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Abstract—Magnetic gears perform the same function as 

mechanical gears using magnetic fields instead of interlocking 

teeth.  A review of the design processes used in the literature 

demonstrates that a critical design parameter, pole pair count, is 

often given inadequate consideration.  In addition to reviewing 

existing prototypes, this paper uses a parametric simulation study 

to analyze the impacts of pole pair counts on gear performance 

and illustrate how the optimal pole counts vary with gear ratio and 

various design parameters.  This paper also introduces new ripple 

factors, which better correlate with torque ripple than the cogging 

factor used in previous papers, and illustrates why designs with 

non-integer gear ratios tend to have much smaller torque ripples 

than designs with integer gear ratios.  While selecting the pole 

counts to minimize symmetry can reduce torque ripple, designs 

without any symmetry are shown to experience unbalanced 

magnetic forces on each rotor.  Thus, it is recommended to select 

pole counts that result in an even number of modulators but not 

an integer gear ratio.  This paper also reveals that, for a fixed gear 

ratio, a nontrivial optimum pole count minimizes the 

electromagnetic losses. 

 
Index Terms—cogging factor, efficiency, finite element analysis, 

magnetic forces, magnetic gear, permanent magnet, pole pairs, 

radial flux, ripple factor, torque density, torque ripple 

 

I. INTRODUCTION 

AGNETIC gears transfer power between high-torque, 

low-speed rotation and low-torque, high-speed rotation 

using the modulated interaction of magnetic fields, instead of 

physical contact between interlocking teeth like mechanical 

gears.  The potential advantages of magnetic gears include 

inherent overload protection, reduced maintenance, improved 

reliability, and physical isolation between the shafts.  Thus, 

magnetically geared systems attempt to combine the reliability 

benefits of gearless, direct-drive machines with the system size 

and cost reduction benefits of mechanically geared systems.  

These potential advantages have resulted in significant recent 
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interest in using magnetic gears in a range of applications.  

NASA built magnetic gear prototypes and concluded that 

magnetic gears may be able to achieve specific torques 

comparable to those of low-torque-level aircraft mechanical 

transmissions [1]-[4].  Prototype magnetic gears have also been 

developed for a variety of other potential uses, such as wind [5]-

[7] and wave [8], [9] energy conversion, traction [10]-[13], 

space applications [14], and hybrid electric vehicle power split 

devices [15].  Additionally, some review studies suggest that 

magnetic gearing technology has potential in wind [16], [17], 

marine [18], and aerospace actuation applications [19]-[20]. 

Generally, radial flux coaxial (concentric) magnetic gears 

have achieved the highest experimentally demonstrated torque 

densities [2], [3], [21].  The radial flux coaxial topology is 

shown in Fig. 1(a), and its axial analog, which has not yet 

experimentally demonstrated the same torque densities [22]-

[24], is shown in Fig. 1(b).  A transverse flux coaxial magnetic 

gear has also been proposed [25], [26], but it has received 

relatively little interest, due to its low torque density [27]. 

This paper includes an extensive catalog of 63 coaxial 

magnetic gear and magnetically geared machine prototypes 

produced in the last 20 years [1], [2], [5]-[8], [10]-[15], [19], 

[22]-[24], [28]-[69].  Tables I and II describe the magnetic gear  

 

 
(a)                (b) 

Fig. 1.  Coaxial (a) radial flux and (b) axial flux magnetic gears with surface-

mounted permanent magnets. 
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TABLE I 

SUMMARY OF COAXIAL MAGNETIC GEAR PROTOTYPES 

Source 

Year 

Published 

Gear 

Ratio 

Volumetric 
Torque 

Density 

(kN*m/m3) 

Evaluated 
Multiple 

Pole Pair 

Counts 

Prototype 
Pole Pair 

Counts 

[P1, P3, Q2] 

High Speed 
Rotor 

Torque 

Ripple <20% 

[28] 2020 10.67 120 
✓ 3, 32, 35 No Report 

[6] 2019 6.45 141 × 11, 60, 71 × 

[7] 2019 9.14 135 × 7, 57, 64a No Report 

[29] 2019 4.67 74.29 ✓ 3, 11, 14a 
✓ 

[30], [31] 2019, 2020 4 36.96 × 2, 8, 10a No Report 

[30], [31] 2019, 2020 4 35.08 × 2, 8, 10 a No Report 

[30], [31] 2019, 2020 4 31.08 × 2, 8, 10 a No Report 
[32] 2019 4.25 70.90 × 4, 17, 21 ✓ 

[32] 2019 4.25 63.95 × 4, 17, 21 ✓ 

[32] 2019 4.25 55.60 × 4, 17, 21 ✓ 

[1] 2018 4.25 102.42 ✓ 4, 13, 17 No Report 

[2], [3] 2018 4.83 162.52 
✓ 6, 23, 29 No Report 

[33] 2018 15 142 × 2, 30, 32a × 

[34] 2018 6 37.77 × 1, 5, 6a × 

[35] 2018 7 32.10 ✓ 2, 12, 14a 
✓ 

[36], [37] 2018 3.75 116.45 ✓ 4, 11, 15 No Report 
[37] 2018 11 119.92 ✓ 2, 20, 22a No Report 

[14]b 2017 44 47.4 × – No Report 

[14]b 2017 10 92.3 × – No Report 
[14]b 2017 75 37.1 × – No Report 

[38] 2016 21 42.25 ✓ 1, 21, 22a × 
[38] 2016 21 41.1 ✓ 1, 21, 22a, c ✓ 

[39] 2016 3.83 53.49 × 6, 17, 23 No Report 

[40] 2015 10.5 111.2 × 2, 21, 23 No Report 
[41] 2015 4.17 3 × 6, 19, 25 No Report 

[42] 2015 20 25 × 2, 40, 42a No Report 

[24] 2014 8 22.4 × 1, 8, 9 × 
[43] 2014 4.25 130.4 × 4, 17, 21 ✓ 

[9], [44] 2014 4.25 33 × 4, 13, 17 ✓ 

[44] 2014 4.25 66.3 × 4, 13, 17 ✓ 

[44] 2014 4.25 151.2 × 4, 13, 17 ✓ 

[45] 2014 4.25 238.7 × 8, 26, 34a ✓ 

[46] 2013 5.5 36.94 × 4, 22, 26 a No Report 
[14], [47]b 2013, 2017 21 141.9 × – No Report 

[48] 2013 10.5 62.16 × 2, 21, 23 ✓ 

[49] 2013 10.5 57.82 ✓ 2, 21, 23  No Report 
[50], [51] 2010, 2012 2.5 30.8 × 4, 10, 14a 

✓ 

[52] 2012 10.33 12.3 × 3, 31, 34a No Report 

[53] 2011 12d 65.3 ✓ 4, 22, 26a No Report 
[54] 2011 5.5 42 × 4, 22, 26a 

✓ 

[55] 2010 10.5 80.84 ✓ 2, 21, 23 No Report 

[51] 2010 2.5 30.8 × 4, 10, 14a, c 
✓ 

[56] 2009 4.25 95.36 × 4, 17, 21 ✓ 

[56] 2009 4.25 108.29 × 4, 17, 21 ✓ 

[57] 2009 7.33 53.34 × 3, 22, 25 No Report 
[58] 2005 5.5 54.5 × 4, 22, 26a No Report 

[59] 2004 5.75 72 ✓ 4, 23, 27 No Report 

               aThis prototype has symmetry. 

               bThe pole pair counts of this prototype are not specified. 

               cThis prototype has skew. 

               dContra-rotating system. 

 

and magnetically geared machine prototypes, respectively, and 

provide the associated references.  For both of these tables, 

some cells are empty because the references did not provide the 

necessary information to determine these values.  While several 

published reviews of magnetic gears address various topics, 

including wind energy [17], marine energy [18], torque density 

[20], [21], torsional stiffness [20], and opportunities and 

challenges for magnetic gears [70] and magnetically geared 

machines [71], Tables I and II show that a critical design aspect, 

pole count selection, is often given inadequate consideration, 

even in recently published works.  Thus, some prototypes 
 

TABLE II 

SUMMARY OF COAXIAL MAGNETICALLY GEARED MACHINE 

PROTOTYPES 

Source 

Year 

Published 

Gear 

Ratio 

Volumetric 

Torque 
Density 

(kN*m/m3) 

Evaluated 

Multiple 
Pole Pair 

Counts 

Prototype 

Pole Pair 
Counts 

[P1, P3, Q2] 

Output Rotor 
Torque 

Ripple <5% 

[22] 2020 4.17 94.4 × 6, 19, 25 ✓ 

[5] 2020 11.6 85.6 ✓ 5, 53, 58a 
✓ 

[15] 2019 2.29b 44.6 ✓ 7, 9, 16a ✓ 

[19] 2019 7.75 46.2 ✓ 4, 27, 31 ✓ 

[8] 2018 11.33 82.8 ✓ 6, 68, 74a 
✓ 

[23] 2017 9.33 7.8 ✓ 3, 28, 31 ✓ 

[34], [60] 2016 10.5 76.7 ✓ 2, 19, 21 ✓ 

[61] 2016 7.33 138.7c ✓ 3, 22, 25 ✓ 

[62], [63] 2013, 2015 7.2 107 ✓ 5, 31, 36a 
✓ 

[12], [13] 2012, 2015 9 99.7 ✓ 4, 32, 36a No Report 
[10], [11] 2009, 2013 8.83 92 ✓ 6, 53, 59 No Report 

[64], [65] 2012, 2013 6.67 9.6 ✓ 3, 20, 23 × 

[66] 2012 5.33d 81.9 × 3, 13, 16a No Report 
[67] 2009 7.33 87c × 3, 22, 25 No Report 

[68] 2008 11.5 60 × 2, 21, 23 ✓ 

[69] 2008 7.33 – × 3, 22, 25 No Report 

               aThis prototype has symmetry 

               bPower split device (P3 = 9, Q2 = 16, and 7 stator pole pairs). 
               cTorque density based on 2D FEA; experimental results not provided 

               dContinuously variable transmission (P1 = 3, P3 = 13, and Q2 = 16)  

 

exhibited egregious torque ripple [24], [33], [34], [38], 

specifically because of poor pole pair count selection.  While 

there are other means of reducing torque ripples, such as 

skewing [38], [51], [72], adjusting the pole pitches [73], 

adjusting the modulators’ shape [74], [75], increasing the 

effective air gap between the Rotor 1 magnets and the 

modulators [35], or adjusting the rotor pole shapes [76], 

intelligently selecting the pole counts is a simple means to 

achieve a drastic reduction in torque ripple [8], [77], [78].  In 

addition to torque ripple, pole pair counts also have tremendous 

impacts on other performance aspects of the design, including 

slip torque [1], [2], [77], [79] and unbalanced magnetic forces 

on the rotors of a coaxial magnetic gear [8], [31], [33], [36]-

[38], [80].  It has been observed that the optimal pole count 

changes depending on the magnet material [81], and the 

optimization objective [82].  Nonetheless, some papers neglect 

to adequately evaluate different pole count options, leading the 

authors to draw some misleading conclusions [83]-[86]. 

This paper is intended to serve as a reference for the effects 

of pole count selection on various aspects of coaxial magnetic 

gear performance.  It explains and quantitatively illustrates the 

impact of pole count selection on slip torque, torque ripple, and 

unbalanced magnetic forces.  It also presents a pole count 

selection strategy that avoids both unbalanced magnetic forces 

and egregious torque ripple.  Additionally, this paper proposes 

a new ripple factor that correlates better with torque ripple than 

the cogging factor used in previous papers, especially when the 

Rotor 1 pole count is varied, and presents new conclusions on 

pole counts’ impact on electromagnetic losses.  Finally, this 

paper uses a parametric optimization study to illustrate the 

effects of different parameters on optimal pole counts.  

Throughout the analysis of these considerations, this paper also 

notes how inadequate investigation of pole counts has led to 

misleading conclusions in some previous papers. 
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II. REVIEW OF POLE PAIR SELECTION CRITERIA 

Each of the coaxial magnetic gear topologies shown in Fig. 

1 consists of two permanent magnet (PM) rotors (Rotors 1 and 

3) and a rotor with soft magnetic poles called modulators (Rotor 

2).  The number of modulators (Q2) should be the sum of the 

pole pairs on Rotor 1 (P1) and Rotor 3 (P3), as in 

 Q2 = P1 + P3. (1) 

Coaxial magnetic gears have different operating modes, 

which yield different gear ratios.  However, the highest fixed 

gear ratio is achieved when the high pole count PM rotor (Rotor 

3) is held stationary, yielding the gear ratio (G) given by 

 𝐺|𝜔3=0 =
𝜔1

𝜔2
=

𝑄2

𝑃1
, (2) 

where ω1, ω2, and ω3 are the steady–state speeds of Rotors 1, 2, 

and 3, respectively.  The other common operating mode 

involves holding the modulators (Rotor 2) fixed, which yields 

 𝐺|𝜔2=0 =
𝜔1

𝜔3
= −

𝑃3

𝑃1
, (3) 

where the negative sign indicates that Rotors 1 and 3 rotate in 

opposite directions. 

To analyze the impact of pole counts and corroborate the 

observations made throughout the remainder of this paper, 

numerous 2D finite element analysis (FEA) simulations of the 

coaxial radial flux magnetic gear with surface permanent 

magnet rotors illustrated in Fig. 1(a) were run using the baseline 

parameters in Table III and the results are plotted.  Various pole 

and modulators counts were evaluated.  All simulated designs 

in this paper use NdFeB N42 PMs and M47 laminated steel for 

the modulators and back irons.   

A. Pole Pair Count Selection for Minimal Torque Ripple 

Previous studies describe the impact of pole pair count on 

torque ripple in PM machines [87].  The cogging factor (CT) is 

defined for PM machines as 

 𝐶𝑇 =
2𝑝𝑄

LCM(2𝑝,𝑄)
= GCD(2𝑝, 𝑄), (4) 

where 2p is the pole count, Q is the number of slots, LCM 

stands for least common multiple, and GCD stands for greatest 

common divisor.  For a magnetic gear, the value of CT will be 

the same if either P1 or P3 is used for p in (4) because of the 

relationship in (1).  The magnitude of CT provides a general 

indication of the amount of cogging torque in a PM machine 

[87] and has been adapted to indicate the amount of torque 

ripple in magnetic gears [9], [18], [36]-[38], [41], [49], [55], 

[59], [64], [68], [70], [72], [76], [83], [88].  The cogging factor 

is based on a principle of symmetry minimization in a PM 

machine.  In permanent magnet machines, cogging torque is the 

torque present in the machine when the windings are 

deenergized.  However, magnetic gears do not have windings 

that are energized or deenergized.  Additionally, the torque 

ripple in a magnetic gear is generally independent of the 

average torque, as observed experimentally in [6], [7], [22].  

Thus, “cogging torque” and “torque ripple” are often used 

interchangeably in the literature on magnetic gears.  Fig. 2 

illustrates the impact of gear ratio on CT and on torque ripple as 

a percentage of the average torque on each rotor when P1 is 

fixed at different values and the gear specified in Table III is 

operated with a fixed Rotor 3 at the maximum (slip) torque 

angle.  Fig. 2 shows that integer gear ratios, especially even 

integer gear ratios, produce much larger torque ripples than 

non-integer gear ratios.  If Rotor 2 is fixed and Rotor 3 is used 

as the low speed rotor, then the largest torque ripples will occur 

at odd integer gear ratios.  Fig. 2(a) shows CT for each of the 

cases characterized in Figs. 2(b) and 2(c).  Comparing these 

plots reveals that applying the cogging factor to magnetic gears 

provides some correlation with the torque ripple when the value 

of P1 is fixed (there are similar trends within lines of the same  

 
TABLE III 

MAGNETIC GEAR BASELINE GEOMETRIC PARAMETERS 

Parameter Value Units 

Outer radius (ROut) 100 mm 

Rotor 1 back iron thickness (TBI1) 25 mm 

Rotor 1 PM thickness (TPM1) 12 mm 
Air gap thicknesses (TAG) 1 mm 

Modulator thickness (TMods) 10 mm 

Rotor 3 PM thickness (TPM3) 9 mm 
Rotor 3 back iron thickness (TBI3) 25 mm 

 

 

 
 (a) 

  
(b) (c) 

  
(d) (e) 

Fig. 2.  (a) Cogging factor, (b) Rotor 1 torque ripple, (c) Rotor 2 torque ripple, 
(d) Rotor 1 ripple factor, and (e) Rotor 2 ripple factor for variations of the base 

design in Table III with different Rotor 1 pole pair counts and gear ratios. 
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color in Figs. 2(a), 2(b), and 2(c)).  However, CT does not 

accurately indicate how changes in P1 affect the torque ripple 

(the relationships between lines of different colors are 

significantly different in Fig. 2(a) and in Figs. 2(b) and 2(c)). 

Fig. 3 illustrates the torque on each Rotor 1 PM and the net 

torque on Rotor 1 for designs with different Rotor 3 pole pair 

counts as the gears operate at the slip torque angle for one full 

magnetic cycle.  For the cases plotted in Fig. 3, a 95% Rotor 

PM fill factor is used instead of the 100% fill factor used for 

simulations in the rest of the paper.  Whereas this slight 

reduction in fill factor does not have a huge impact on the net 

torque on Rotor 1, it does increase the difference between the 

PM torque waveforms, especially for Figs. 3(a) and 3(f), 

because it removes shared tangential boundaries.  In the case of 

an odd integer gear ratio design according to (2), as in Figs. 3(a) 

and 3(f), there are only two groups of PM torque waveforms, 

and in the case of an even integer gear ratio according to (2), as 

in Figs. 3(b) and 3(e), the torque waveforms on all of the 

individual Rotor 1 PMs are in phase with each other, so the net 

torque displays a large ripple.  For the design with a cogging  
 

 

  
(a)  (b)  

  
(c) (d) 

  

(e) (f) 

Fig. 3.  The normalized torque on each Rotor 1 PM and the net torque on Rotor 

1 for the base design with a Rotor 1 magnet fill factor of 0.95 with (a) P1 = 3, 

Q2 = 15, and P3 = 12, (b) P1 = 3, Q2 = 18, and P3 = 15, (c) P1 = 3, Q2 = 17, and 
P3 = 14, and (d) P1 = 3, Q2 = 16, and P3 = 13, (e) P1 = 1, Q2 = 8, and P3 = 7, and 

(f) P1 = 1, Q2 = 9, and P3 = 8. 

factor of 1 (Fig. 3(c)), the torques on all of the individual PMs 

are out of phase with each other, so most of the variation cancels 

out, resulting in a very small net torque ripple.  If a design has 

a cogging factor of 2 (Fig. 3(d)); this means that the gear has 

some symmetry and the torques of pairs of the individual PMs 

are in phase with each other, which produces an intermediate 

amount of net torque ripple.  However, the designs in Figs. 3(e) 

and 3(f) also have cogging factors of 2 and 1 but demonstrate 

much larger torque ripples than Figs. 3(d) and 3(c), 

respectively.  Thus, a better indicator of the torque ripple may 

be the extent to which the torque waveforms of the individual 

Rotor 1 PMs are out of phase with each other.  Therefore, a new 

Rotor 1 ripple factor (RF,1) can be defined as the design’s 

symmetry factor divided by the number of Rotor 1 poles, 

 𝑅𝐹,1 =
GCD(2𝑃1,𝑄2)

2𝑃1
=

𝐶𝑇

2𝑃1
=

𝑄2

LCM(2𝑃1,𝑄2)
 , (5) 

where GCD stands for greatest common divisor.  Similarly, a 

new Rotor 2 ripple factor (RF,2) can be defined as 

 𝑅𝐹,2 =
GCD(2𝑃1,𝑄2)

𝑄2
=

𝐶𝑇

𝑄2
=

2𝑃1

LCM(2𝑃1,𝑄2)
. (6) 

As with the cogging factor, the Rotor 2 ripple factor has the 

same value, regardless of whether P1 or P3 is used.  RF,3 can be 

calculated similarly to RF,1 by replacing P1 with P3.  The ripple 

factor is the inverse of the number of poles (or modulators for 

Rotor 2) in the smallest symmetrical fraction of the model, so 

the ripple factor is inversely proportional to the number of 

distinct phase shifted torque waveforms illustrated in Fig. 3. 

Figs. 2(d) and 2(e) depict these ripple factors, which show a 

better correlation with the torque ripples in Fig. 2(b) and (c) 

than the cogging factor defined by (4), especially when P1 is 

varied.  Integer gear ratios produce large torque ripples, as 

shown in some recent papers [24], [33], [34], [38], [73], [78], 

[84], [88].  While integer gear ratios may be required in certain 

scenarios, such as achieving a high gear ratio with a small radius 

[38], when possible, using a non-integer gear ratio is a simple 

way to reduce torque ripple.  The ripple factor applies for any 

pole pair count, including P1 = 1.  In contrast, using the cogging 

factor alone can be misleading, as it suggests that a design with 

P1 = 1 (CT = 1 or CT = 2) will yield low ripple [38], when in 

reality P1 = 1 always yields an integer gear ratio and larger 

torque ripples than non-integer gear ratios [24], [38].  

Comparing Fig. 3(e) and 3(f), which have RF,1 = 1 and RF,1 = 

0.5, respectively, with Figs. 3(d) and 3(c), which have RF,1 = 

0.33 and RF,1 = 0.17, respectively, demonstrates the 

improvement of RF,1 over CT in predicting the Rotor 1 torque 

ripple, especially when P1 is varied. 

Table IV provides experimental evidence from the literature 

for prototypes with measured torque ripple.  Table IV does not 

include prototypes with skew or topologies which purposefully 

increase the effective air gap between the modulators and the 

Rotor 1 magnets as the purpose of Table IV is to relate pole 

counts with torque ripple only.  The low speed rotor (LSR) 

ripple factor is calculated using RF2 or RF3, depending on 

which rotor is used as the low speed rotor.  It should be noted 

that assembly problems, manufacturing tolerances, and 

measurement noise can introduce torque ripple into the  
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TABLE IV 

SUMMARY OF COAXIAL MAGNETIC GEAR PROTOTYPE TORQUE RIPPLE 

Source 

Pole Pair 

Counts 
[P1, P3, Q2] 

Low 

Speed 
Rotor 

Gear 
Ratio CT 

HSR 

Ripple 
Factor 

LSR 

Ripple 
Factor 

HSR 
Ripple 

LSR 
Ripple 

[28] 3, 32, 35 3 10.67 1 0.167 0.0156 – 3.9% 

[22] 6, 19, 25 2 4.17 1 0.0833 0.0400 12.7% 3.2% 

[6] 11, 60, 71 2 6.45 1 0.0455 0.0141 23% 2.4% 
[33] 2, 30, 32 3 15 4 1 0.0667 84% – 

[34] 1, 5, 6 2 6 2 1 0.333 50% 110% 

[38] 1, 21, 22 3 21 2 1 0.0476 146% – 
[44] 4, 13, 17 2 4.25 1 0.125 0.0588 10% 0.4% 

[44] 4, 13, 17 2 4.25 1 0.125 0.0588 1% 0.2% 

[45] 8, 26, 34 2 4.25 2 0.125 0.0588 1% 0.2% 
[50] 4, 10, 14 3 2.5 2 0.250 0.100 2.5% 2.7% 

[54] 4, 22, 26 3 5.5 2 0.250 0.0455 3% 11% 

[8] 6, 68, 74 3 11.33 2 0.167 0.0147 – 1% 

[34], [60] 2, 19, 21 2 10.5 1 0.250 0.0476 – 17% 

 

measurements, which may dominate the results for cases with 

low ripple factors [6].  For example, in the previous large scale 

prototype tested by the authors in [8], shown in Fig. 4(a), the 

torque ripple on the LSR, shown in Fig. 4(b), appears to be 

dominated by measurement noise.  Nevertheless, the results in 

Table IV, which are plotted in Fig. 5, reveal that the ripple 

factor is a better predictor of which designs will have low torque 

ripples on both the high speed rotor (HSR) and the LSR than 

the cogging factor. 

B. Unbalanced Magnetic Forces 

In [8], [31], [33], [37] and [38], the authors were alert to the 

need to select pole counts to create symmetry in the radial 

magnetic forces acting on each rotor.  In [36], higher than 

expected mechanical losses were attributed to increased bearing 

friction resulting from unbalanced magnetic forces.  In [37], 

unbalanced magnetic forces produced significant vibrations in 

a prototype.  Fig. 6 shows the x-axis and y-axis components of 

the net magnetic force acting on Rotor 2 as the same gears 

characterized in Fig. 3 operate at the slip torque angle for one 

full magnetic cycle.  The gear designs characterized in Figs. 

3(a), 3(b), 3(d) and 3(e) exhibit symmetry; therefore, their 

corresponding traces in Fig. 6 indicate very small net 

unbalanced magnetic forces, which are not ideally present and 

simply an artifact of numerical modeling.  The gear designs 

characterized in Figs. 3(c) and 3(f) do not have any symmetry 

and correspond to the cyan and green traces in Fig. 6.  When  

 

  
(a)              (b) 

Fig. 4.  (a) Previous radial flux coaxial magnetically geared machine prototype 

[8] and (b) the experimental torque ripple data at a Rotor 3 speed of 30 rpm [8]. 

  
(a) (b) 

Fig. 5.  Experimentally measured (a) high speed rotor torque ripple and (b) low 

speed rotor torque ripple versus the cogging factors and ripple factors of the 

designs. 

 

 
 

 

Fig. 6.  X-axis and y-axis components of the net magnetic forces acting on Rotor 
2 in the magnetic gear designs characterized in Fig. 3.  Note that all the cases 

with symmetry (Sym.) form one dot at the origin. 

there is no symmetry in a design, each of its rotors experiences 

an unbalanced net magnetic force that varies in magnitude and 

direction during the operation of the gear.  This phenomenon 

was observed in the prototypes described in [6], [36], [37].  

Thus, while the gear design corresponding to Fig. 3(d) has 

higher torque ripples than the design corresponding to Fig. 3(c), 

the pole pair counts associated with Fig. 3(d) may produce a 

more desirable design, due to the net cancellation of radial 

magnetic forces. 

For a radial (or transverse) flux coaxial magnetic gear, if 2P1, 

2P3, and Q2 have a common divisor greater than 1, such as 3 in 

the examples mentioned by [38] (P1 = 3, P3 = 12, and Q2 = 15) 

and [80] (P1 = 6, P3 = 9, and Q2 = 15), then symmetry exists, 

and the radial magnetic forces on each rotor will be balanced. 

However, simply choosing P1 and P3 such that (1) yields an 

even value of Q2 ensures that there will be symmetry in the 

design, eliminating unbalanced magnetic forces.  When Rotor 

3 is fixed (Rotor 2 serves as the low–speed rotor), 

 𝑃3|𝜔3=0 =  {
(𝐺𝐼𝑛𝑡 − 1)𝑃1 + 1      for 𝐺𝐼𝑛𝑡𝑃1 odd  

  (𝐺𝐼𝑛𝑡 − 1)𝑃1 + 2      for 𝐺𝐼𝑛𝑡𝑃1 even ,
 (7) 

which was introduced in [89], can be implemented to select P3 

values for a given integer part of the gear ratio (GInt) and a P1 

value.  Then, (1) determines Q2, and (2) determines the exact 

gear ratio (G), including the fractional part.  If Rotor 3 is used 

as the low–speed rotor, then 

  𝑃3|𝜔2=0 =  {
 𝐺𝐼𝑛𝑡𝑃1 + 1     for (𝐺𝐼𝑛𝑡 + 1)𝑃1 odd

  𝐺𝐼𝑛𝑡𝑃1 + 2     for (𝐺𝐼𝑛𝑡 + 1)𝑃1 even
 (8) 
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can be used to select pole pair combinations and (1) can still be 

used to determine modulator piece count, as was done in [81].  

In this case, (3) determines the exact gear ratio.  For GInt > 1 and 

P1 > 2, (7) and (8) always yield non-integer gear ratios and an 

even number of modulators, which eliminates designs with 

egregiously large torque ripple or unbalanced magnetic forces. 

Similarly, axial flux coaxial magnetic gears without 

symmetry will experience off-axis torques.  These off-axis 

torques may result in accelerated wear on the bearings, which 

already bear the significant axial loading resulting from the 

axial magnetic forces inherent in this topology.  As with radial 

and transverse flux gears, these off-axis torques can ideally be 

eliminated by selecting pole counts that yield some degree of 

symmetry.  Therefore, (7) or (8) also apply when designing an 

axial flux coaxial magnetic gear. 

III. OPTIMAL POLE PAIR COUNTS 

A parametric 2D FEA simulation study was used to 

characterize how pole pair counts impact a radial flux coaxial 

magnetic gear’s slip torque and efficiency.  All simulations 

assumed a fixed Rotor 3 (Rotor 2 serves as the low-speed rotor) 

and used the baseline parameters in Table III. 

A. Torque Transmission Capability 

Fig. 7 depicts the impact of the pole counts on the slip torque 

of the base design.  This shows significantly different trends 

when P1 is fixed and when P1 is varied.  If P1 is allowed to vary, 

the torque is maximized near the minimum considered gear 

ratio, as in [90] and [91].  However, because some previous 

studies fixed P1, they concluded that there is a larger optimal 

gear ratio [83]-[85].  Had these studies evaluated multiple 

values of P1, they would have achieved higher torques at lower 

gear ratios, which result in more similar pole counts on both 

rotors and thus enable better simultaneous optimization of the 

pole counts on both rotors if pole count is considered as a design 

variable. 

Fig. 7 illustrates that the Rotor 1 pole count for optimal 

torque transmission decreases as the gear ratio increases, which 

agrees with [79], [81], [90], and [91].  This mitigates the extent 

to which the Rotor 3 pole count exceeds its optimal value (an 

excessively high Rotor 3 pole count results in excessively high 

leakage flux).  The optimal pole count is expected to vary with 

other parameters of a magnetic gear design, as well.  Thus, a 

parametric 2D FEA study was conducted using the base design 

specified in Table III and varying individual design parameters 

one at a time along with P1 to demonstrate how the optimal pole 

pair count varies depending on the geometry of the design.  For 

these simulations, (7) was used to determine P3 with GInt = 4.  

Specific torque, which is defined as the Rotor 2 slip torque 

divided by the gear’s total magnetically active mass, was used 

to compare designs.  Figs. 8-12 show the results using 

normalized specific torque to generalize the observed design 

trends. 

Fig. 8(a) reveals that the optimal pole count increases as the 

outer radius increases, which agrees with [77], [82], and [89].  

This can be explained by considering that the arc length of the 

effective flux path increases as the radius increases.  Thus, as 

the outer radius increases, a higher pole count is required to 

optimize the tradeoff between increasing the angular derivative 

of the magnetic coenergy and decreasing the amount of 

tangential leakage flux between adjacent poles in the gear.  Fig. 

8(b) shows that this tradeoff tends to keep the optimal pole arc 

on the outside of the Rotor 1 PMs roughly constant as the outer 

radius is increased. 

Fig. 9 shows that as the Rotor 1 PM thickness increases, the 

optimal pole count decreases, which agrees with [82] and [89].  

Similarly, as the Rotor 3 PM thickness increases, the optimal  

 

 
 

Fig. 7.  Impact of gear ratio and Rotor 1 pole pair count on the normalized Rotor 

2 slip torque of the base design defined in Table III. 

 
 

 
               (a) 

 
               (b) 

Fig. 8.  Impact of Rotor 1 (a) pole pair count or (b) PM outer arc length on the 

normalized specific torque at various outer radii with GInt = 4. 

 

 

Fig. 9.  Impact of Rotor 1 pole pair count on the normalized specific torque at 

various Rotor 1 magnet thicknesses with GInt = 4. 

 

 

Fig. 10.  Impact of Rotor 1 pole pair count on the normalized specific torque at 

various Rotor 3 magnet thicknesses with GInt = 4. 
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Fig. 11.  Impact of Rotor 1 pole pair count on the normalized specific torque at 

various air gap thicknesses with GInt = 4. 

 

 

Fig. 12.  Impact of Rotor 1 pole pair count on the normalized specific torque at 

various modulator thicknesses with GInt = 4. 

pole count decreases.  In Fig. 10, as with the Rotor 1 PMs, 

thicker Rotor 3 PMs lead to lower optimal pole counts.  Fig. 11 

shows that the optimal pole count also decreases as the air gap 

increases.  Figs. 9-11 indicate that as the effective air gap 

thickness (the physical air gaps plus the magnet thicknesses) 

increases, the optimal pole count decreases.  This trend occurs 

because increasing the effective air gap increases the amount of 

leakage flux; thus, lower pole counts are required to increase 

the pole arcs and achieve the optimal balance between 

decreasing the amount of leakage flux and increasing the 

angular derivative of the magnetic coenergy. 

Fig. 12 indicates that increasing the modulator thickness also 

decreases the optimal pole pair count, which is in concordance 

with [90].  This trend occurs because increasing the modulator 

thickness results in radially longer slots, which leads to more 

leakage flux.  Consequently, the pole counts should be 

decreased in order to counteract this effect.  Additionally, 

increasing the modulator thickness with a fixed outer radius 

pushes the inner air gap radius inward (making it smaller), 

which also lowers the optimal pole count. 

It is well understood in the literature that end effects make a 

significant impact on magnetic gear performance [92].  In [82] 

it was found that 3D effects may have a small effect on the 

optimal parameters.  Thus, 3D end effects may shift the trends 

found in Figs. 7-12; however, the general patterns regarding the 

relationships between geometric parameters and the optimal 

pole pair counts will not be fundamentally altered.   

B. Losses 

To evaluate the impact of pole pair counts on losses, the base 

designs were simulated using transient 2D FEA with Rotor 2 

rotating at 100 rpm and Rotor 1 rotating according to the gear 

ratio.  The results in Fig. 13 demonstrate that, for a fixed P1 

value, increasing the gear ratio increases the losses after Q2 

exceeds a small initial value.  This occurs because increasing 

the gear ratio with a fixed P1 value and a fixed ω2 affects the 

amplitude of the flux density in the gear and increases the  
 

 
 

 (a) 

  
       (b)        (c) 

Fig. 13.  (a) Variation of the base design’s total electromagnetic (EM) losses 

with gear ratio and Rotor 1 pole pair count.  Variation of the base design’s (b) 
PM losses and (c) soft magnetic material core losses with modulator count and 

Rotor 1 pole pair count. 

temporal frequencies of the magnetic flux density spatial 

harmonics (since a higher gear ratio results in a higher ω1 for a 

fixed ω2 and a higher ω1 with a fixed P1 value results in a higher 

electromagnetic Rotor 1 speed).  Alternatively, if Q2 and ω2 are 

fixed, then the temporal frequencies of the gear’s magnetic flux 

density spatial harmonics are fixed and increasing P1 reduces 

the gear’s electromagnetic losses.  Increasing P1 segments the 

Rotor 1 PMs, yielding smaller PM arc lengths, which reduces 

eddy currents and the lengths of the Rotor 1 flux paths.  The 

shorter Rotor 1 flux paths result in less asynchronous flux in 

Rotor 3. 

IV. CONCLUSION 

Table I reveals that a critical coaxial magnetic gear design 

element, pole count selection, is often given inadequate 

consideration.  Even for the design of some recent prototypes, 

only a single set of pole pair counts was evaluated, which 

yielded relatively large torque ripples [24], [33], [34]. 

Therefore, this paper provides a reference describing various 

criteria to consider when selecting pole counts for magnetic 

gears.  The paper uses FEA results and a review of results in the 

literature to summarize, quantitatively illustrate, and explain the 

impacts of magnetic gear pole counts on slip torque, torque 

ripple, magnetic forces, and losses. 

FEA analysis summarized in Fig. 2 and experimental torque 

ripple results in the literature (Table IV) demonstrate that 

designs with integer gear ratios, especially designs with Q2 as 

an even multiple of P1, have significantly larger torque ripple 

than designs with non-integer gear ratios.  Fig. 3 illustrates an 

explanation for this phenomenon by plotting the torque 

waveforms for each pole on Rotor 1.  Based on this explanation, 

(5) and (6) introduce new ripple factors based on the number of 

distinct torque waveforms for the poles or modulators.  Figs. 2 
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and 5 and Table IV use FEA and experimental results to 

corroborate the hypothesis that the ripple factors better predict 

which designs will have low torque ripple than the traditional 

cogging factor. 

The FEA results presented in Fig. 6 and the literature 

demonstrate that unbalanced magnetic forces in radial flux 

magnetic gears can be significant but can be easily eliminated 

by selecting pole counts that result in symmetry.  In axial flux 

magnetic gears, symmetry eliminates the off-axis torques.  As 

torque ripple is minimized by choosing pole counts that do not 

result in symmetry but symmetry is desirable for eliminating 

unbalanced magnetic forces or off-axis torques, (7) and (8) 

provide heuristics for selecting pole counts which yield a design 

compromise that keeps torque ripple relatively low, while 

eliminating unbalanced magnetic forces or off-axis torques.  

These equations yield pole counts which eliminate unbalanced 

magnetic forces or off-axis torques by imposing some 

symmetry yet also preclude pole count selections that yield 

integer gear ratios for designs with P1 > 1. 

The FEA results presented in Fig. 7 and the literature 

demonstrate that, if both P1 and P3 are allowed to vary, the 

maximum torque density is achieved with a relatively low gear 

ratio.  This contradicts conclusions in some papers where P1 

was fixed [83]-[85].  Additionally, the optimal P1 value 

decreases as the gear ratio increases.  The FEA results presented 

in Fig. 8 and the literature show that the optimal P1 value 

increases with outer radius.  If other geometric parameters 

besides the outer radius are fixed, Fig. 8(b) demonstrates that 

the optimal P1 value will change to maintain an approximately 

constant Rotor 1 PM outer arc length.  The FEA results 

presented in Figs. 9-12 and the literature demonstrate that 

increasing the radial thickness of the PMs, air gaps, or 

modulators reduces the optimal pole counts.   

FEA results presented in Fig. 13 illustrate that increasing the 

gear ratio with a fixed P1 value increases a gear’s 

electromagnetic losses (after some initial small modulator count 

is exceeded), but, if the gear ratio is fixed, then increasing the 

pole counts (up to some nontrivial value) can reduce the 

electromagnetic losses.  Thus, especially at low gear ratios, 

increasing the Rotor 1 pole count (up to some optimal value) 

can increase the efficiency because this both increases the 

design’s slip torque (up to some optimal value) and reduces its 

electromagnetic losses. 

This paper’s key contributions and results can be 

summarized as follows: 

• Tables I and II provide an extensive audit of coaxial 

magnetic gear and magnetically geared machine 

prototypes, with a focus on pole pair count selections. 

• Integer gear ratios produce significant torque ripple, and 

the reason for this phenomenon is illustrated in Fig. 3. 

• Equations (5) and (6) introduce new ripple factors, and 

Figs. 2 and 5 and Table IV use FEA and experimental 

results to demonstrate that the ripple factors are better 

predictors of which magnetic gear designs will have low 

torque ripples than the traditionally used cogging factor. 

• Equations (7) and (8) provide heuristics for selecting pole 

counts which yield a design compromise that keeps torque 

ripple relatively low, while eliminating unbalanced 

magnetic forces. 
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