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Abstract—The noncontact operation of magnetic gears offers 

significant potential advantages over mechanical gears. 

Reluctance magnetic gears (RMGs) have been proposed as an 

alternative to surface permanent magnet gears (SPMGs) at high 

speeds. This paper explains the operating principles of RMGs and 

provides a thorough parametric comparison between RMGs and 

SPMGs using 2-D and 3-D finite element analysis (FEA). SPMGs 

are found to outperform RMGs in torque density, as expected. 

However, contrary to the results of nonoptimized comparisons in 

previous papers, optimal SPMGs also can achieve better magnet 

utilizations and efficiencies than optimal RMGs. Additionally, the 

RMGs with the highest torque densities suffer from significantly 

more torque ripple than the SPMGs with the highest torque 

densities. Also, the simulations demonstrate that the optimal 

SPMGs and optimal RMGs with the same stack lengths tend to 

suffer comparable reductions in torque from end effects.  

Keywords—End effects, finite-element analysis (FEA), magnet 

utilization, magnetic gear, optimization, permanent magnet, 

reluctance magnetic gear, torque density, torque ripple. 

I. INTRODUCTION 

Magnetic gears are an interesting alternative to mechanical 
gears for converting energy between low-torque, high-speed 
rotation and high-torque, low-speed rotation. However, unlike 
mechanical gears, magnetic gears operate without employing 
contact between the rotors. A magnetic gear uses the interaction 
between modulated magnetic fields, instead of using 
interlocking mechanical teeth. This contactless operation 
provides potential benefits, such as improved reliability, 
reduced acoustic noise, and reduced maintenance requirements 
(no lubrication oil). Therefore, magnetic gears have been 
proposed for various applications, including traction [1], 
propulsion [2], and wind [3] and wave energy [4]. 

The most widely studied magnetic gear topology is the 
radial flux coaxial surface permanent magnet gear (SPMG) 
shown in Fig. 1(a) [1]-[3], [5]. This topology includes three 
rotors: the inner low pole count, high-speed permanent magnet 
(PM) rotor (Rotor 1), the intermediate rotor consisting of 
ferromagnetic pieces (modulators) separated by nonmagnetic 
slots (Rotor 2), and the outer high pole count, low-speed PM 
rotor (Rotor 3). 

Much of the existing magnetic gear literature focuses on 
low-speed, high-torque applications [3], [4], [6]; however, 
magnetic gears have also been proposed for higher speed 

applications [7]. Unfortunately, higher speed operation presents 
some electromagnetic and mechanical challenges for the 
conventional SPMG. Electromagnetically, higher speed 
rotation leads to higher frequency variation of the magnetic 
fields and higher eddy current losses, especially in the PMs. 
This issue can be mitigated by axially segmenting the magnets 
[8], which is analogous to laminating motor cores. However, 
this increases the manufacturing complexity. High-speed 
operation also makes retaining the Rotor 1 PMs more 
challenging. A sleeve around the PMs can hold them in place, 
but this increases the effective air gap, which reduces the 
design’s torque, and can incur eddy current losses if the sleeve 
is electrically conductive [9]. Alternatively, the PMs could be 
embedded in the Rotor 1 laminations to form an interior PM 
(IPM) rotor. However, thin bridges in laminations often provide 
flux leakage paths, which reduce the air gap flux produced by 
the PMs [10]. Additionally, these thin bridges can experience 
large mechanical stresses at high speeds [10]. 

Another magnetic gear alternative for high-speed 
applications is the reluctance magnetic gear (RMG), which is 
illustrated in Fig. 1(b) [11]-[15]. The RMG replaces the Rotor 
1 PMs with teeth, such that Rotor 1 can be formed from a single 
stack of laminations, as shown in Fig. 1(b). Eliminating the 
Rotor 1 PMs simplifies the mechanical challenges associated 
with rotating Rotor 1 at high speeds and removes the Rotor 1 
PM eddy current losses. Flux switching magnetic gears have 
also been proposed for high-speed applications [14]. Flux 
switching magnetic gears are similar to RMGs but contain extra 
PMs in the spaces between the modulators, which increases the 
manufacturing complexity. However, this study solely 
compares SPMGs and RMGs. While previous papers have 
proposed RMGs and evaluated a few designs [11]-[14], this 
paper uses significant 2-D and 3-D parametric sweeps to 
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Fig. 1. Cross-sections of (a) an SPMG and (b) an RMG. 



characterize the capabilities of RMGs and compare optimal 
RMGs against optimal SPMGs. This paper also provides a more 
accurate description of RMGs’ operating principles. 

II. OPERATING PRINCIPLES 

The principle of operation in coaxial magnetic gears is to 
modulate the magnetomotive force (MMF) of magnets through 
the modulators and create a flux distribution in the air gap [16]. 
In SPMGs, there are two sets of magnets, each creating its own 
MMF with its specific frequency. However, there is only one 
set of magnets in RMGs that can create the MMF, which will 
be modulated once by the permeance distribution of Rotor 2 and 
once by the permeance distribution of the Rotor 1 teeth. 

The operating principles of RMGs are similar to those of 
SPMGs. However, there are a few key differences. First, instead 
of the MMF distribution developed by the Rotor 1 PMs in an 
SPM gear, the Rotor 1 teeth in an RMG produce a permeance 
distribution. Equations (1) – (3) provide the Rotor 1 permeance 

(P1), Rotor 2 permeance (P2), and Rotor 3 MMF (F3) functions 

of an RMG with N1 teeth on Rotor 1, Q2 modulators on Rotor 

2, and P3 pole pairs on Rotor 3. In these equations, P1,0 and P2,0 

represent the constant permeance components, P1,i, P2,j, and 

F3,k represent the permeance and MMF spatial harmonic 

coefficients, and θ1, θ2, and θ3 represent the instantaneous 
positions of Rotors 1, 2, and 3 at time t, which are given by (4), 
(5), and (6), respectively. In (4), (5), and (6), ω1, ω2, and ω3 
represent the speeds of the three rotors, and θ1,0, θ2,0, and θ3,0 
represent the initial positions of the rotors. 

 P1(θ) = P1,0 + ∑ P1,𝑖 cos(𝑖𝑁1(θ − θ1))
∞

𝑖=1
 (1) 

 P2(θ) = P2,0 + ∑ P2,𝑗 cos(𝑗𝑄2(θ − θ2))
∞

𝑗=1
 (2) 

 F
3

(θ) = ∑ F
3,𝑘

cos(𝑘𝑃3(θ − θ3))
∞

𝑘=1
 (3) 

 θ1 = ω1𝑡 + θ1,0 (4) 

 θ2 = ω2𝑡 + θ2,0 (5) 

 θ3 = ω3𝑡 + θ3,0 (6) 

The Rotor 3 PMs’ MMF is modulated by the Rotor 2 
modulators to produce the flux distribution given by (7), where 
Φ2,3,0,k represents the flux spatial harmonics produced by the 

interaction of P2,0 and F3,k and Φ2,3,j,k represents the flux spatial 

harmonics produced by the interaction of P2,j and F3,k, as 

defined in (8) and (9). Similarly, the modulation of the Rotor 3 
MMF by the Rotor 1 teeth produces the flux distribution given 
by (10), where Φ1,3,0,k represents the set of flux spatial 

harmonics produced by the interaction of P1,0 and F3,k and 

Φ1,3,i,k is the set of flux spatial harmonics produced by the 

interaction of P1,i and F3,k, as defined in (11) and (12). 

The gearing action can be achieved by matching the pole 
counts and speeds of a term from (9) with a term from (12). This 
yields the relationship between N1, Q2, and P3 given by (13), 
where ka and kb are odd integers, and i and j are integers and can 
be positive, 0, or negative. Then, the speed relationship is given 
by (14). Selecting ka = 1, kb = 1, j = -1, and i = 1 yields (15) and 
(16). Then, the gear ratio (G) is given by (17) if Rotor 2 is 
stationary, with the negative sign denoting that Rotors 1 and 3 
rotate in opposite directions, or by (18) if Rotor 3 is stationary. 
For this study, Rotor 2 is held stationary and Rotor 3 is used as 
the low speed rotor, with the gear ratio given by (17). 

 |ka𝑃3 + 𝑗𝑄2| = |kb𝑃3 + 𝑖𝑁1| (13) 

 
ka𝑃3ω3+𝑗𝑄2ω2

ka𝑃3+𝑗𝑄2
=

kb𝑃3ω3+𝑖𝑁1ω1

kb𝑃3+𝑖𝑁1
 (14) 

 𝑄2 = 𝑁1 + 2𝑃3 (15) 

 𝑄2ω2 = 𝑁1ω1 + 2𝑃3ω3 (16) 

 G|
ω2=0

= ω1

ω3
= −

2𝑃3

𝑁1
 (17) 

 G|
ω3=0

= ω1

ω2
= 𝑄2

𝑁1
 (18) 

The gear ratio in previous papers [11]-[15] was derived by 
multiplying the permeance of Rotor 1 by the permeance of 

Rotor 2 and by the MMF of Rotor 3 (P1P2F3) which cannot be 

physically correct because the multiplication of two 
permeances and an MMF has no physical meaning, although 

 Φ2,3(θ) = F
3

(θ)P2(θ) =  ∑ Φ2,3,0,𝑘(θ)∞
𝑘=1 + ∑  ∑ Φ2,3,𝑗,𝑘(θ)∞

𝑘=1
∞
𝑗=1  (7) 

 Φ2,3,0,𝑘(θ) = F
3,𝑘
P2,0 cos(𝑘𝑃3(θ − θ3)) (8) 

 Φ2,3,𝑗,𝑘(θ) =
F3,𝑘P2,𝑗

2
(cos ((𝑘𝑃3 + 𝑗𝑄2) (θ −

𝑘𝑃3θ3+𝑗𝑄2θ2

𝑘𝑃3+𝑗𝑄2
)) + cos ((𝑘𝑃3 − 𝑗𝑄2) (θ −

𝑘𝑃3θ3−𝑗𝑄2θ2

𝑘𝑃3−𝑗𝑄2
))) (9) 

 Φ1,3(θ) = F
3

(θ)P1(θ) =  ∑ Φ1,3,0,𝑘(θ)∞
𝑘=1 + ∑ ∑ Φ1,3,𝑖,𝑘(θ)∞

𝑘=1
∞
𝑖=1  (10) 

 Φ1,3,0,𝑘(θ) = F
3,𝑘
P1,0 cos(𝑘𝑃3(θ − θ3)) (11) 

 Φ1,3,𝑖,𝑘(θ) =
F3,𝑘P1,𝑖

2
(cos ((𝑘𝑃3 + 𝑖𝑁1) (θ −

𝑘𝑃3θ3+𝑖𝑁1θ1

𝑘𝑃3+𝑖𝑁1
)) + cos ((𝑘𝑃3 − 𝑖𝑁1) (θ −

𝑘𝑃3θ3−𝑖𝑁1θ1

𝑘𝑃3−𝑖𝑁1
))) (12) 



 

the same gear ratio is ultimately obtained. Instead, the operation 
of the gear is based on coupling a flux harmonic created by the 
modulation of the Rotor 3 PMs by the Rotor 2 modulators, as 
defined in (9), to a flux harmonic created by the modulation of 
the Rotor 3 PMs by the Rotor 1 teeth, as defined in (12). In order 
to illustrate this operating principle, a sample RMG with N1 = 
4, Q2 = 22, and P3 = 9 was simulated and the results are shown 
in Fig. 2. Two scenarios were evaluated: the scenario with Rotor 
1 and Rotor 3 present without the Rotor 2 modulators and the 
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Fig. 2.  (a) Distribution of radial flux density in the inner air gap, (b) 
normalized FFT of the radial flux density in the inner air gap, and flux lines for 

(c) a structure with no modulators and (d) a structure with no Rotor 1 teeth. 

scenario with Rotor 2 and Rotor 3 present without the Rotor 1 
teeth. Fig. 2(a) shows the inner air gap radial flux densities 
obtained for these two scenarios, and Fig. 2(b) shows the 
normalized FFT of the inner air gap radial flux densities. Both 
scenarios produce a large 9th harmonic component 
corresponding to P3 and a 13th harmonic component 
corresponding to |P3 – Q2| or |P3 + N1|. In this case, it is the 
interaction of these 13th harmonic components that produces the 
gearing behavior. Fig. 2(c) illustrates the flux lines for the 
scenario without the Rotor 2 modulators. Fig. 2(d) illustrates the 
flux lines for the scenario without the Rotor 1 teeth. 

III. DESIGN STUDY METHODOLOGY 

Both the SPMG and the RMG topologies were evaluated 
using 2-D finite element analysis (FEA) simulations at the slip 
torque alignment. The ferromagnetic components (back irons, 
Rotor 1 teeth, and modulators) are made of M47 steel (26 
gauge), and NdFeB N42 is used for the magnets. Table І shows 
the design parameter values evaluated for each topology. Table 
II summarizes the values considered for the RMG tooth count 
and the SPMG Rotor 1 pole pair count for each GInt value 
without including unnecessary suboptimal cases with high pole 
counts and high gear ratios. Reference [15] optimizes the shape 
and skew of the RMG teeth to reduce torque ripple; however, 
this study only evaluates arc-shaped modulators and magnets, 
as the alterations in [15] do not significantly increase the 
designs’ slip torques. The different torque densities evaluated 
in this study are volumetric torque density (VTD), the Rotor 3 
slip torque divided by the gear’s total active volume, 
gravimetric torque density (GTD), the Rotor 3 slip torque 
divided the gear’s total active mass, and PM GTD, the Rotor 3 
slip torque divided by the gear’s total PM mass. 

After all designs specified in Tables I and II were evaluated 
using magnetostatic 2-D FEA, the optimal designs were 
evaluated using magnetostatic 3-D FEA at the stack lengths 
 

TABLE I.  DESIGN PARAMETER SWEEP RANGES 

Name Description Values 

𝐺𝐼𝑛𝑡 Integer part of the gear ratio 4, 6, 10, 16 

𝑅𝑂𝑢𝑡 Outer radius (mm) 100 

𝑇𝐵𝐼1 Rotor 1 back iron thickness (mm) 5, 10, 20 

𝑇𝐵𝐼3 Rotor 3 back iron thickness (mm) 5, 10, 20 

𝑇𝑀𝑜𝑑𝑠 Modulators thickness (mm) 5, 10, 20 

𝑇𝑃𝑀1 SPMG Rotor 1 PM thickness (mm) 3, 6, 9, 12, 15 

𝑘𝑃𝑀 SPMG PM thickness ratio 0.5, 0.75, 1 

𝑇𝑇𝐻 RMG Rotor 1 teeth thickness  (mm) 3, 6, 9, 12, 15 

𝑇𝑃𝑀3 RMG Rotor 3 PM thickness (mm) 3, 6, 9, 12, 15 

𝛼𝑇𝐻 RG teeth tangential fill factor 0.35, 0.4, … 0.55 

𝛼𝑀𝑜𝑑𝑠 Modulator tangential fill factor 0.5 

𝛼𝑃𝑀 PM tangential fill factor 1 

𝑇𝐴𝐺 Air gap thickness (mm) 0.5 

𝐿𝑆𝑡𝑎𝑐𝑘 Stack length (mm) 20, 30, 50, 70 

TABLE II.  ROTOR 1 TOOTH COUNT FOR RMG (N1) AND POLE PAIR 

COUNT FOR SPMG (P1) SWEEP RANGES 

𝑮𝑰𝒏𝒕 RMG SPMG 

4 3, 4, … 10 3, 4, … 18 

6 3, 4, … 7 3, 4, … 13 

10 3, 4, 5, 6 3, 4, … 9 

16 3, 4, 5 3, 4, 5, 6 



specified in Table І to investigate the end effect impacts on the 
torque. Additionally, 2-D transient FEA was used to evaluate the 
electromagnetic efficiencies of the optimal designs. 

The gear ratio for both topologies is defined as the ratio of 
the Rotor 1 speed to the Rotor 3 speed with the modulators fixed, 
so (17) gives the gear ratio for RMGs. For SPMGs, (19) gives 
the gear ratio (GSPMG), where P3,SPMG is the SPMG’s Rotor 3 pole 
pair count. The number of modulators is given by (15) for 
RMGs, and (20) gives the modulator count (Q2,SPMG) for SPMGs. 

 G𝑆𝑃𝑀𝐺|
ω2=0

= ω1

ω3
= −

𝑃3,𝑆𝑃𝑀𝐺

𝑃1
 (19) 

 𝑄2,𝑆𝑃𝑀𝐺 = 𝑃1 + 𝑃3,𝑆𝑃𝑀𝐺  (20) 

The Rotor 3 PM pole pair counts are derived from the 
parameters in Table I using (21) for SPMGs and (22) for RMGs 
to avoid integer gear ratios, which tend to result in designs with 
large torque ripple [3], [17], [18]. Substituting the P3,SPMG of 
equation (21) into (20) gives an even number of modulators for 
any combination of P1 and GInt, which ensures that the design 
has some symmetry. This symmetry cancels out unbalanced 
magnetic forces on the rotors. However, based on (22) and (15), 
an RMG design will only have symmetry if N1 is even. 

 𝑃3,𝑆𝑃𝑀𝐺 = {
𝐺𝐼𝑛𝑡𝑃1 + 1       for (𝐺𝐼𝑛𝑡+1)𝑃1 odd

    𝐺𝐼𝑛𝑡𝑃1 + 2       for (𝐺𝐼𝑛𝑡 + 1)𝑃1 even
 (21) 

 𝑃3 = {
0.5(𝐺𝐼𝑛𝑡𝑁1 + 1)       for 𝐺𝐼𝑛𝑡𝑁1 odd

  0.5(𝐺𝐼𝑛𝑡𝑁1 + 2)       for 𝐺𝐼𝑛𝑡𝑁1 even
 (22) 

The PM thickness ratio (kPM) relates the thickness of the 
magnets on Rotor 3 (𝑇𝑃𝑀3) to the thickness of the magnets on 
Rotor 1, (𝑇𝑃𝑀1) for SPMGs according to (23). Rotor 1 has fewer 
poles than Rotor 3, so the optimal designs have thicker magnets 
on Rotor 1 [17], [19]; however, if the Rotor 1 magnets are too 
much thicker than the Rotor 3 magnets, then the Rotor 3 magnets 
may be demagnetized. Thus, kPM is varied between 0.5 and 1. 

 𝑇𝑃𝑀3 = 𝑘𝑃𝑀𝑇𝑃𝑀1 (23) 

IV. RESULTS 

Fig.3 illustrates that SPMGs outperform RMGs in terms of 
VTD, GTD, and PM GTD. While the RMG is expected to 
achieve lower VTD and GTD than the SPMG, the reduced PM 
GTD contradicts the assertions of a previous paper [20]. Even 
though the RMG has no PMs on Rotor 1, the associated 
reduction in torque outweighs the reduction in PM mass, so 
RMGs actually use PM material less effectively than SPMGs. 
Thus, a RGM can require at least 3 times as much PM material 
to get the same torque as an SPMG design based on Fig. 3(c). 

Fig. 4 shows that, similarly to SPMG designs, RMG designs 
with larger gear ratios are optimized with fewer Rotor 1 teeth. 
However, for a given gear ratio, the optimal RMG Rotor 1 teeth 
count is much lower than the optimal SPMG Rotor 1 pole pair 
count, which means that the optimal Rotor 3 pole pair and Rotor 
2 modulator counts for a given gear ratio will also be lower for 
an RMG than for an SPMG. For an SPMG, increasing the gear  
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Fig. 3. Impact of GInt on the achievable (a) VTD, (b) GTD, and (c) PM GTD 

for RMGs and SPMGs based on 2-D simulations. 

 
(a) 

 
(b) 

Fig. 4. Impact of (a) RMG Rotor 1 teeth count and (b) SPMG Rotor 1 pole pair 

count on the achievable PM GTD of designs with GInt based on 2-D simulations. 



ratio tends to reduce the optimal P1 and increase the optimal 
P3,SPMG, resulting in PM pole counts that are farther from the 
optimal values that would be selected for a similar design with 
a 1:1 gear ratio. However, the RMG has only one set of magnets 
to be optimized for any certain gear ratio, avoiding the conflict 
between the optimal values of P1 and P3,SPMG that reduces the 
torque densities of SPMGs with higher gear ratio. Therefore, 
the optimal P3 value for an RMG can be maintained by reducing 
N1 as the gear ratio increases. However, reducing N1 to a value 
of 1 or 2 results in an integer gear ratio, which can produce 
excessive torque ripples [3], so these designs were not 
simulated, even though they might produce the optimal PM 
GTDs for RMGs with larger gear ratios at this outer radius. 

A previous paper suggested that the elimination of the PM 
eddy currents from Rotor 1 may make an RMG more efficient 
than an SPMG [11]. This is not generally accurate, as 
demonstrated by Fig. 5, which illustrates the Pareto optimal 
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Fig. 5. Pareto optimal fronts maximizing PM GTD and full load 

electromagnetic efficiency at Rotor 3 speeds of (a) 100 rpm and (b) 1000 rpm 

(c) 5000 rpm for RMGs and SPMGs with different gear ratios based on 2-D 

simulations. 

fronts of the RMGs and SPMGs that maximize full load 
electromagnetic efficiency and PM GTD with Rotor 3 speeds 
of 100, 1000, and 5000 rpm. At each speed, the optimal SPMG 
designs are significantly more efficient than the optimal RMG 
designs. Of course, the losses in either type of gear could be 
reduced by segmenting the PMs or by using a less lossy grade 
of steel. These changes might affect RMGs and SPMGs 
differently, due to different loss distributions. Nonetheless, the 
RMG’s efficiency is limited by the fact that it requires 
significantly more steel and PM material to achieve the same 
torque as an optimal SPMG. 

Fig. 6 shows how the losses in both topologies correspond 
to the change of Rotor 3 speed in the most efficient designs that 
were simulated. The loss per unit parameter has been defined as 
the ratio of the losses to the output power. As the speed 
increases, both gears experience higher losses, but the loss 
distribution is different. While the presence of the Rotor 1 PMs 
in SPMGs does result in an additional source of losses, the 
overall efficiencies of the SPMGs are higher than those of the  
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Fig. 6. Corresponding loss amplitude for the designs with maximum 
efficiency at Rotor 3 speeds of (a) 100 rpm, (b) 1000 rpm, and (c) 5000 rpm, 

for RMGs and SPMGs with different gear ratios, based on 2-D simulations. 



RMGs because the SPMGs can produce significantly more 
torque with the same amount of active material. 

The PMs experience eddy current losses, which increase 
quadratically with the speed. The core losses in the back irons, 
modulators, and Rotor 1 teeth have two components, eddy 
current losses and hysteresis losses, which are proportional to 
the square of the frequency and to the frequency itself, 
respectively. Since the RMG has no Rotor 1 PMs, the most 
efficient RMG design experiences a lower percentage of its 
losses as PM losses than the optimal SPMG design. However, 
the RMG tends to suffer significantly larger per unit core losses 
because it requires significantly more core material to produce 
the same torque as an SPMG. Thus, even at a Rotor 3 speed of 
5000 rpm, the most efficient RMG is still less efficient than the 
most efficient SPMG. 

While [11] compares two nonoptimized designs and 
concludes that the torque ripple in the RMG is higher than it is 
in the SPMG, the choice of an integer gear ratio results in very 
large torque ripples, which may not be representative of designs 
with non-integer gear ratios. To determine whether this is the 
case for optimized designs, the torque ripple is evaluated for the 
RMG and SPMG designs with the maximum VTD or PM GTD 
for GInt = 4, using 2-D FEA. Rotor 2 is fixed, and Rotors 1 and 
3 are rotated at the maximum torque orientation according to 
the gear ratio. Fig. 7 shows the torque on both rotors and reveals 
that the torque ripple on Rotor 1 tends to be much larger than the 
torque ripple on Rotor 3, even though the average torque on 
Rotor 1 is much lower than the average Rotor 3 torque, as found 
in [18]. Additionally, the optimal RMG designs have much more 
significant torque ripples than the optimal SPMG designs. 

   
 (a) (b) 

   
 (c) (d) 

Fig. 7. Rotor 1 and Rotor 3 torque ripple characteristic for continuous 
operation at the maximum torque orientation of (a) the RMG with maximum 

VTD, (b) the SPMG with maximum VTD, (c) the RMG with maximum PM 

GTD, and (d) the SPMG with maximum PM GTD based on 2-D simulations. 

Fig. 8 illustrates the corresponding torque ripple percentages 
for the RMG and SPMG designs with the maximum PM GTD 
in Fig. 4. The torque ripple percentage is defined as the ratio of 
the peak-to-peak torque ripple of each rotor to its average 
torque. For both topologies, the torque ripple tends to decrease 
as the number of Rotor 1 pole pairs or teeth increases. In a  
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(d) 

Fig. 8. Corresponding Rotor 1 torque ripple percentages for the (a) RMG and 

(b) SPMG designs with maximum PM GTD and corresponding Rotor 3 torque 
ripple percentages for the same (c) RMG and (d) SPMG designs based on 2-D 

simulations. 



design with a fixed gear ratio, as the Rotor 1 pole count or teeth 
count increases, Q2 and P3 will also increase, so there will be 
lower torque ripple percentages due to the higher values of the 
least common multiple (LCM) of the pole counts of the two 
rotating rotors [3]. Thus, one reason that the RMG designs of 
Fig. 7 have higher torque ripples than the SPMG designs is that 
the optimal RMG Rotor 1 tooth counts tend to be lower than the 
optimal SPMG Rotor 1 pole pair counts. 

In Figs. 8(a) and 8(c), the RMG designs with even Rotor 1 
tooth counts exhibit significantly larger torque ripples than the 
designs with odd tooth counts. Based on (15) and (22), these 
designs with even Rotor 1 tooth counts have symmetry, while 
the designs with odd tooth counts do not have symmetry. 
Designs with symmetry tend to experience larger torque ripple 
percentages [3]. For both topologies, lower gear ratios tend to 
produce higher torque ripple percentages for a fixed Rotor 1 
tooth count or pole count due to the lower LCM of the pole 
counts [3]. As the gear ratio or the pole counts increase, both 
topologies tend to exhibit very small torque ripples. 

Comparing Figs. 8(c) and 8(d) with Figs. 8(a) and 8(b) 
reveals that, for both topologies at any gear ratio, Rotor 3 
exhibits a much smaller torque ripple percentage than Rotor 1 
because of higher pole counts and larger average torques. In 
both topologies, the Rotor 3 torque ripple percentage becomes 
negligible as the gear ratio or Rotor 1 teeth or pole count is 
increased. 

The opposing sets of magnets facing each other in SPMGs 
produce significant axially escaping flux, which reduces the 
torque [21]. Thus, since RMGs only have a single set of PMs, 
RMGs might experience less of a reduction in torque than 
SPMGs when simulated in 3-D. To investigate this hypothesis, 
a subset of the designs with maximum PM GTD and minimum 
torque ripple for both topologies were simulated as 3-D models. 
The stack length was varied from 20 to 70 mm, according to 
Table I. Fig. 9 shows the designs with maximum PM GTD and 
their corresponding ratio of 3-D torque over 2-D torque for 
different gear ratios and stack lengths. Figs. 9(a) and 9(b) 
indicate that higher PM GTD is obtained in designs with lower 
gear ratios. Comparing Figs. 9(c) and 9(d) disproves the 
hypothesis that the RMGs may suffer significantly less end 
effects than SPMGs with the same gear ratios and stack lengths. 
For the designs with a stack length of 20 mm, the RMG torque 
predicted by the 3-D model is less than 75% of the 2-D model 
prediction, while most of the SPMGs experience less than a 20% 
reduction when the 3-D model is used. The optimal RMG design 
for any gear ratio has fewer Rotor 3 pole pairs than the optimal 
SPMG design. The lower the pole count, the further the flux 
must travel to close its path, which results in more torque 
reduction in 3-D. However, due to the RMGs’ lower VTDs, they 
may require longer stack lengths than SPMGs to achieve a target 
torque for a fixed outer diameter; in this case, the longer stack 
length required by an RMG would make its end effects less 
significant. 

Figs. 3 and 4 also indicate that the RMG experiences a 
slightly smaller reduction in performance than the SPMG as the 
gear ratio increases, at least in the range where the optimal RMG 
Rotor 1 teeth count was simulated. Thus, especially at large 
radii, the RMG might become a more reasonable option for  
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Fig. 9. Variation of the maximum achievable PM GTD based on 3-D 
simulations for (a) RMGs and (b) SPMGs and the corresponding ratio of 3-D 

simulation torque to 2-D simulation torque for these (c) RMGs and (d) SPMGs. 

 

Fig. 10. Impact of gear ratio on PM GTD at a 300mm outer radius based on 2-

D simulations. 

situations requiring a very large gear ratio in a single stage. 
Therefore, to obtain the results shown in Fig. 10, the gear ratio 
of 30 was added and the outer radius was increased to 300 mm. 
Fig. 10 shows that the RMG’s PM GTD varies less with gear 
ratio than the SPMG’s PM GTD. As the integer portion of the 
gear ratio increases from 4 to 30, the achievable PM GTD 
decreases by approximately 8% for the RMG and 36% for the 
SPMG. The semi-constant performance of RMGs for any gear 
ratio might be interesting for specific applications. However, 
even at the gear ratio of approximately 30, the SPMG can still 
achieve significantly higher torque densities than the RMG. 

V. CONCLUSION 

This study analyzes and evaluates the performance of a 
magnetic gear topology previously proposed for high-speed 
applications. The RMG topology replaces the magnets on the 
high-speed rotor with a reluctance structure. The operating 
principle of an RMG is similar to that of an SPMG, and its 
governing equations are derived in this paper. The performance 
capabilities of the RMG and SPMG topologies are compared. 



An extensive parametric evaluation was used to 
independently optimize the RMG and SPMG topologies for 
maximum VTD, PM GTD, and GTD based on 2-D and 3-D FEA 
simulations. It is shown that the magnet utilization of an 
optimized RMG is significantly less than that of an optimized 
SPMG, so the RMG may use on the order of 3 times as much 
magnet material to achieve a target torque. Also, due to its low 
torque density, an RMG may require about 5 times as much 
active volume as an SPMG to achieve the same torque. 
Furthermore, the efficiency comparison for the optimal designs 
of both topologies shows that the SPMGs outperform the RMGs 
across a wide range of speeds. The magnet utilization and 
efficiency results disagree with the proposed benefits of RMGs 
for high speeds touted based on comparisons of nonoptimized 
designs in other papers. The RMGs remove a set of magnets, but 
their inability to achieve a comparable torque density to SPMGs 
makes them require thicker magnets or a longer stack length. 
The transient simulations show that removing the magnets from 
the high-speed rotor does not improve the efficiency because the 
RMGs require more core material to provide a desired torque. 

Additionally, the torque ripples of both structures are shown 
for the optimal VTD and PM GTD designs. The optimal RMG 
designs tend to have lower Rotor 1 teeth counts compared to the 
Rotor 1 pole counts of the optimal SPMGs. Thus, the RMGs 
have fewer poles on Rotor 3, which reduces the LCM of the pole 
counts and produces higher torque ripples on the rotors. 
Additionally, the lower pole counts of RMGs produces longer 
flux paths. Thus, even though RMGs lack the opposing sets of 
magnets, which produce axially escaping flux, RMGs suffer 
comparable torque reductions from end effects as SPMGs with 
similar diameters and stack lengths. 

Simulations also revealed that the torque densities of RMGs 
vary less with gear ratio than those of SPMGs. Nonetheless, even 
at a gear ratio of 30 and a large outer radius, SPMGs were still 
able to achieve a better magnet utilization than RMGs. 

Based on the results, it is evident that the SPMG topology 
can outperform the RMG topology in terms of torque density, 
efficiency, and torque ripple. Although the SPMG has magnets 
on the high-speed rotor, which incur eddy current losses and 
result in potential mechanical challenges at high speeds, the 
SPMG can provide a target torque in a smaller volume and a 
lighter mass with a more efficient design, which also uses the 
magnets more effectively. Thus, RMGs may only be suitable for 
applications where environmental or mechanical constraints 
prohibit the use of magnets on the high-speed rotor. 
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