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Abstract--Magnetic gears perform the same fundamental 

power conversion as mechanical gears.  However, magnetic gears 

have significant potential benefits due to their noncontact 

operation.  This paper compares three different ways to achieve 

high gear ratios using coaxial magnetic gears by evaluating 

trends for radial flux coaxial magnetic gears with surface 

mounted permanent magnets.  First, a single-stage design can be 

used, but the torque density and efficiency both decline as the 

gear ratio increases.  Additionally, the gear ratio achievable with 

a single-stage coaxial magnetic gear is limited by practical 

considerations, such as the maximum number of modulators and 

pole pairs that can be used within the given space.  Second, a 

multistage design can be formed by connecting single-stage 

designs in series.  Multistage designs can achieve much higher net 

gear ratios with much less of a torque density penalty, especially 

as the number of stages increases, but this entails greater 

complexity.  Third, the compound differential coaxial magnetic 

gear (CDCMG) is proposed.  The CDCMG is formed by 

interconnecting two single-stage coaxial magnetic gears and can 

achieve gear ratios much higher than the product of the gear 

ratios of the individual stages.  However, the circulating power in 

the CDCMG leads to poor efficiencies. 

 
Index Terms—Gear ratio, magnetic gear, multistage, 

optimization, torque density. 

I.  INTRODUCTION 

AGNETIC gears convert mechanical power between 

high-torque, low-speed rotation and low-torque, high-

speed rotation.  However, whereas magnetic gears perform the 

same function as mechanical gears, magnetic gears rely on 

modulated magnetic fields, instead of direct contact, to 

transfer power.  This noncontact operation gives magnetic 

gears a plethora of potential advantages over mechanical 

gears, including reduced maintenance, higher reliability, 

inherent overload protection, and physical isolation between 

shafts.  Thus, significant research has focused on magnetic 
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gears in recent years [1]-[4], and they have been proposed for 

a wide variety of high-torque, low-speed electromechanical 

energy conversion applications, such as wind energy [5], wave 

energy [6], [7], ship propulsion [8], and traction [9]. 

Most recent magnetic gear research focuses on coaxial 

magnetic gears [1]-[9].  Coaxial magnetic gears consist of 

three magnetically active cylindrical bodies, the low pole 

count rotor (Rotor 1), the modulators rotor (Rotor 2), and the 

high pole count rotor (Rotor 3), centered about the same axis, 

as illustrated in Fig. 1 for a radial flux, surface permanent 

magnet (PM) coaxial magnetic gear.  To maximize the torque 

of the coaxial magnetic gear, the number of modulators (Q2) is 

related to the number of pole pairs on the low pole count rotor 

(P1) and on the high pole count rotor (P3) by 

 Q2 = P1 + P3. (1) 

If the design conforms to (1), the steady-state speeds of Rotor 

1 (ω1), Rotor 2 (ω2), and Rotor 3 (ω3) are governed by 

 P1∙ω1 – Q2∙ω2 + P3∙ω3 = 0. (2) 

Several different operating modes are possible, but fixing 

Rotor 3 results in the highest gear ratio, R, as given by 
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which relates the steady-state speeds of Rotor 1, the high 

speed rotor (ω1), and Rotor 2, the low speed rotor (ω2). 

One of the primary advantages of using gears in high-

torque, low-speed energy conversion applications is that it 

allows the electric machine to be much smaller than a direct- 

drive machine for the same application.  The larger the gear 
 

 
Fig. 1.  Coaxial radial flux magnetic gear with surface mounted permanent 

magnets. 
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ratio, the more the size of the electric machine can be reduced.  

However, most of the literature on coaxial magnetic gears 

focuses on designs with gear ratios less than 15:1, including 

several of the designs with the highest reported torque 

densities [1]-[10].  One alternative is to use cycloidal or 

harmonic magnetic gears, for which higher gear ratios have 

been demonstrated, but these topologies introduce additional 

mechanical challenges, such as unbalanced magnetic forces, 

eccentric rotation, or a mechanically deforming spline [11], 

[12].  This work uses 2D and 3D finite element analysis (FEA) 

to investigate three different means to achieve higher gear 

ratios using radial flux coaxial magnetic gears with surface 

mounted permanent magnets, such as the example shown in 

Fig. 1.  First, single-stage magnetic gears with higher gear 

ratios are evaluated.  Second, single-stage magnetic gears are 

connected in series to form multistage magnetic gears.  

Finally, two single-stage magnetic gears are interconnected to 

form the Compound Differential Coaxial Magnetic Gear 

(CDCMG).  Although this study is limited to radial flux 

coaxial magnetic gears, many of the general trends analyzed in 

this work also apply to other coaxial flux magnetic gear 

variations (such as radial flux gears with flux focusing or 

Halbach array magnet configurations and axial and transverse 

flux coaxial magnetic gears of similar magnet configurations). 

II.  SINGLE-STAGE COAXIAL MAGNETIC GEARS 

A multi-objective genetic algorithm was used to determine 

the Pareto optimal front maximizing both gear ratio and 

gravimetric torque density (GTD) in single-stage radial flux 

magnetic gears based on 2D FEA.  Table I shows the range of 

values over which each design parameter was swept by the 

genetic algorithm, and Table II characterizes the materials 

used in the gears.  The optimization was performed separately 

at each of the outer radii listed in Table III.  As described in 

[13] and [14], GR represents the integer part of the gear ratio 

and relates the pole pair counts according to 
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which eliminates unbalanced magnetic forces and keeps the 

cogging torque relatively low.  Also, kPM determines the ratio 

of the magnetic thicknesses on the low pole count rotor (TPM1) 

and on the high pole count rotor (TPM3) according to 

 TPM3 = kPM ∙ TPM1. (5) 

In general, a gear’s stall torque is theoretically magnetically 

maximized by using the smallest possible air gap, but 

mechanical concerns, such as machining tolerances, limit the 

minimum air gap that can be achieved.  Thus, as indicated in 

Table I, the air gaps are each fixed at 1 mm in this study as a 

compromise between these considerations.  For other 

parameters, the ranges used in Table I are informed by the 

results presented in [13].  For example, the PM and modulator 

fill factors are not swept all the way from 0 to 1 but across 

smaller regions around the optimal values presented in [13]. 

Because end-effects can have a significant impact on the 

torque of coaxial magnetic gears [15], each of the optimal 

 

TABLE I 

Magnetic Gear Design Parameter Ranges 

Name Description Range Units 

GR Integer part of gear ratio 3 – 31  

P1 Rotor 1 pole pairs 3 – 25  

TBI1 Rotor 1 back iron thickness 5 – 20 mm 

TPM1 Rotor 1 magnet thickness 3 – 12 mm 

TAG Air gap thicknesses 1 mm 

TMods Modulator thickness 5 – 15 mm 

kPM Magnet thickness ratio 0.5 – 1  

TBI3 Rotor 3 back iron thickness 5 – 20 mm 

αPM1 Rotor 1 magnet tangential fill factor 0.75 – 1  

αMods Modulators tangential fill factor 0.35 – 0.65  

αPM3 Rotor 3 magnet tangential fill factor 0.75 – 1  

 
TABLE II 

Magnetic Gear Active Material Characteristics 

Material Density Br 

N42 NdFeB 7400 kg/m3 1.3 T 

M47 Steel (26 Gauge) 7870 kg/m3 N/A 

 
TABLE III 

Magnetic Gear Design Discrete Parameter Values 

Name Description Values Units 

rOut Magnetic gear outer radius 50, 75, 100, 150 mm 

LStack Stack length 
5, 10, 15, 20, 25, 30, 

40, 50, 60, 80, 100 
mm 

 

cross-sectional designs selected based on the 2D FEA 

simulation results was simulated at each of the stack lengths in 

Table III using 3D FEA.  Then, for each of these optimal 

cross-sectional designs, the correct stack length necessary to 

achieve a low speed rotor stall torque of 1000 N∙m was 

interpolated from the 3D FEA simulation results.  For some of 

the smaller radii cases, the necessary stack length was beyond 

100 mm and had to be extrapolated based on the torques at 

stack lengths of 80 mm and 100 mm.  However, these stack 

lengths will still be fairly accurate since the torque becomes 

approximately linear at such high aspect ratios [15]. 

The GTD is calculated by dividing the low speed rotor stall 

torque by the total active mass, which is the sum of the masses 

of the back irons (made of M47 steel), the modulators (made 

of M47 steel), and the permanent magnets (made of N42 

NdFeB).  GTD is chosen for this study because, in addition to 

minimizing a design’s active mass, optimizing for GTD tends 

to achieve a reasonable compromise between minimizing 

volume and minimizing active material cost [13].  As in [13] 

and [16], this study uses the GOSET genetic algorithm [17]. 

Fig. 2 shows the Pareto optimal front maximizing both gear 

ratio and GTD based on the design parameter value ranges 

provided in Table I at each of the outer radii in Table III.  This 

Pareto optimal front indicates that, as the gear ratio increases, 

the maximum achievable gear GTD decreases.  This presents 

the system designer with a fundamental tradeoff; as the gear 

ratio increases, the size of the electric machine decreases, but 

the size of the magnetic gear increases [7], [18].  The GTD of 

a system composed of a magnetic gear and an electric 

machine, GTDSys, is the magnetic gear’s low speed rotor stall 
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Fig. 2.  Pareto optimal front maximizing the gear’s GTD over a range of gear 

ratios and outer radii for a single-stage magnetic gear with a low speed rotor 
stall torque of 1000 N∙m. 

 

torque, TGear, divided by the total active mass of the system, as 

given by 

 
MachineGear

Gear
Sys

MM

T
GTD

+
= , (6) 

where MGear and MMachine are the active masses of the magnetic 

gear and the electric machine, respectively.  If the rated torque 

of the electric machine matches the stall torque of the gear’s 

high speed rotor, which is TGear/R (where R is the gear ratio), 

GTDSys can be rewritten by expressing the masses of the 

magnetic gear and electric machine in terms of their respective 

GTDs, GTDGear and GTDMachine, and factoring out TGear from 

both the numerator and denominator, which yields 

 ( ) ( )( ) 111 −−−
+= MachineGearSys GTDRGTDGTD . (7) 

Fig. 3 illustrates the maximum system GTDs that can be 

achieved using the optimal 150 mm outer radius points in Fig. 

2 and electric machines with different GTDs.  The dashed line 

in Fig. 3 indicates the gear ratio that maximizes the system 

GTD for each machine GTD.  Thus, a design with a relatively 

low gear ratio and a high torque density, such as those 

described in [1]-[10] may be less desirable from a system 

optimization standpoint than a gear with lower torque density, 

but a higher gear ratio.  This is especially true for systems 

where the electric machine has a relatively low torque density.  

However, as the gear ratio increases, the number of 

modulators and stationary pole pairs increases; this increases 

manufacturing complexity and cost and may eventually result 

in components that are impractically thin in the tangential 

direction.  Accordingly, the designer must evaluate several 

considerations in conjunction with the relevant electric 

machine scaling characteristics to select the appropriate design 

point which results in the optimal system configuration. 

As the gear ratio changes, the optimal design parameters 

also change.  The most significant change occurs in the 

number of Rotor 1 pole pairs, as shown in Fig. 4(a).  

Specifically, as the gear ratio increases, the optimal number of 

Rotor 1 pole pairs decreases to limit the increase in the 

number of Rotor 3 pole pairs and modulators because large 

numbers of Rotor 3 pole pairs or modulators result in 

excessive leakage flux.  This reduction in the Rotor 1 pole 

count also reduces the flux leakage between adjacent magnets 

 
Fig. 3.  Variation of the maximum achievable system GTD with gear ratio and 
machine GTD for systems with a low speed stall torque of 1000 N∙m.  The 

dashed line traces the maximum achievable system GTD and the 

corresponding gear ratio for each machine GTD. 

 

 
(a) 

 
(b) 

Fig. 4.  Variation of the maximum achievable gear GTD at various GR values 

with (a) the Rotor 1 pole pair count and (b) the Rotor 1 magnet thickness for 
designs with an outer radius of 150 mm based on 2D FEA. 

 

on Rotor 1, which leads to an increase in the optimal Rotor 1 

magnet thickness, as illustrated in Fig. 4(b). 

Additionally, the gear ratio affects the gear’s efficiency.  

Fig. 5 illustrates the variation of the full load electromagnetic 

efficiency with gear ratio and the low speed shaft speed for the 

150 mm outer radius design points included in Fig. 2.  Note 

that the electromagnetic efficiency calculations only account 

for the core losses (hysteresis and eddy current losses) in the 

back iron and modulator laminations and the eddy current 

losses in the magnets.  These losses are calculated using 2D 

FEA and then scaled to the appropriate stack lengths based on 

the 3D FEA results.  Efficiency decreases as speed increases 

because the eddy current losses increase with the square of the 

magnetic frequency, but the power rating only increases 

linearly with the speed.  Additionally, efficiency decreases as 

the gear ratio increases, despite the fact that the optimal Rotor 

1 pole count gradually decreases, which tends to lower the 

frequencies of the magnetic field harmonics.  This efficiency 

reduction is partially due to the fact that for the same low 



 

© IEEE 2018 

4 

 
Fig. 5.  Full load electromagnetic efficiencies of the optimal 150 mm outer 
radius points shown in Fig. 2 over a wide range of speeds. 

 

speed shaft speed, a higher gear ratio yields a proportional 

increase in the high speed rotor speed, which results in a net 

increase in the magnetic frequencies.  Furthermore, as 

illustrated by Fig. 2, higher gear ratio designs require more 

active material (both magnets and steel) to transmit the same 

torque, which results in higher losses. 

III.  SERIES MULTISTAGE COAXIAL MAGNETIC GEARS 

Multiple single-stage coaxial magnetic gears can be 

connected in series to achieve a higher gear ratio than that 

which is practical with a single-stage coaxial magnetic gear 

[19]-[21].  If the high speed rotor of each stage is connected to 

the low speed rotor of the next stage, the net gear ratio is the 

product of the gear ratios of all the stages.  Because each stage 

interacts with less torque than the previous stage (moving 

from the lowest speed rotor to the highest speed rotor), each 

subsequent stage can potentially be significantly smaller than 

the previous stage(s).  (This study uses the convention that the 

low speed rotor of the first stage is connected to the low speed 

shaft of the multistage gearbox and the high speed rotor of the 

last stage is connected to the high speed shaft of the multistage 

gearbox.)  Thus, as suggested in [19], successive stages could 

potentially be nested in the bore(s) of the preceding stage(s), 

which would result in a compact design.  Although [19] only 

considers radial flux topologies, this idea could potentially be 

applied to other topologies, such as axial flux or transverse 

flux gears, or even with multiple different topologies used for 

different stages in the same gearbox. 

The ratio between the torques needed for successive stages 

is ideally (assuming negligible losses) given by the gear ratio 

of the first (lowest speed) of the two stages; thus, the overall 

GTD of a multistage gear with n stages, GTDNET, is given by 
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where GTDi is the GTD of the ith stage and Rj is the gear ratio 

of the jth stage, based on the convention that the first stage is 

the stage rated for the lowest speed and the highest torque, 

while the nth stage is rated for the lowest torque and the 

highest speed.  Based on (8), the cross-sectional designs along 

the Pareto optimal fronts in Fig. 2 can be connected in series 

to form the Pareto optimal fronts illustrated in Fig. 6 for 

multistage gearboxes with 2, 3, or 4 series-connected stages, 

which are shown in addition to the single-stage designs.  As 

with the single-stage designs, the stall torque of the low speed 

shaft of each magnetic gearbox is 1000 N∙m.  The optimal 

design for each individual stage in each of these multistage 

gear designs was selected by interpolating between the 3D 

FEA results at the stack lengths in Table III to determine the 

correct stack length required for each of the optimal 2D cross-

sectional designs to achieve the necessary torque for a given 

individual stage.  For the later stages, which have lower 

torques, end-effects become more significant, especially at the 

larger outer radii.  Thus, even though the largest outer radius 

designs are optimal for the first stage, as in Fig. 2, designs 

with smaller outer radii become optimal for the later stages 

with smaller torques, as shown in Fig. 6(a).  This choice 

between smaller outer radii or more significant end-effects 

means that the later stages tend to have lower GTDs than the 

first stage; however, since these later stages are rated for lower 

torques, they contribute less to the overall mass of the gearbox 

and have a less significant effect on the overall gearbox GTD. 

Fig. 6 shows that designs with more series-connected 

stages can achieve significantly higher net gear ratios and 

higher GTDs for a given net gear ratio, as compared to single-

stage designs and multistage design with fewer stages.  The 

colors of the points along the curves in Fig. 6(b) indicate the 

gear ratios used in the first (highest torque, lowest speed) 

stages of these optimal multistage gear designs.  Because 

subsequent stages are rated for much smaller torques than the 

first stage, the mass of the first stage has the largest impact on 

the net GTD.  Thus, it is advantageous to use a magnetic gear 

with a very high GTD for the first stage in order to minimize 

the total gearbox mass, even though that means that the first 

 

 
(a) 

 

 
(b) 

Fig. 6.  Pareto optimal fronts maximizing gearbox GTD over a range of gear 

ratios for single-stage magnetic gearboxes and multistage magnetic gearboxes 

with 2, 3, or 4 series-connected stages and their (a) last stage outer radii and 
(b) first stage gear ratios. 
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             (a) 

 
            (b) 

Fig. 7.  Full load electromagnetic efficiencies of the optimal (a) 2-stage and 

(b) 3-stage coaxial magnetic gearboxes shown in Fig. 6. 

 

stage has a relatively low gear ratio.  Based on (8) and Fig. 6, 

it is apparent that the net gear ratio can theoretically be raised 

to a very large value with a minimal impact on net GTD by 

connecting a large number of high GTD, low gear ratio stages 

in series.  However, this analysis neglects structural material 

and bearings.  As the number of stages increases, more 

structural material and bearings are required, which increases 

the overall size, mass, and cost.  Additionally, increasing the 

number of stages increases the gearbox complexity. 

Fig. 7 illustrates the electromagnetic efficiencies of some of 

the maximum GTD 2-stage and 3-stage designs included in 

Fig. 6.  Since the efficiency of each single-stage design has 

already been determined for a range of speeds, as shown in 

Fig. 5, the efficiency of each stage in the multistage design can 

be interpolated for its operating speed.  The net efficiency of a 

series multistage design is simply the product of the 

efficiencies of each of its stages.  Thus, as with the single-

stage designs, the efficiencies of the multistage designs tend to 

decrease as the gear ratio or low speed shaft speed increases.  

Magnetically, the number of stages only has a small impact on 

the efficiency because the compounding effect of using more 

stages approximately cancels out the benefits of using lower 

gear ratio, higher efficiency designs for each stage. 

IV.  COMPOUND DIFFERENTIAL COAXIAL MAGNETIC GEARS 

The single-stage coaxial magnetic gearbox can provide a 

high GTD at very low gear ratios, but the GTD decreases 

significantly as the gear ratio increases.  Alternatively, a 

multistage magnetic gearbox can achieve much higher net 

gear ratios without as significant a reduction in GTD, 

especially with numerous stages; however, the multistage 

gearbox’s complexity increases with the number of stages.  

The CDCMG provides an alternative that can combine two 

single-stage coaxial magnetic gears to achieve a net gear ratio 

much greater than the product of the individual stage gear 

ratios.  Similarly to a compound mechanical planetary gear or 

the connection of two cycloidal magnetic gears proposed in 

[11], the CDCMG is formed by connecting two single-stage 

coaxial magnetic gears, as illustrated in the θ-z transverse-

sections of a radial flux CDCMG in Fig. 8. 

Although Fig. 8 only illustrates CDCMGs formed from 

radial flux coaxial gears, the CDCMG can be implemented 

with other coaxial topologies, such as axial or transverse flux 

gears, or even with a combination of two stages of different 

topologies.  Additionally, there are multiple different ways to 

connect the two stages in a CDCMG, but the Free Spinning 

Rotor 3 (FSR3) configuration shown in Fig. 8(a) and the Free 

Spinning Rotor 2 (FSR2) configuration shown in Fig. 8(b) will 

generally provide the highest gear ratio.  In the FSR3 

configuration, the high speed shaft is connected to Rotor 1 in 

both stages, the Rotor 3s of the two stages are connected 

together and allowed to rotate freely, the Rotor 2 of Stage A is 

fixed in place, and the Rotor 2 of Stage B is connected to the 

 

 
(a) 

 
(b) 

Fig. 8.  θ-z transverse-sections of a radial flux CDCMG connected in the (a) 

Free Spinning Rotor 3 (FSR3) and (b) Free Spinning Rotor 2 (FSR2) 

configurations. 
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low speed shaft.  Similarly, in the FSR2 configuration, the 

high speed shaft is connected to Rotor 1 in both stages, the 

Rotor 2s of the two stages are connected together and allowed 

to rotate freely, the Rotor 3 of Stage A is fixed in place, and 

the Rotor 3 of Stage B is connected to the low speed shaft.  

For the FSR3 configuration, applying (2) to Stage A results in 

 HS
3A

1A

P

P
 −=3 , (9) 

which relates the angular velocity of both Rotor 3s (ω3) to the 

angular velocity of the high speed shaft (ωHS).  Applying (2) 

and (9) to Stage B yields 

 HS
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which relates the angular velocity of the low speed shaft (ωLS) 

to that of the high speed shaft.  Thus, the net gear ratio of the 

FSR3 configuration is given by 
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Alternatively, the net gear ratio can be expressed as 
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where RA and RB are the gear ratios of Stage A and Stage B, as 

defined in (3).  Thus, the net gear ratio of the CDCMG is 

essentially the product of the two single-stage gear ratios (RA – 

1 is the single-stage gear ratio of Stage A if the modulators are 

held stationary and Rotor 3 is allowed to rotate), divided by 

the difference between the two single-stage gear ratios. 

A similar analysis for the FSR2 configuration yields 
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The FSR2 configuration’s gear ratio can also be expressed as 
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From (12) and (14), it is evident that the CDCMG’s net 

gear ratio can be increased by increasing the gear ratios of the 

two stages and by decreasing the difference between the gear 

ratios of the two stages.  However, increasing the gear ratio of 

each stage reduces the GTD of each stage.  On the other hand, 

as shown in Fig. 4(a), lower gear ratios favor higher Rotor 1 

pole counts, and, as indicated by (3), higher Rotor 1 pole 

counts allow for smaller increments of change in the gear 

ratio, which makes it possible to achieve smaller differences 

between the gear ratios of the two stages.  Additionally, from 

(12) and (14), it is evident that the gear ratio of the FSR2 

configuration is the same as that of the FSR3 configuration 

with Stages A and B interchanged; this means that both 

configurations can achieve the same gear ratios.  However, the 

FSR3 configuration has an advantage with respect to GTD 

because the low speed shaft is connected to Rotor 2B, which 

has a higher stall torque than Rotor 3B.  The ratio of the stall 

torques for these two configurations is RB/(RB-1), which is 

especially significant if RB is relatively small.  Finally, (12) 

and (14) both indicate that if the gear ratios of the two stages 

are the same, then the CDCMG will ideally have an infinite 

gear ratio.  In this case, the low speed shaft will have non-zero 

steady-state velocity only when slipping, and the high speed 

shaft will rotate freely, decoupled from the low speed shaft. 

To illustrate the ability of the CDCMG to simultaneously 

achieve a high gear ratio and a relatively high GTD, an 

example radial flux CDCMG with a very aggressive gear ratio 

is presented, with the two stages connected in the FSR3 

configuration.  The parameters of Stages A and B are given as 

Design 1 in Table IV.  Additionally, Design 2 is given as a 

design example with a less aggressive gear ratio.  Both design 

examples are rated for a low speed stall torque of 1000 N∙m.  

As in the previous sections, each design was optimized using 

2D FEA; then, each design was evaluated at the stack lengths 

in Table III using 3D FEA, and the correct stack lengths were 

interpolated from the torques at the simulated stack lengths. 

Design 1 combines two single-stage coaxial magnetic gears 

with gear ratios of 3.059 and 3.053 to achieve a net gear ratio 

of 1015 with a net GTD of 52.0 N∙m/kg.  For comparison, as 

indicated by the information in Figs. 2 and 6, a single-stage 

gear and a two stage series connected gear are generally 

incapable of practically achieving this high of a gear ratio with 

realistic magnet and modulator pole piece sizes and acceptable 

torque ripple characteristics.  The largest gear ratio achieved 

by a two stage series connected gear considered in this study is 

981.8 and that design only exhibits a GTD of 31.3 N∙m/kg 

(with extremely high and relatively impractical single-stage 

gear ratios of 31.333 for both stages).  Three and four stage 

series connected gears can achieve comparably high gear 

ratios over 1000, while maintaining high GTDs of 66.7 

 
TABLE IV 

CDCMG Design Examples 

 

Name 

Design 1 

 Stage A    Stage B 

Design 2 

 Stage A    Stage B 

 

Units 

P1 17 19 8 9  

Q2 52 58 58 64  

P3 35 39 50 55  

R 3.059 3.053 7.250 7.111  

rOut 150 150 150 150 mm 

TBI1 5.0 5.0 6.9 6.0 mm 

TPM1 6.7 5.4 9.4 8.4 mm 

TAG 1 1 1 1 mm 

TMods 5.0 5.0 5.2 5.0 mm 

kPM 0.80 0.78 0.51 0.52  

TBI3 5.0 5.0 5.0 5.0 mm 

αPM1 0.86 0.94 0.79 0.75  

αMods 0.55 0.54 0.50 0.46  

αPM3 0.92 0.95 0.93 0.84  

Stack Length 63.1 66.8 78.4 84.4 mm 

GTD 103.4 104.3 75.6 78.5 N∙m/kg 

Net Gear Ratio 1015          320  

Net GTD 52.0          38.6 N∙m/kg 
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N∙m/kg and 68.2 N∙m/kg, respectively, but they require the 

added complexity associated with the additional gearing 

stages.  Thus, the CDCMG is capable of achieving a very 

large net gear ratio with just two stages of relatively low gear 

ratios, while simultaneously maintaining a reasonable GTD.  

Alternatively, Design 2 combines two stages with gear ratios 

of 7.25 and 7.11 to achieve a much lower net gear ratio of 320 

with a net GTD of 38.6 N∙m/kg.  This performance is quite 

achievable with a two stage series connected gear, but the 

CDCMG does have a slight advantage in the fact that each of 

its stages uses a lower gear ratio than what would be required 

in the stages of a series multistage solution. 

However, the CDCMG suffers from poor efficiency.  As 

shown in Fig. 9, at speeds above 1 rpm, Design 1 is less than 

10% efficient and Design 2 is less than 50% efficient.  This 

poor efficiency occurs because power circulates between the 

two stages, which means that each stage handles significantly 

more power than the amount transferred from the input shaft 

to the output shaft.  Thus, even though the individual stages 

may have high efficiencies at their operating points, the net 

efficiency may be much lower than the product of the 

efficiencies of the two stages.  The circulating power travels 

through the magnetic fields of Stage A, through the 

mechanical connection of the free spinning rotor between the 

two stages, through the magnetic fields of Stage B, and then 

through the mechanical connection of the high speed shaft 

between the stages.  The power transferred between the stages 

through the free spinning rotor, PFSR, is given by 

 PFSR = ωHS ∙ τ1A  () 

where τ1A is the torque on the high speed shaft from Stage A 

(assuming negligible electromagnetic losses in Stage A).  In 

the FSR3 configuration, for there to be no steady-state net 

torque on the free spinning rotor, the torque on the high speed 

shaft from Stage B, τ1B, must be given by 

 A1
B

A
B1

R

R
τ

1

1
τ 

−

−
−=  () 

assuming that the ratio of the torques between two rotors is 

given by the gear ratio between them.  (This assumption is 

correct in the case of lossless transmission in each stage.)  

Thus, the net power on the high speed shaft, PHS, is given by 

 PHS = ωHS ∙ (τ1A + τ1B) = FSR
B

A P
1R

R



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If RA < RB, the circulating power, Pcirc, is the difference 

between PFSR and PHS and is given by 

 Pcirc = PFSR – PHS = HS
AB

A P
RR

R





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
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However, if RA > RB, the circulating power is simply PFSR, 

which is given by 

 Pcirc = PFSR = HS
AB

B P
RR

R














−
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. () 

 
Fig. 9.  Full load electromagnetic efficiencies for CDCMG Designs 1 and 2 in 

Table IV. 

 

A similar analysis can be performed for the FSR2 

configuration where RA – 1 and RB – 1 would be replaced with 

RA and RB, respectively.  This analysis reveals a tradeoff 

involved in the selection of the gear ratios; as the difference 

between RA and RB decreases, the net gear ratio increases, but 

the efficiency also tends to decrease.  As an example, Design 1 

uses a smaller difference between RA and RB than Design 2 to 

achieve a higher net gear ratio, despite employing stages with 

smaller individual gear ratios, but Design 1 suffers from much 

higher losses.  Additionally, if the difference between RA and 

RB is small, torque ripple may become a significant concern 

because the average net torque on the high speed shaft will be 

much smaller than the torques from each of the two stages. 

The low efficiency caused by this circulating power makes 

the CDCMG impractical for most applications.  However, at 

very low speeds, the efficiency is higher, so the CDCMG 

might be a reasonable solution for applications with very low 

speeds, such as a solar tracking system or a system to raise a 

drawbridge.  Additionally, the CDCMG’s use of lower single-

stage gear ratios eliminates the need for an excessive number 

of modulators or Rotor 3 pole pairs.  This provides more 

flexibility to pursue strategies to improve efficiency or reduce 

torque ripple, such as using a Halbach array on Rotor 3. 

V.  CONCLUSION 

This paper evaluates three different options for achieving a 

high gear ratio using coaxial radial flux magnetic gears with 

surface permanent magnets.  First, the gear ratio of a single-

stage magnetic gear can be increased by increasing the ratio of 

the number of modulators to the number of pole pairs on the 

high speed rotor.  However, as the gear ratio increases, both 

gravimetric torque density (GTD) and efficiency tend to 

decrease.  Additionally, practical constraints limit the number 

of modulators and pole pairs that can be used, which limits the 

maximum gear ratio that can realistically be achieved.  

Second, multistage magnetic gearboxes can be formed by 

connecting single-stage designs in series.  Connecting more 

gear stages in series allows a design to achieve very high gear 

ratios with a smaller reduction in GTD at the expense of 

increased complexity.  To achieve a high GTD in a multistage 

gearbox, it is optimal to use a design with a relatively low gear 

ratio and a high GTD for the first stage connected directly to 

the low speed shaft.  Because the other stages operate at much 

lower torques, they are much smaller and have less impact on 

the net GTD of the design.  Third, the CDCMG can be formed 

by interconnecting two single-stage coaxial magnetic gears as 
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shown in Fig. 8.  This allows the CDCMG to achieve a much 

higher net gear ratio than the product of the gear ratios of the 

two stages.  However, a significant amount of power circulates 

between these two stages, which results in a very low 

efficiency except at extremely low operating speeds. 

This study provides an initial analysis of these three 

different means of achieving a high gear ratio.  There are 

significant opportunities for further analysis in this area.  This 

work only considers coaxial radial flux magnetic gears with 

surface permanent magnets.  Although the trends presented in 

this paper will generally apply to other types of coaxial 

magnetic gears, future work could evaluate these trends more 

precisely for other types of coaxial magnetic gears.  

Furthermore, the fabrication and testing of prototype 

multistage magnetic gearboxes or CDCMGs would be a 

significant contribution.  Finally, a CDCMG could be 

designed to achieve higher efficiency using techniques to 

reduce losses, such as using Halbach arrays. 
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