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Abstract—Magnetic gears use noncontact operation to achieve 

the same function as mechanical gears but benefit from a variety 

of potential advantages due to their noncontact power transfer. 

This paper proposes a new topology of coaxial magnetic gear that 

utilizes flux angle mapping (FAM). The ferromagnetic pieces (FPs) 

in the FAM magnetic gear are designed to map flux from any given 

electromagnetic angle in the inner airgap to the same 

electromagnetic angle in the outer airgap. The gear ratio is derived 

based on this mapping function. Using finite element analysis 

(FEA), the performance of the new topology is investigated by 

changing the shape, size and number of FPs. Additionally, the 

performance of the new topology is compared against a 

conventional coaxial magnetic gear at high gear ratios (≥ 40:1). 

Based on the FEA results, the proposed FAM CMG can obtain 

higher gravimetric torque densities (GTDs) than the conventional 

gear at high gear ratios. For example, at a gear ratio of 80, the 

FAM gear achieves about 250% as much GTD as the conventional 

gear. The FAM gear can be designed with symmetry to balance 

the magnetic forces on each rotor; however, this comes at the cost 

of reduced gear ratio. 

Keywords—Ferromagnetic pieces, finite-element analysis 

(FEA), flux angle mapping, gear ratio, magnetic gear, permanent 

magnet, torque density. 

I. INTRODUCTION 

Mechanical gears have a wide array of applications; 

however, due to the inherent physical contact between teeth, 

they have a few disadvantages. The mechanical contact between 

teeth causes frictional losses and wear, reduces reliability, and 

increases maintenance requirements. Magnetic gears can 

perform the same function as traditional mechanical gears but 

use modulated magnetic fields, instead of meshing teeth, to 

transfer power. This noncontact operation yields potential 

advantages, such as higher reliability, increased efficiency, 

overload protection, and reduced acoustic noise. Due to these 

advantages, magnetic gears have been proposed for a wide range 

of applications, including electric vehicles [1], [2], wind turbines 

[3], [4], ocean wave energy harvesting [5], [6], and ship 

propulsion [7], [8]. Coaxial magnetic gears are composed of 

permanent magnets (PMs), ferromagnetic back irons, and 

ferromagnetic pieces (called modulators for the conventional 

coaxial topology). Fig. 1(a) shows the conventional radial flux 

coaxial magnetic gear (CRCMG). For the CRCMG, the number 

of modulators (Q2) for optimal operation is determined by the 

Rotor 1 and Rotor 3 pole counts according to (1) 

 

 𝑄2 = 𝑃1 + 𝑃3 (1) 

where P1 and P3 are the number of pole pairs on Rotors 1 and 3, 

respectively. As described in [9], [10], the modulators create a 

permeance function that modulates the flux densities produced 

by the PMs on each rotor, creating the gearing effect. The largest 

gear ratio (G) is obtained by fixing Rotor 3, which yields 

 

 𝐺|𝜔3=0 =
𝜔1

𝜔2
=

𝑄2

𝑃1
 (2) 

where ω1, ω2, and ω3 represent the angular speeds of Rotors 1, 

2, and 3 respectively.  

The gear ratio of CRCMGs is increased by increasing the 

ratio of the number of modulators (Q2) and Rotor 3 pole pairs 

(P3) to the number of pole pairs on Rotor 1 (P1), as described 

by (1) and (2). As demonstrated in [11]-[13], an increase in gear 

ratio generally reduces the efficiency and torque density of the 

CRCMG, and most CRCMG prototypes have had gear ratios 

less than 12:1 [11].  This performance degradation occurs 

because, at high gear ratios, the pole pair difference is quite 

high. Thus, the Rotor 3 PMs become very tangentially narrow, 

while the Rotor 1 PMs are tangentially very wide, as in Fig. 

1(a); the difference in pole arc degrades performance, as it is 

impossible to simultaneously optimize both sets of PMs. 

Additionally, the wide Rotor 1 pole arcs require thick back irons 

to contain the flux paths, increasing the weight of the magnetic 

gear. 

Thus, another topology that has been proposed for high gear 

ratios is the cycloidal magnetic gear (CyMG) [14]-[19]. 

However, CyMGs have significant mechanical challenges 

resulting from nonconcentric motion and inherently unbalanced 

forces [14]-[16], [20], [21].  These challenges result in a large 

number of bearings and large forces on the bearings, which can 

degrade their lifetime and efficiency [14]. 

This paper proposes a novel operating principle for 

magnetic gears, flux angle mapping (FAM).  An example FAM 

gear is shown in Fig. 1(b).  FAM gears avoid the nonconcentric 

motion of CyMGs, greatly simplifying their mechanical design.  

After deriving the gear ratios for FAM gears, the paper 

parametrically compares FAM gears against CRCMGs using 

2D finite element analysis (FEA). 

II. OPERATING PRINCIPLE 

In the FAM topology, the ferromagnetic pieces (FPs) serve a 

different function than in the CRCMG. When using FAM, the 

FPs are slanted to transfer flux from an electromagnetic angle on 
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Rotor 1 to the same electromagnetic angle on Rotor 3. This can 

be seen by comparing how the flux moves between the rotors in 

Fig. 2 (with FPs) and Fig. 3 (without FPs). At no load, as in Fig. 

1(b), this means that the radially inner side of each FP is adjacent 

to the same polarity PM as the radially outer side. Thus, the FPs 

do not all share the same shape, and the number of FPs is not 

directly related to P1 and P3. 

 

Fig. 4 illustrates the radial flux density created in the outer 

air gap by the inner PMs with or without the FPs. Without the 

FPs there is only the P1 harmonic, which is 20 in this case. (Its 

multiples have too high order to appear on the graph.) However, 

with the FPs, there is a significant P3 (21, in this case) harmonic. 

Mathematically, the FPs can be described by defining a 

mapping function from an angle in the outer airgap (∅𝑂) to an 

angle in the inner airgap (∅𝐼), as described by

 
(a)                                                                                              (b) 

Fig. 1: (a) The CRCMG topology and (b) the proposed FAM topology each with a gear ratio of 20:1.

 
 

 
Fig. 2. Flux line plot of the design shown in Fig. 1(b)  

 

 
Fig. 3. Flux line plot of the design shown in Fig. 1(b) without FPs present 

 

 
           (a) 

 
       (b) 

Fig. 4. (a) Radial flux density in the outer air gap generated by the Rotor 1 
PMs with and without the FPs for the design in Fig. 1(b) and (b) the harmonic 

components.  
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 ∅𝐼 =
𝑃3

𝑃1
(∅𝑂 − 𝜃2) + 𝜃2, (3) 

where θ2 is the angular position of the rotor holding the FPs 

(Rotor 2). The fundamental component of the MMF 

distribution in the inner airgap (FPM1,In) produced by the Rotor 

1 PMs can be described by 

 

 𝐹𝑃𝑀1,𝐼𝑛(∅𝐼) = 𝐹1 cos(𝑃1(∅𝐼 − 𝜃1)), (4) 

where F1 is the magnitude of the fundamental component and 

θ1 is the angular position of Rotor 1. Applying the mapping 

function in (3) into the MMF equation in (4) yields the MMF 

distribution produced by the inner (Rotor 1) PMs in the outer 

airgap (FPM1,Out) defined by 

 

 𝐹𝑃𝑀1,𝑂𝑢𝑡(∅𝑂) = 𝐹1 cos(𝑃3∅𝑂 − (𝑃3 − 𝑃1)𝜃2 − 𝑃1𝜃1). (5) 

This yields an MMF distribution with P3 pole pairs, which 

can interact with the outer (Rotor 3) PMs to produce torque.  

In steady-state, θ2 and θ1 can be expressed as functions of 

time (t) in terms of the Rotor 2 and Rotor 1 speeds (ω2 and 

ω1, respectively) and the Rotor 2 and Rotor 1 initial positions 

(θ2,0 and θ1,0, respectively), as given by  

 

 𝜃2 = 𝜔2𝑡 + 𝜃2,0 (6) 

 𝜃1 = 𝜔1𝑡 + 𝜃1,0. (7) 

If the outer (Rotor 3) PMs are stationary, the MMF 

distribution produced by the Rotor 1 PMs in the outer airgap 

should be stationary to interact with the stationary Rotor 3 

PMs.  Plugging (6) and (7) into (5) and keeping the MMF 

distribution stationary yields  

 

 −(𝑃3 − 𝑃1)𝜔2 − 𝑃1𝜔1 = 0, (8) 

which gives the gear ratio (G) given in 

 

 𝐺|𝜔3=0 =
𝜔2

𝜔1
=

−𝑃1

𝑃3−𝑃1
. (9) 

In (9) the negative sign indicates that the rotors rotate in 

opposite directions.  From a practical perspective, it is likely 

reasonable for most applications to keep the outermost 

component (Rotor 3) stationary, yielding the gear ratio in (9).  

However, if Rotor 3 is rotating at a speed of ω3, then the speed 

of the MMF distribution in (5) should rotate at the same 

electromagnetic speed as the Rotor 3 PMs.  This yields 

 

 −(𝑃3 − 𝑃1)𝜔2 − 𝑃1𝜔1 = −𝑃3𝜔3, (10) 

which can be solved to produce the gear ratios resulting from 

keeping either Rotor 1 or Rotor 2 stationary: 

 

 𝐺|𝜔1=0 =
𝜔2

𝜔3
=

𝑃3

𝑃3−𝑃1
 (11) 

 𝐺|𝜔2=0 =
𝜔1

𝜔3
=

𝑃3

𝑃1
. (12) 

If Rotor 1 is kept stationary, the gear ratio in (11) can be 

slightly higher than in (9), if Rotor 3 has more pole pairs than 

Rotor 1 due to its larger diameter.  This comes at the 

disadvantage of having the outermost component rotating, 

but this may be acceptable or even desirable in some 

applications.  On the other hand, keeping Rotor 2 stationary 

yields a low gear ratio, as in (12), unless a there is a large 

difference between P1 and P3.  Such a large difference is 

undesirable because it would likely cause the design to 

perform poorly, as with the CRCMG at high gear ratios [11]-

[13]. 

In the proposed FAM topology, according to (9), a high 

gear ratio can be achieved with a difference between P1 and 

P3 as small as one pole pair. This allows the PMs on Rotors 

1 and 3 to have similar pole arcs, as in Fig. 1(a), potentially 

allowing for better performance at high gear ratios. 

Additionally, the FAM gears do not have such wide pole arcs, 

which avoids the need for thick and heavy back irons.  Thus, 

we expect that FAM gears can outperform CRCMGs at high 

gear ratios. 

III. DESIGN STUDY 

A design study with the parameter combinations shown in 

Table I was evaluated with 2D FEA for both the CRCMG and 

the FAM topologies. The PMs were assumed to be NdFeB 

N48SH at room temperature, and M19 was used for the 

ferromagnetic components. For the CRCMG, the Q2 and P3 

values were selected to yield noninteger gear ratios near 

target gear ratios of 40, 60, and 80; this was done to reduce 

torque ripple as explained in [11]. Furthermore, the designs 

were simulated with radially magnetized PMs (Hb = 1) and 

with discrete Halbach arrays with tangentially magnetized 

PMs between the radially magnetized PMs (Hb = 2). Since  

 
TABLE I. SIMULATED PARAMETERS FOR THE 2D FEA DESIGN STUDY 

Symbol and Description 
Values 

CRCMG AFAM SFAM 

P1-Number of pole pairs 

on rotor 1 
3,4,5,6 40,60,80 80,120,160 

Q2 - Number of 

ferromagnetic pole pieces 
P1 + P3 142,190…286 

P3 - Number of pole pairs 

on rotor 3 
118 41,61,81 82,122,162 

ROut - Outer radius (mm) 200 

TBI1 - Radial thickness of 
Rotor 1 back irons (mm) 

0,5,10,20 0,5 

TPM1 - Radial thickness of 

Rotor 1 PMs 
3,6…18 

TFe - Radial thickness of 
ferromagnetic pieces 

(mm) 

4,8,12 

TBI3 - Radial thickness of 
Rotor 3 back irons (mm) 

0,5 

TGap - Radial thickness of 
air gaps (mm) 

1 

αFe - Angular fill factor of 

ferromagnetic pieces 
0.4,0.45,0.5,0.6 

kPM - PM thickness ratio 0.5,0.75,1 

Hb - Number of PM 
pieces per pole in Halbach 

array 

1,2 
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the number of FPs is not directly related to P1 and P3 for FAM 

designs, the difference in pole pair counts can be any positive 

integer. The case with P3 – P1 = 1, as shown in Fig. 1(b) is 

asymmetric, which may result in unbalanced magnetic forces.  

Thus, in addition to these asymmetric FAM (AFAM) cases, 

designs with P3 – P1 = 2 were also evaluated. Fig. 5 illustrates 

such a design with a gear ratio of 20:1. (Note that with a 

difference in pole counts larger than 1, the outer position of 

some FPs is shifted by a Rotor 3 pole pair pitch relative to the 

mapping function defined in (3) to reduce their length.) This 

yields symmetry, which can cancel out the unbalanced forces.  

However, these symmetric FAM (SFAM) cases require twice 

as many pole pairs on Rotors 1 and 3 to achieve the same gear 

ratio as the AFAM cases. 

The PM thickness ratio, kPM, was used to vary the radial 

thicknesses of the Rotor 3 PMs (TPM3) based on the Rotor 1 

PM radial thickness (TPM1) as given by  

 

 𝑘𝑃𝑀 =  
𝑇𝑃𝑀3

𝑇𝑃𝑀1
 (13) 

Two normalized metrics, volumetric torque density (VTD) 

and gravimetric torque density (GTD), are used to compare 

the topologies. The equations for these metrics are given by  

 

 𝑉𝑇𝐷 =  
𝐿𝑜𝑤−𝑆𝑝𝑒𝑒𝑑 𝑅𝑜𝑡𝑜𝑟 𝑆𝑙𝑖𝑝 𝑇𝑜𝑟𝑞𝑢𝑒

𝐴𝑐𝑡𝑖𝑣𝑒 𝑉𝑜𝑙𝑢𝑚𝑒
 (14) 

 𝐺𝑇𝐷 =
𝐿𝑜𝑤−𝑆𝑝𝑒𝑒𝑑 𝑅𝑜𝑡𝑜𝑟 𝑆𝑙𝑖𝑝 𝑇𝑜𝑟𝑞𝑢𝑒

𝐴𝑐𝑡𝑖𝑣𝑒 𝑀𝑎𝑠𝑠
 (15) 

The term “active volume” refers to the volume of the smallest 

cylinder enclosing all the active components, such as PMs, 

FPs, and rotor back irons, and does not include any housings, 

brackets, bearings, etc. Similarly, the term “active mass”, 

refers to the mass of the active components. 

IV. DATA TRENDS 

Fig. 6 illustrates the torque densities defined in (14) and 

(15) for the CRCMG, AFAM and SFAM topologies. At gear 

ratios of about 60 and higher, the AFAM topology starts 

outperforming the CRCMG in terms of VTD. However, the 

SFAM topology consistently achieves lower VTD than both 

the CRCMG and AFAM topologies within the range of gear 

ratios evaluated. On the other hand, at least one of the FAM 

topologies achieves higher GTDs than the CRCMG across all 

gear ratios 40 and higher. For both VTD and GTD, the 

optimal SFAM design with a gear ratio of 40 (P1 = 80, P3 = 

82) achieves approximately the same performance as the 

optimal AFAM design with a gear ratio of 80 (P1 = 80, P3 = 

81), as these designs have very similar pole counts. For most 

cases within the range of high gear ratios evaluated, the 

AFAM outperforms the SFAM for a given gear ratio because 

the SFAM requires twice as many poles. However, because 

maximizing GTD tends to favor higher pole counts than 

maximizing VTD [22], the SFAM topology achieves higher 

GTDs than the AFAM topology at a gear ratio of 40. The  
 

 
Fig. 5. An example of an SFAM design with a 20:1 gear ratio. 

 

 

 
           (a) 

 
         (b) 

Fig. 6. (a) VTD and (b) GTD plotted against gear ratio for the three 
topologies. 

 

benefits of FAM are more significant for GTD than VTD 

because the FAM topologies do not require very small Rotor 

1 pole counts to achieve high gear ratios; these very low Rotor 

1 pole counts tend to require thick back irons to contain the 

flux. 

Fig. 7 shows the Rotor 1 forces for the maximum GTD 

designs in Fig. 6(b) with a stack length of 100 mm. Because 

of the symmetry present in the SFAM and CRCMG designs, 

they do not experience unbalanced magnetic forces [23].  

However, the AFAM designs do experience significant 

unbalanced magnetic forces, which may require larger 

bearings and shafts and may increase bearing losses.  Thus, 

in some cases, the SFAM topology may be preferable to the 

AFAM topology, even if the AFAM topology yields higher 

VTD or GTD based on only the magnetically active volume 

or mass. 
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Fig. 7. The magnetic force on Rotor 1 for the maximum GTD designs in Fig. 
6(b) with a stack length of 100 mm. 

 

 

 
        (a) 

 
       (b) 

Fig. 8. (a) VTD and (b) GTD plotted against the number of FPs (Q2) for the 

AFAM and SFAM topologies. 

 

Fig. 8 shows how the number of FPs (Q2) affects the VTD 

and GTD of the AFAM and SFAM topologies. Unlike the 

CRCMG, Q2 is not directly related to P1 and P3 for the FAM 

topologies. Increasing Q2 tends to increase both VTD and 

GTD, at least within the range of Q2 values evaluated. 

Increasing Q2 results in more FPs, each of which is 

tangentially thinner. While this may yield a slight increase in 

torque, it can also increase manufacturing complexity. As 

previously, the trends for AFAM designs with a gear ratio of 

80 are almost identical to the trends for SFAM designs with 

a gear ratio of 40 because of the similarity in pole counts. 

Fig. 9 shows how the radial thickness of the FPs (TFe) 

affects the VTD and GTD of the three topologies. In most 

cases, the designs prefer thinner FPs (within the range 

evaluated). However, the AFAM designs with the smallest 

gear ratio evaluated achieve maximum VTD and GTD with 

the intermediate FP radial thickness. All of the other cases 

have higher pole counts, particularly on Rotor 3, so the flux 

leakage between FPs causes the designs to favor radially 

thinner FPs. 

Fig. 10 illustrates how the thickness of the PMs on Rotor 

1 (TPM1) affects the VTD and GTD of the three topologies. 

Generally, increasing the PM thickness is a means to cram 

more PM material into a design, which tends to increase VTD 

[22].  However, this also increases leakage flux, especially 

for designs with higher pole counts.  Thus, thicker PMs 

provide more VTD benefits for the CRCMG designs, which 

have 3-6 Rotor 1 pole pairs, than for the AFAM designs, 

which have 40, 60, or 80 Rotor 1 pole pairs.  For the higher 

gear ratio SFAM designs, which have up to 160 Rotor 1 pole 

pairs, increasing the PM thickness may even reduce VTD 

slightly. While increasing PM thickness does not affect the 

active volume (for a fixed outer radius and stack length), it 

does increase the active mass. Thicker magnets also increase 

the flux density and, consequently, may require thicker (and 

heavier) back irons to accommodate that flux. Thus, for each 

topology and gear ratio, the optimal PM thickness for 

maximizing GTD tends to be lower than the optimal PM 

thickness for maximizing VTD.  

 

 

 
            (a) 

 
           (b) 

Fig. 9. (a) VTD and (b) GTD plotted against the thickness of the FPs (TFe1) 

for the three topologies. 

 

 

 
           (a) 

 
           (b) 

Fig. 10. (a) VTD and (b) GTD plotted against rotor 1 PM thickness (TPM1) 

for the three topologies. 
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V. CONCLUSION 

This paper introduces the FAM operating principle for 

magnetic gears and two new coaxial magnetic gear topologies 

(AFAM and SFAM) based on this principle. By utilizing 

FAM, the direct relationship between the number of FPs and 

the rotor pole counts is broken, allowing for better 

optimization at higher gear ratios. This independent 

relationship allows the difference in pole pairs in between 

Rotors 1 and 3 to be as small as one, which can allow a better 

matching of the pole counts at high gear ratios. However, the 

conventional coaxial magnetic gear requires a few large 

Rotor 1 poles and many tiny Rotor 3 poles in order to achieve 

a high gear ratio. The results of the FEA comparison between 

the FAM topologies and the CRCMG topology yield the 

following conclusions: 

• AFAM gears can achieve higher VTDs than CRCMGs 

at very high gear ratios (at least 60 in this study).  

However, SFAM gears do not achieve as high VTDs. 

• Both AFAM and SFAM gears can achieve higher 

GTDs than the CRCMG at high gear ratios. 

• SFAM gears achieve their best performance at lower 

gear ratios than AFAM gears because SFAM gears 

require higher pole counts to achieve the same gear 

ratio. 

• AFAM gears can experience significant unbalanced 

magnetic forces, but these are canceled by symmetry 

in the SFAM gears. 

• Both AFAM and SFAM gears tend to benefit from 

increasing the number of FPs (within the range 

evaluated). 

• However, each topology tends to prefer radially 

thinner FPs, except at the lowest pole count evaluated 

for AFAM. 

• AFAM and SFAM gears see less torque increase from 

increasing the PM thickness than CRCMGs. 
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