonic 

Undesirable 

Harmonics 
{
𝑢𝑠 = [𝐴1sin(𝜃𝑟) + 𝐵𝑛sin(𝑛𝜃𝑟)]

𝑢𝑐 = [𝐴1 cos(𝜃𝑟) + 𝐵𝑛cos(𝑛𝜃𝑟)]
  �̃� ≈ (

𝐵𝑛

𝐴1
) sin((𝑛−1)𝜃𝑟)  

Amplitude 

Imbalance 
{

𝑢𝑠 = sin𝜃𝑟
𝑢𝑐 = (1 + 𝜁) cos𝜃𝑟

  �̃� ≈ −
𝜁

2
 𝑠𝑖𝑛 2𝜃𝑟  

Imperfect 

Quadrature 
{

𝑢𝑠 = sin𝜃𝑟
𝑢𝑐 = cos(𝜃𝑟 + 𝜉)

  �̃� ≈
𝜉

2
(1 − cos2𝜃𝑟)  

 

DC Offset {
𝑢𝑠 = [

𝑘1

𝑘
+ sin𝜃𝑟]

𝑢𝑐 = [
𝑘2

𝑘
+ cos𝜃𝑟]

  
�̃� ≈ √2

𝑘0

𝑘
cos (𝜃𝑟 +

𝜋

4
)  

  

 

 

Fig. 1. Schematic of the investigated 1-X VR resolver with CTNOW. 

 

 
Fig. 2. Field orientation inaccuracy caused by rotor angle error, where the 

symbols without primes indicate the ideal reference frames, whereas the 

primed symbols indicate the degraded reference frame estimations with 
the faulty resolver. 
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the stator currents. Accordingly, using the inverse Park 

transform, the stator currents are rewritten as 

 

[𝐼𝑎
′  𝐼𝑏

′  𝐼𝑐
′]𝑇 = 𝑇(𝜃𝑒

′)𝑇[𝐼𝑑  𝐼𝑞]
𝑇 (13) 

𝑇(𝜃𝑒
′)𝑇 =

[
 
 
 

cos(𝜃𝑒
′) −sin(𝜃𝑒

′)

cos (𝜃𝑒
′ −

2𝜋

3
) − sin (𝜃𝑒

′ −
2𝜋

3
)

cos (𝜃𝑒
′ +

2𝜋

3
) −sin (𝜃𝑒

′ +
2𝜋

3
)]
 
 
 

  

 

 

(14) 

For the sake of brevity, 𝐼𝑎
′  is chosen as a criterion for the 

following examinations. 

𝐼𝑎
′ = 𝐼𝑚 sin(𝜃𝑒

′), (15) 

where, according to Fig. 2, 

𝜃𝑒
′ = 𝜃𝑒 + 𝜃𝐸𝑟𝑟𝑜𝑟−𝑒, (16) 

where 𝜃𝑒 is ideal electric rotor angle of the primary motor, 

𝜃𝐸𝑟𝑟𝑜𝑟−𝑒 is rotor angle error of the primary motor, and 𝜃𝑒
′  is 

degraded rotor angle determined from the faulty resolver. 

Differences in pole numbers between the motor and resolver 

(𝑝𝑟𝑒𝑠 ≠ 𝑝) is regarded as a coefficient in electric rotor angle, 

{
𝑝𝑟𝑒𝑠𝜃𝑒/𝑝 =  𝜃𝑟

𝑝𝑟𝑒𝑠𝜃𝐸𝑟𝑟𝑜𝑟−𝑒/𝑝 =  �̃�
. (17) 

 (For this study, 𝑝𝑟𝑒𝑠 is 1, and 𝑝 is 2.) Moreover, according 

to the intrinsic periodicity of the resolver, 𝜃𝐸𝑟𝑟𝑜𝑟−𝑒 can be 

written as the Fourier series in (18). By referring to (15), 

sin(𝜃𝑒
′ ) must be rewritten for calculating 𝐼𝑎

′  through (16)-(18), 

as (19)-(20). Using Taylor’s trigonometric theorem, (20) will 

be rewritten. Thereby, substituting (20) into (19) and 

calculating (15) gives (21). Using a satisfactory estimate, the 

investigation of CUI can only be on the degradation of the main 

order of stator currents. Details are given in Appendix for more 

clarity. Similar comprehensive evaluations can be performed 

for 𝐼𝑏
′  and 𝐼𝑐

′ . Then, the CUI indicates the degradation of stator 

currents and can be written as the ratio of negative sequence 

current (𝐼𝑁) to positive sequence current (𝐼𝑃),  

𝐶𝑈𝐼 =  |
𝐼𝑁

𝐼𝑃
| × 100% . (22) 

The above analytical modeling is an efficient tool for improving 

resolver accuracy and improving fault tolerance. It also 

provides a simpler resolver fault effect analysis for PMSM 

stator currents and CUI, which often requires more complex 

and time-consuming analyses involving the drive system.  
 

IV. SURROGATE-BASED RESOLVER OPTIMIZATION IN 

FAULTY CONDITION 

A. Methodology 

In the case of resolver geometric design, as shown in [2], a 

slight change in resolver geometry, especially the rotor contour 

of the VR resolver, can significantly affect resolver accuracy. 

However, evaluating a large number of designs with finite 

element analysis (FEA) is time-consuming, especially when 

also evaluating the CUI in the PMSM drive system. By 

employing the analytical modeling in (21), the drive system can 

be removed from the model, speeding up the simulations. 

Nonetheless, it is still quite time-consuming simply to evaluate 

a large number of resolver geometries with FEA, so surrogate 

modeling can be used as a faster alternative. The methodology 

of surrogate modeling has three stages, including design of 

experiments (DOE), surrogate model training, and validation 

[22].  

In this study, DOE was generated using optimal Latin 

hypercubes sampling designs (OLHSD) to gain the maximum 

insight into the design with the fewest FEA simulations [23]. In 

the training stage, the anisotropic Kriging modeling was 

employed due to its higher accuracy than response surface 

methodology (RSM) and lower complexity than an artificial 

neural network (ANN) [24]. Accordingly, six Kriging surrogate 

models (SMs) are trained to estimate the magnitude and the 

angle of the degraded stator currents, along with one Kriging 

SM for estimating average of absolute position error (AAPE) in 

faulty resolver conditions. Surrogate modeling provides the 

connection between the degraded stator currents and the 

resolver geometry. FEA and the analytical model in (21) are 

used to generate the training dataset. After training, the SMs can 

be applied to evaluate many resolver geometries. 

The surrogate modeling in this study focuses on changing 

the resolver rotor contour in a 1-X VR resolver, considering the 

stator geometry and winding configuration fixed. In VR 

resolvers, the air-gap length (𝛿) varies as follows [17]: 

𝛿 =
𝐺𝑚𝑖𝑛𝐺𝑚𝑎𝑥

(𝐺𝑚𝑖𝑛 + 𝐺𝑚𝑎𝑥) + (𝐺𝑚𝑖𝑛 − 𝐺𝑚𝑎𝑥) cos 𝜑
 (23) 

𝜃𝐸𝑟𝑟𝑜𝑟−𝑒 = 𝑝𝑟𝑒𝑠�̃� /𝑝 = 𝑝𝑟𝑒𝑠𝜃0/𝑝 +∑ 𝑝𝑟𝑒𝑠𝜃𝑁 sin ( 𝑁𝑝𝑟𝑒𝑠𝜃𝑒/𝑝 + 𝜑𝑁) /𝑝  

∞

𝑁=1

 (18) 

sin(𝜃𝑒
′) =  sin(𝜃𝑒 + 𝜃𝐸𝑟𝑟𝑜𝑟−𝑒  ) =  sin(𝜃𝑒) cos(𝜃𝐸𝑟𝑟𝑜𝑟−𝑒) +  cos(𝜃𝑒) sin(𝜃𝐸𝑟𝑟𝑜𝑟−𝑒)  

 
(19) 

{
cos(𝜃𝐸𝑟𝑟𝑜𝑟−𝑒) =  cos(𝑝𝑟𝑒𝑠𝜃0/𝑝 + ∑ 𝑝𝑟𝑒𝑠𝜃𝑁 sin ( 𝑁𝑝𝑟𝑒𝑠𝜃𝑒/𝑝 + 𝜑𝑁) /𝑝  

∞
𝑁=1 )

sin(𝜃𝐸𝑟𝑟𝑜𝑟−𝑒) =  sin(𝑝𝑟𝑒𝑠𝜃0/𝑝 + ∑ 𝑝𝑟𝑒𝑠𝜃𝑁 sin (𝑁𝑝𝑟𝑒𝑠𝜃𝑒/𝑝 + 𝜑𝑁) /𝑝  
∞
𝑁=1 )

  

 

(20) 

𝐼𝑎
′ = 𝐼𝑚 [{(sin (𝜃𝑒 +

𝑝

 𝑝𝑟𝑒𝑠
𝜃0)) [𝐴]} − {(cos (𝜃𝑒 +

𝑝

 𝑝𝑟𝑒𝑠
𝜃0)) [𝐵]}]  

𝐴 = 1 − ∑ (
(

𝑝

 𝑝𝑟𝑒𝑠
𝜃𝑁)

2

4
) + (

(
𝑝

 𝑝𝑟𝑒𝑠
𝜃𝑁)

2

4
) cos (2𝑁

 𝑝𝑟𝑒𝑠 𝜃𝑒

 𝑝
+ 2𝜑𝑁)

∞
𝑁=1   

𝐵 = ∑
𝑝

 𝑝𝑟𝑒𝑠
𝜃𝑁 sin (𝑁

 𝑝𝑟𝑒𝑠 𝜃𝑒

 𝑝
+ 𝜑𝑁) −

(
𝑝

 𝑝𝑟𝑒𝑠
𝜃𝑁)

3

6
(
3

4
) sin (𝑁

 𝑝𝑟𝑒𝑠 𝜃𝑒

 𝑝
+ 𝜑𝑁) +

(
𝑝

 𝑝𝑟𝑒𝑠
𝜃𝑁)

3

6
(
1

4
) sin (3𝑁

 𝑝𝑟𝑒𝑠 𝜃𝑒

 𝑝
+  3𝜑𝑁)

∞
𝑁=1   

(21) 
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where 𝜑 is the angular coordinate, 𝐺𝑚𝑖𝑛 is the minimum air-gap 

length and 𝐺𝑚𝑎𝑥 is the maximum air-gap length. As shown, the 

eccentricity has the effect of intensifying the 3rd and 5th orders 

and producing the 2nd order of the signal voltages. According to 

[2], mitigating the 3rd order will be most effective in improving 

resolver accuracy. So, (23) can be rewritten as below [25]: 

 

𝛿 =
𝐺𝑚𝑖𝑛𝐺𝑚𝑎𝑥

(𝐺𝑚𝑖𝑛+𝐺𝑚𝑎𝑥)+(𝐺𝑚𝑖𝑛−𝐺𝑚𝑎𝑥) cos𝜑−𝐾𝑝 cos 3𝜑
  (24) 

where 𝐾𝑝 is the coefficient of injected 3rd order. Besides 𝐾𝑝, the 

variation of 𝐺𝑚𝑖𝑛 can affect accuracy. In our study, 𝐺𝑚𝑎𝑥  will 

be constant at the same value as the initial design, 2 mm. 

Consequently, the training dataset will be based on varying 

𝐺𝑚𝑖𝑛 and 𝐾𝑝 in the 1-X VR resolver rotor contour. Fig. 3 gives 

a summary of the DOE, surrogate modeling, and optimization 

using the evolutionary non-dominated sorting genetic algorithm 

II (NSGA-II).  

B. Results and Discussion 

The variation range of 𝐺𝑚𝑖𝑛 and 𝐾𝑝 in the DOE must be 

chosen carefully to cover all of the possible individuals in the 

design space. As shown in Fig. 3, 𝐺𝑚𝑖𝑛 varies from 0.3 mm to 

0.8 mm and 𝐾𝑝 from 0 mm to 0.18 mm. Accordingly, using 

OLHSD and 2D FEA, alongside the analytical model in (21), 

120 geometries were evaluated to obtain the AAPE, the 

magnitudes of the degraded stator currents, and the angles of 

degraded stator currents in the eccentric condition (0.1 mm 

static eccentricity).  

B.1. Surrogate Modeling and Efficiency analysis 

After dividing the DOE into training and test sets with a ratio 

of 80% to 20%, using the training set along with the anisotropic 

Kriging algorithm gives the SMs, with the results displayed in 

Fig. 4. Two accuracy metrics, R‐Squared (𝑅2) and Mean 

Normalized Error (MNE), are employed to assess the SMs 

using the test set. Table II shows that the SMs have significant 

accuracy in predicting the AAPE metric and the magnitude and 

angle of degraded stator currents, as the R2 score is 

approximately 1 and the MNE is near zero. 

B.2. Surrogate-based Multi-objective Optimization 

The NSGA-II algorithm aims to identify the rotor contour 

designs optimally based on the minimum value of the two 

objectives, CUI and AAPE, within the design and drive 

constraints, as shown below 

 

Fig. 3. Procedure for the employed multi-objective surrogate-based 
optimization (MOSBO), including design of experiments (DOE), surrogate 

modeling, and NSGA-II. 
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TABLE II 

VALIDATION OF THE TRAINED SURROGATE MODELS  

Surrogate Model R‐Squared 

(𝑅2) 

Mean Normalized Error 

(MNE) 

AAPE 0.996 0.00136 

|𝐼𝑎
′ | 0.995 0.00184 

∢ 𝐼𝑎
′  0.970 0.00278 

|𝐼𝑏
′ | 0.998 0.00107 

∢ 𝐼𝑏
′  0.999 0.00025 

|𝐼𝑐
′| 0.986 0.00297 

∢ 𝐼𝑐
′  0.999 0.00020 

 

 

          

           

Fig. 4. The trained Surrogate Models (SMs) for AAPE and stator currents degradation. 
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𝐹𝑚𝑖𝑛 = (
𝐶𝑈𝐼𝑓𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛

𝐶𝑈𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛
,
𝐴𝐴𝑃𝐸𝑓𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛

𝐴𝐴𝑃𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛
)  (25) 

𝑚𝑖𝑛
𝐺𝑚𝑖𝑛,𝑘𝑝

𝐹𝑚𝑖𝑛   𝑠. 𝑡:

{
 
 

 
 

0.3 mm < 𝐺𝑚𝑖𝑛 < 0.8 mm
0 mm < 𝐾𝑝 < 0.18 mm

𝐶𝑈𝐼 < 5%
𝐴𝐴𝑃𝐸 < 0.5 deg.

|𝜃𝐼𝑎 − 𝜃𝐼𝑏  | + |𝜃𝐼𝑎 − 𝜃𝐼𝑐| + |𝜃𝐼𝑏 − 𝜃𝐼𝑐| =
8𝜋

3

  (26) 

where the fifth constraint guarantees the 120 degrees of phase-

shifting between stator currents. Accordingly, 10,000 designs, 

including 20 generations of 500 individuals each, were 

generated before the algorithm converged. Fig. 5 shows the CUI 

and AAPE of the designs. In the initial design, the 𝐺𝑚𝑖𝑛, 𝐾𝑝, 

AAPE, and CUI values were 0.5 mm, 0 mm, 0.1394 deg., and 

5.2%, respectively, with the 0.1 mm static eccentricity. The 

final design, which is chosen from the Pareto front according to 

(25), achieved 𝐺𝑚𝑖𝑛, 𝐾𝑝, AAPE, and CUI values of 0.5 mm, 

0.09 mm, 0.033 deg., and 0.2662%, respectively, with the 0.1 

mm static eccentricity. Fig. 6 illustrates the AAPE and CUI of 

the final design.  

Inverter-driven machines commonly have a 5% CUI 

constraint, according to the derating condition of the drive [26]. 

Thus, the CUI constraint can be used to limit the eccentricity 

percentages that are acceptable.   

B.3. Computational Cost 

Designing the resolver to obtain higher accuracy and fault 

tolerance can be quite time-consuming. Moreover, considering 

the impact of resolver error on the drive performance can 

increase complexity and computation time. Each of the 120 

designs evaluated via 2D FEA for the DOE required 

approximately 48 minutes to evaluate using a high-performance 

computing cluster.  Evaluating the impact on drive performance 

using MATLAB/Simulink requires another 5 minutes per 

design. On the other hand, by employing the analytical model 

in (21), the 5-minute evaluation in Simulink can be avoided. 

Using 2D-FEA for the 10,000 NSGA-II designs would be 

extraordinarily slow. However, with the surrogate model, the 

NSGA-II is completed within only 30 minutes including both 

training the surrogate model and optimization. Considering the 

above times, taking advantage of the surrogate and analytical 

models gives a significant time saving (more than 98.92%), as 

shown in Table III.   

V. EXPERIMENTAL MEASUREMENTS 

The final design of the rotor contour (𝐺𝑚𝑖𝑛 = 0.5 mm,  

𝐾𝑝 = 0.09 mm) was built and tested experimentally in the 

PMSM drive control system to verify the above analyses. Fig. 

7 shows the prototype VR rotor and stator with the CTNOW 

configuration. The PMSM’s technical data is shown in Table 

IV. A UniDrive SP size 2023 (7.5 KW) is employed to drive the 

PMSM, while the prototype VR resolver gives the rotor angle 

and angular velocity feedback. The FOC algorithm is employed 

for the control strategy, and the inverter’s switching frequency 

is 6 kHz. As the resolver signal voltages processing is  

necessary to extract the rotor angle and angular velocity, a 

signal module with 14-bit operating resolution is used along 

with the UniDrive. The signal module also supplies the 

excitation winding with a 4 Vrms, 6 kHz sinusoidal signal. The 

ratio of turn numbers between the signal and excitation 

windings is 2:1. Before running the drive system, the PMSM 

and resolver are aligned, so the initial rotor angle error is zero. 

In order to test the resolver in the faulty condition, 0.1 mm static 

eccentricity is created in the resolver by modifying the stator 

frame. As the PMSM by default has an absolute encoder, the 

accuracy degradation of the resolver under eccentricity can be 

 

Fig. 5. CUI versus AAPE for the designs generated by the NSGA-II.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. (a) The position errors of the initial and optimized resolver designs 

and the drive currents with the (b) initial and (c) optimized resolver designs. 

 

TABLE III 

COMPARISON OF COMPUTATIONAL COST  

Type of Method Total  

Number 

Computational 

Burden (Min.) 

2D FEA for DOE 120 5,760 

2D FEA for Optimization 10,000 480,000 

PMSM drive (SIMULINK) for DOE 120 600 

PMSM drive (SIMULINK)  

for Optimization 

10,000 50,000 

Analytical Model of Stator Currents 3 3 

Surrogate Modeling (Training) 7 7 

NSGA-II Algorithm for Optimization 10,000 25 
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shown by calculating the rotor angle error and the AAPE 

criterion. 

The reference encoder designation is 154SG, with a 24-bit 

resolution. Due to the significant negative effect of excitation 

frequency and switching frequency, a low-pass filter (LPF) 

must be used after the resolver angular velocity feedback to 

attenuate the high-frequency oscillations. The test bench, 

including PMSM, drive system, and 1-X VR resolver, is shown 

in Fig. 8. The signal voltages of the built resolver in healthy and 

faulty conditions (static eccentricity with 0.1 mm stator 

movement) are displayed in Fig. 9. Moreover, the stator 

currents of PMSM are displayed in Fig. 10 under the healthy 

and faulty conditions of the resolver. The measurements verify 

that the CUI with the optimized resolver is adequately small 

(0.0974% and 0.3372% under healthy and eccentric conditions, 

respectively). Also, the AAPE of the built resolver is 0.042 deg, 

which agrees with the final design’s AAPE (0.033 deg.). Using 

the peak detection method and MATLAB software to avoid 

error from the RDC effect, the accuracy of the built resolver 

was calculated.   

VI. CONCLUSION 

This paper has evaluated the impact of static eccentricity on 

the resolver accuracy and the resulting impact on PMSM drive 

performance when using FOC in the constant-flux region. Also, 

an analytical model for the degraded stator currents resulting 

from rotor angle errors was introduced to significantly 

accelerate simulations. Accordingly, the eccentricity constraint 

in various conditions and movements (dynamic and static 

eccentricity) were determined to avoid de-rating the drive. The 

mitigation of CU is critical to avoid excessive heat generation 

in the stator windings. However, modifying the resolver rotor 

contour can effectively reduce the CU, even in the presence of 

eccentricity. Thus, first, highly accurate SMs were developed 

for quick estimation of the resolver accuracy and stator currents 

degradation in faulty resolver conditions. Then, the trained SMs 

were employed in the NSGA-II algorithm to find an optimal 

resolver design, which has low AAPE, produces minimal CU, 

and well tolerates eccentricity. Through the surrogate and 

analytical modeling in this study, the computation time was 

reduced by about 98.9% relative to using FEA and Simulink to 

evaluate each design. Finally, the designed resolver was 

prototyped (rotor contour and stator with CTNOW 

configuration), and its high accuracy and mitigation of CUI 

were verified experimentally.  

VII. APPENDIX 

Using the Taylor trigonometric theorem, (20) will be 

rewritten as (A1)-(A2). Accordingly, by substituting (A1)-(A2) 

into sin(𝜃𝑒
′),  𝐼𝑎

′  will be written as (21). In this study, 𝑝𝑟𝑒𝑠 is 1, 

and 𝑝 is 2; so (21) can be rewritten as (A3). Since the 

investigation of CUI can only be on the degradation of the main 

order of stator currents, (A3) will be rewritten as (A4).   
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θ0) cos (

p

 pres
θN  sin ( N

 pres θe

 p
+ φN) ) −  cos (

p

 pres
θ0) sin (

p

 pres
θN  sin ( N

 pres θe

 p
+ φN) ) 

  

 

(A1) 

 

{
 
 

 
 

cos (
p

 pres
θN  sin ( N

 pres θe

 p
+ φN)) = 1 − ∑

(
p

 pres
θN)

2
sin (N

 pres θe
 p

+ φN)
2

4
∞
𝑁=1  

sin (
p

 pres
θN  sin ( N

 pres θe

 p
+ φN)) = ∑

p

 pres
θN sin (N

 pres θe

 p
+ φN) −

(
p

 pres
θN)

3
sin ( N

 pres θe
 p

+ φN)
3

6
∞
𝑁=1  

 

 

(A2) 

𝐼𝑎
′ = 𝐼𝑎

′ = 𝐼𝑚 [{(sin (𝜃𝑒 +
𝑝

 𝑝𝑟𝑒𝑠
𝜃0)) [𝐶]} − {(cos (𝜃𝑒 +

𝑝

 𝑝𝑟𝑒𝑠
𝜃0)) [𝐷]}]  

𝐶 = 1 − ∑ (𝜃𝑁)
2 + (𝜃𝑁)

2 𝑐𝑜𝑠(𝑁𝜃𝑒 + 2𝜑𝑁)
∞
𝑁=1    

𝐷 = ∑
𝜃𝑁

2
𝑠𝑖𝑛 (

𝑁𝜃𝑒

2
+ 𝜑𝑁) − (𝜃𝑁)

3 𝑠𝑖𝑛 (
𝑁𝜃𝑒

2
+ 𝜑𝑁) +

(𝜃𝑁)
3

3
𝑠𝑖𝑛 (3

𝑁𝜃𝑒

2
+ 3𝜑𝑁)

∞
𝑁=1   

(A3) 

𝐼𝑎
′ = 𝐼𝑚 [𝑠𝑖𝑛 (𝜃𝑒 +

𝜃0

2
) [1 − ∑ (𝜃𝑁)

2∞
𝑁=1 ] +

(𝜃2)
2

2
 𝑠𝑖𝑛 (−𝜃𝑒 +

𝜃0

2
− 2𝜑2) −

𝜃4

4
𝑠𝑖𝑛 (−𝜃𝑒 +

𝜃0

2
− 𝜑4) + (

𝜃4

2
)
3
𝑠𝑖𝑛 (−𝜃𝑒 +

𝜃0

2
−𝜑4)]  (A4) 

 


