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Abstract—This paper describes a systematic way to create a 2D 

linear magnetic equivalent circuit (MEC) from node cells in a 

radial flux coaxial magnetic gear with Halbach arrays and without 

back irons.  Three base designs are used to validate the accuracy 

of the MEC against a nonlinear 2D FEA in terms of torque and air 

gap flux densities.  Guidelines based on each design’s pole arcs are 

presented for distributing the node cells inside the inner ring of 

magnets and outside the outer ring of magnets.  Based on these 

guidelines, an extensive parametric study is performed to compare 

the MEC and FEA results.  The MEC is able to very accurately 

track design parameter trends.  Even for the worst cases, the MEC 

predicts a torque within 6.9% of the FEA for a relatively coarse 

node cell mesh and within 4.2% with a finer mesh.  However, the 

MEC is significantly faster than the FEA.  With the coarser mesh, 

the MEC is almost two orders of magnitude faster than the FEA.  

Thus, this systematic linear MEC can be a useful tool for 

performing rapid initial optimizations. 

Keywords—air core, finite element analysis, Halbach arrays, 

magnetic equivalent circuit, magnetic gear, optimization, permeance 

network, radial flux, reluctance network, torque density. 

I. INTRODUCTION 

Like mechanical gears, magnetic gears convert energy 
between low-speed, high-torque rotation and high-speed, low-
torque rotation.  However, magnetic gears employ modulated 
magnetic fields, instead of mechanically intermeshing teeth.  
This provides several potential advantages over mechanical 
gears, such as improved reliability, reduced acoustic noise, 
reduced maintenance requirements, and inherent overload 
protection.  Thus, magnetic gears have recently attracted 
significant attention [1]-[4] and have been proposed for a wide 
range of applications from wind [5], [6] and wave [7], [8] energy 
harvesting to aerospace [9], [10].  For some applications, such 
as those in aerospace, minimizing the mass of the magnetic gear 
is a critical objective.  One means of reducing the mass is to 
mount the permanent magnets (PMs) on a relatively light, 
nonmagnetic material, such as plastic, instead of on magnetic 
steel back irons.  However, using such an “air core” topology 
significantly increases the reluctance of the magnetic flux paths.  
This can be counteracted by using a Halbach array, which 
focuses most of the flux on a single side of the array, while 
reducing the flux on the opposite side of the array.  Additionally, 

Halbach arrays have been employed in magnetic gears to reduce 
torque ripple, increase torque density, and improve efficiency 
[11]-[13].  Fig. 1(a) shows a conventional radial flux coaxial 
magnetic gear with surface PMs and Fig. 1(b) illustrates an air 
core radial flux coaxial magnetic gear with discrete Halbach 
arrays. 

For optimal flux modulation in a coaxial magnetic gear, the 
number of modulators, QM, should be the sum of the pole pairs 
on the inner and outer rotors, PIn and POut, respectively, as given 
by 

 QM = PIn + POut . () 

Any one of the three bodies (the inner rotor, the outer rotor, and 
the modulators assembly) can be fixed while the other two are 
rotated with a fixed gear ratio.  However, the highest gear ratio 
and low speed rotor stall torque are achieved if the outer rotor is 
held stationary.  Then, the inner rotor serves as the high speed 
rotor, and the modulators assembly serves as the low speed rotor 
with the gear ratio, G, given by  

 𝐺 =  
𝜔𝐼𝑛

𝜔𝑀𝑜𝑑𝑠
=  

𝑄𝑀

𝑃𝐼𝑛
, (2) 

where ωIn and ωMods are the speeds of the inner rotor and 
modulators assembly, respectively. 
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Fig. 1. Magnetically active portions of (a) convention surface PM and (b) air 

core Halbach array radial flux coaxial magnetic gears. 
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While finite element analysis (FEA) is the most common 
means of evaluating magnetic gears due to its accuracy and 
flexibility, [14] proposed a systematic means of parametrizing 
and forming a 2D magnetic equivalent circuit (MEC) model for 
magnetic gears.  Unlike many traditional MEC models, which 
use a relatively small number of flux tubes to model the main 
flux paths, the proposed MEC consists of a large mesh of node 
cells with flux tubes connecting each node cell to the adjacent 
node cells.  Using this model, discretization principles were 
developed to reduce evaluation time without biasing the results 
in favor of some subset of the designs [15].  This enabled the 
MEC model to achieve almost comparable accuracy to the FEA 
with significantly quicker evaluation times for a wide range of 
magnetic gear designs [15].  This paper adapts the MEC model 
proposed in [14] for air core radial flux coaxial magnetic gears 
with Halbach arrays.  Then, it applies this adapted MEC model 
to three base designs and develops discretization guidelines.  
Finally, it presents a comparison of the torque predictions of the 
MEC with those of a 2D nonlinear FEA for a broad simulation 
study to demonstrate the MEC model’s level of accuracy. 

II. MEC ADAPTATION 

The basic principle of the MEC is to create a magnetic circuit 
of lumped elements analogous to a lumped element electrical 
circuit.  As in [14], the magnetic gear is divided into node cells 
with radial and tangential flux tubes.  Then, the system can be 
solved for the magneto-motive force (MMF) potentials at each 
node in the MEC using 

 P2D F2D = Φ2D , () 

where P2D is the 2D system permeance matrix, F2D is the 

column vector of unknown potentials for the nodes in the 2D 
MEC, and Φ2D is the column vector of the algebraic sums of the 
injected fluxes entering each node in the MEC.  Once the node 
potentials are known, the flux densities in each flux tube can be 
determined, which can be used to evaluate various performance 
metrics, such as torque. 

The first major adaptation results from removing the back 
irons.  With adequately thick back irons, negligible flux escapes 
beyond the outer back iron or into the bore of the magnetic gear, 
as assumed in [14], [15].  However, in air core designs, flux does 
travel through these air regions.  Thus, the two discretization 
parameters for the number of radial layers in the back irons are 
replaced with four new parameters, TAR1, TAR2, NRL,AR1, and 
NRL,AR2, which are the thicknesses of the inner and outer air 
regions included in the model and the number of radial layers in 
the inner and outer air regions, respectively. 

The other major difference is that the Halbach arrays include 
PMs with some degree of tangential magnetization.  As with the 
radially oriented flux tube in [14], a tangentially oriented flux 
tube containing part of a tangentially magnetized PM can be 
modeled using its Norton equivalent, which is the permeance of 
the flux tube in parallel with an injected flux, Φinj,tan, which is 
given by 

 Φinj,tan = (rOut – rIn) Br Δz , () 

where rOut and rIn are the outer and inner radii of the flux tube, 
respectively, Δz is the axial length of the flux tube, and Br is the 
remanence of the PM.  For PMs magnetized at an arbitrary 
angle, the injected flux can be divided into radial and tangential 
components, which are placed in parallel with the radial and 
tangential permeances, respectively.  Additionally, when a flux 
tube contains portions of multiple PMs with different 
magnetizations, a weighted average of the magnetizations is 
used to determine the net injected flux. 

Fig. 2(a) illustrates the flux paths in an impractically sparse 
MEC implementation of an example air core magnetic gear with 
Halbach arrays.  The red lines represent the flux paths 
connecting each of the nodes (red dots).  This sparse 
implementation has NAL = 24, NRL,AR1 = 3, NRL,PM1 = 2, NRL,AG1 = 
1, NRL,Mods = 3, NRL,AG2 = 1, NRL,PM2 = 2, and NRL,AR2 = 3, where 
NAL is the number of angular (or tangential layers) in the model 
and NRL,PM1, NRL,AG1, NRL,Mods, NRL,AG2, and NRL,PM2 are the number 
of radial layers in the inner PMs, the inner air gap, the 
modulators, the outer air gap, and the outer PMs, respectively.  
Fig. 2(b) shows the basic 2D node cell with both tangentially 
and radially injected fluxes.  In regions without PMs, the 
injected fluxes can simply be eliminated.  Based on such a 
network of node cells, as illustrated in Fig. 2(a), the permeance 

matrix, P2D can be formed based on (14)-(16) in [14].  However, 

based on the node cell in Fig. 2(b), the fundamental node 
equation ((12) in [14]) becomes 

 ( ) 4,3,2,1,

4

1
injinjinjinj

i
iixi ++−−=− =

FPFP  () 

Thus, the injected flux vector, Φ2D, in the matrix equation (3) 
should be the sum of all the injected fluxes connected to the 
node, including both the radially and tangentially directed 
fluxes.  Fig. 3 illustrates the MEC by overlaying the node cells 
of an extremely course mesh on an unrolled linear representation 
of a simplistic magnetic gear with PIn = 1, POut = 2, QM = 3, and 
two pieces per pole in the Halbach arrays on both the inner and 
outer rotors.  This extremely coarse mesh has NAL = 7, NRL,AR1 = 
1, NRL,PM1 = 1, NRL,AG1 = 1, NRL,Mods = 2, NRL,AG2 = 1, NRL,PM2 = 1, 
and NRL,AR2 = 2.  As in [14], the system can be solved by 

factorizing P2D and solving the resulting triangular systems [16], 

taking advantage of any symmetry, and the torques can be 
calculated using Maxwell’s stress tensor, (19)-(21) in [14]. 

 

 
 

   (a)    (b) 

Fig. 2. (a) Flux paths overlaid on an air core magnetic gear with Halbach 

arrays and (b) a 2D node cell with both radially and tangentially injected fluxes. 



 

Fig. 3. Example 2D MEC schematic overlay on an unrolled radial flux air core 

magnetic gear geometry with Halbach arrays. 

III. BASE DESIGNS 

In order to investigate the performance of the MEC and the 
impact of the new discretization parameters, three base designs 
were selected for initial comparisons between the FEA and MEC 
results.  The design parameters of these three base cases are 
listed in Table I, and their cross-sections are illustrated in Fig. 4.  
These base designs are not intended to be optimal; instead, they 
are selected to represent significantly different points in the 
design space.  All designs evaluated in this study use NdFeB 
N42 PMs with a remanence of 1.3 T and M47 electrical steel for 
the modulators.  In the MEC model, the modulators are assumed 
to have a relative permeability of 3000 and a 50% fill factor, as 
in [15].  Additionally, the PMs have a 100% fill factor, and, for 
each rotor, all of the PMs are the same size. 

 

 
 

(a) (b) 

 
(c) 

Fig. 4. Cross-sections of (a) Base Design 1, (b) Base Design 2, and (c) Base 

Design 3. 

TABLE I.  BASE DESIGNS FOR MEC MODEL EVALUATION 

Symbol Description 
Base 

Design 1 

Base 

Design 2 

Base 

Design 3 

PIn Inner pole pairs 9 7 4 

POut Outer pole pairs 37 57 66 

NIn PM segments per inner pole 2 1 4 

NOut PM segments per outer pole 3 1 2 

ROut Gear active outer radius (mm) 150 175 200 

TPM1 Inner PM radial thickness (mm) 9 5 13 

TAG1 Inner air gap thickness (mm) 0.5 2 1 

TMods Modulator radial thickness (mm) 11 17 14 

TAG2 Outer air gap thickness (mm) 0.5 2 1 

TPM2 Outer PM radial thickness (mm) 7 5 7 

 

Fig. 5 illustrates the impact on the MEC model’s accuracy 
as each of the new discretization parameters is swept along a 
range.  In each case, the new discretization parameters that are 
not being swept are kept constant at their maximum values 
shown in the other graphs, 100 mm for TAR1, 200 mm for TAR2, 
200 for NRL,AR1, and 200 for NRL,AR2.  The other discretization 
parameters are maintained at the fine mesh values in Table III of 
[15].  As the value of each new discretization parameter is 
increased, the MEC model’s stall torque for the modulator 
assembly (mods) converges to 102.4%, 99.7%, and 101.7% of 
that predicted by the FEA model for the three base designs, 
respectively.  For convergence, Base Design 2 requires the 
largest value for most of the parameters because it has NIn = 1 
and NOut = 1, which results in significant flux leaking into the 
inner and outer air regions.  However, Base Design 3 requires 
the largest outer air region thickness because it has the lowest 
pole count on the inner rotor, which results in longer flux paths 
from the inner rotor which extend further beyond the outer rotor. 

    
                 (a)                   (b) 

  
                 (c)                   (d) 

Fig. 5. Impact of (a) inner and (b) outer air region thicknesses included in the 

model and the number of radial layers in the (c) inner and (d) outer air regions 

on the accuracy of the MEC model relative to FEA simulations for each base 

design (BD). 



Figs. 6 and 7 show the radial flux densities in the inner and 
outer air gaps at the stall torque point for each of the three base 
designs based on both the MEC and FEA models.  The MEC 
models used for Figs. 6 and 7 have the same discretization 
parameter values as those on the rightmost edge of each of Figs. 
5(a)-(d).  For the most part, there is very good agreement 
between the two models.  However, because the MEC model 
assumes the modulators are made from a material with fixed 
permeability, there is a small error for some of the flux density 
peaks.  This linearity error causes the most discrepancies for 
Base Design 1, which is why it converges to the highest error. 

 
            (a) 

 
            (b) 

 
            (c) 

Fig. 6. Comparison of MEC and FEA radial flux densities in the inner air gaps 

of (a) Base Design 1, (b) Base Design 2, and (c) Base Design 3. 

 
         (a) 

 
            (b) 

 
          (c) 

Fig. 7. Comparison of MEC and FEA radial flux densities in the outer air gaps 

of (a) Base Design 1, (b) Base Design 2, and (c) Base Design 3. 

IV. DISCRETIZATION PARAMETER GUIDELINES 

It is necessary to develop guidelines for setting the values of 
the new MEC discretization parameters to achieve a consistent 
level of accuracy without using an excessive number of nodes, 
which would increase simulation times.  Thus, the value of each 
of the four new parameters is tied to the pole arcs of the gear.  
First, TAR1 is determined by the inner pole arc based on the inner 
air region thickness multiplier, mAR1, according to 

 𝑇𝐴𝑅1 =
𝜋 𝑚𝐴𝑅1 𝑅𝐼𝑛

𝑃𝐼𝑛
 . (6) 



TAR2 is also tied to the pole arc determined by the inner pole 
count with the outer air region thickness multiplier, mAR2, 
according to 

 𝑇𝐴𝑅2 =
𝜋 𝑚𝐴𝑅2 𝑅𝑂𝑢𝑡

𝑃𝐼𝑛
 . (7) 

TAR2 is tied to the inner pole count, instead of the outer pole 
count, because the inner pole count is much lower than the outer 
pole count, which results in much longer flux paths.  The outer 
air region must be large enough to capture these flux paths from 
the inner rotor, which extend beyond the outside of the gear. 

NRL,AR1 is related to the inner pole arc by the inner air region 
layer multiplier, kAR1, according to 

 𝑁𝑅𝐿,𝐴𝑅1 =
𝑘𝐴𝑅1 𝑇𝐴𝑅1 𝑃𝐼𝑛

𝜋 𝑅𝐼𝑛
 . (8) 

Similarly, NRL,AR2 is related to the outer pole arc by the outer 
air region layer multiplier, kAR2, according to 

 𝑁𝑅𝐿,𝐴𝑅2 =
𝑘𝐴𝑅2 𝑇𝐴𝑅2 𝑃𝑂𝑢𝑡

𝜋 𝑅𝑂𝑢𝑡
 . (9) 

Fig. 8 illustrates the same information as Fig. 5 but in terms 
of the multipliers, instead of the air region thicknesses and layer 
counts.  Relative to these multipliers, Base Designs 1 and 3 
generally seem to converge at roughly similar rates.  However, 
because Base Design 2 has a single PM segment per pole, it 
experiences more leakage flux and needs higher multipliers to 
converge, especially kAR2. 

  
                    (a)                     (b) 

  
                  (c)                     (d) 

Fig. 8. Impact of (a) inner and (b) outer air region thickness multipliers and 

the (c) inner and (d) outer air region layer multipliers on the accuracy of the 

MEC model relative to FEA simulations for each base design (BD). 

V. OPTIMIZATION STUDY 

For the MEC to be useful as an analysis tool, it must 
converge quickly to the optimal designs in a design study.  
Therefore, a wide range of designs was evaluated with both the 
MEC and the FEA to illustrate how accurate the MEC is across 
the design space and to determine whether it accurately captures 
design trends.  A wide range of designs is also critical to ensure 
that the mesh settings consistently yield a high level of accuracy.  
A set of discretization settings may be accurate for a few designs 
because positive and negative errors cancel each other out.  For 
example, the positive error from TAR2 being too small could be 
canceled out by the negative error from TAR1 being too small.  
However, such a situation is unlikely to yield consistently 
accurate results across a wide range of designs.  Table II 
provides the values of the design parameters considered in this 
design study, using some derived parameters, as in [17], [18].  
GInt provides the integer part of the gear ratio (assuming the 
outer rotor is fixed) and relates the pole counts according to 

 𝑃𝑂𝑢𝑡 =  {
(𝐺𝐼𝑛𝑡 − 1)𝑃𝐼𝑛 + 1      for 𝐺𝐼𝑛𝑡  𝑃𝐼𝑛 odd

  (𝐺𝐼𝑛𝑡 − 1)𝑃𝐼𝑛 + 2      for 𝐺𝐼𝑛𝑡  𝑃𝐼𝑛 even
 . (10) 

This relationship keeps the modulator count even, which results 
in the cancellation of the magnetic forces on each rotor due to 
symmetry.  Additionally, this relationship maintains a high least 
common multiple between the inner and outer pole pair counts, 
which results in designs with minimal torque ripple [5].  
Furthermore, the PM thicknesses are related by kPM according to 

 TPM2 = kPM TPM1 . (11) 

This relationship is used to avoid designs where most of the PM 
material is placed on the outer rotor.  Because the outer rotor has 
a much higher pole count than the inner rotor, there is much 
more flux leakage between adjacent poles on the outer rotor than 
on the inner rotor, so it is best to avoid designs with the outer 
PMs thicker than the inner PMs.  The primary metric used to 
evaluate a design’s performance in this study is its gravimetric 
torque density (GTD), which is defined as the stall torque of the 
modulator assembly divided by the total mass of the PMs and 
modulators in the design. 

TABLE II.  OPTIMIZATION STUDY DESIGN PARAMETERS 

Symbol Description Values Units 

GInt Integer part of gear ratio 5,9,17  

PIn Inner pole pairs 

    For GInt = 5 

    For GInt = 9 

    For GInt = 17 

 

4,7,10,…,19 

3,5,7,…,13 

3,4,5,…,8 

 

NIn PM segments per inner pole 1,2,3,4  

NOut PM segments per outer pole 1,2,3  

ROut Gear active outer radius 150,175,200 mm 

TPM1 Inner PM radial thickness 3,7,11 mm 

TAG1 Inner air gap thickness 1.5 mm 

TMods Modulator radial thickness 11,14,17 mm 

TAG2 Outer air gap thickness 1.5 mm 

kPM PM thickness ratio 0.5,0.75,1  



TABLE III.  NEW DISCRETIZATION SETTINGS 

Symbol Description 
Coarse 

Mesh 

Fine 

Mesh 

mAR1 Inner air region thickness multiplier 0.57 0.8 

mAR2 Outer air region thickness multiplier 0.33 0.5 

kAR1 Inner air region layer thickness multiplier 7.5 10 

kAR2 Outer air region layer thickness multiplier 

     For NIn = 1 

     For NIn > 1 

 

15 

7.5 

 

20 

10 

TAR1,min Minimum inner air region thickness 5 mm 5 mm 

TAR1,max Maximum inner air region thickness RIn–5 mm RIn–5 mm 

TAR2,min Minimum outer air region thickness 5 mm 5 mm 

NRL,AR1,min Minimum inner air region radial layers 3 3 

NRL,AR2,min Minimum outer air region radial layers 3 3 

 

Based on the results for a wide range of designs, two sets of 
values were chosen for the new multipliers, as shown in Table 
III.  The fine mesh multipliers are used together with the fine 
mesh settings from Table III in [15], and the coarse mesh 
multipliers are used together with the coarse mesh settings from 
Table III in [15].  Note that in cases where (8) or (9) would yield 
a non-integer, the number of layers was rounded up.  
Additionally, an upper bound was placed on TAR1, based upon 
the inner radius of the gear, RIn, to maintain a positive inner 
radius for the inner air region included in the MEC. 

Figs. 9-12 illustrate the trends for the maximum achievable 
GTD’s as each of the design parameters is varied.  These figures 
illustrate that the GTD trends predicted by the MEC are in very 
good agreement with those predicted by the FEA.  Thus, any 
optimization using the MEC will converge to a similar design as 
an optimization using FEA.  This also indicates that the 
discretization settings in Table III do not bias the results of the 
MEC for any of the swept parameters, at least within the ranges 
considered in Table II.  As in [15], the linear MEC will become 
inaccurate in designs where the modulator saturation becomes 
significant, such as designs with modulators have very small 
radial thicknesses or very low fill factors. 

 

Fig. 9. Legend for Figs. 10-12. 

  
              (a)              (b) 

Fig. 10. Variation of the maximum achievable gravimetric torque density with 

the numbers of (a) inner and (b) outer of PM segments per pole. 

 

Fig. 11. Variation of the maximum achievable gravimetric torque density with 

the number of inner pole pairs. 

  
            (a)              (b) 

  
             (c)              (d) 

Fig. 12. Variation of the maximum achievable gravimetric torque density with 

(a) the outer radius, (b) the inner PM thickness, (c) the modulator thickness, and 

(d) the PM thickness ratio. 

The performance of the MEC relative to the nonlinear FEA 
is illustrated in Fig. 13 and Table IV across the range of cases 
evaluated in the design study.  While the MEC generally 
produces relatively low errors for the optimal designs, some of 
the less optimal designs do result in larger discrepancies 
between the torques predicted by the MEC and the FEA.  The 
coarse mesh results in larger errors than the fine mesh; however, 
the coarse mesh produces much smaller permeance matrices, 
which can be evaluated significantly faster than the permeance 
matrices resulting from the fine mesh.  With either mesh, the 
MEC is significantly faster than the FEA.  (All MEC and FEA 
evaluations were performed on the same computer to avoid 
biasing the simulation times reported in Table IV.  Additionally, 
the FEA used the same settings as in [15].)  For both the MEC 
and the FEA, the cases with lower pole counts generally take 
much less time to evaluate than cases with higher pole counts. 



 
                                                             (a) 

 
                                                             (b) 

Fig. 13. MEC accuracy over the full parametric optimization sweep range using 

(a) the coarse mesh and (b) the fine mesh. 

TABLE IV.  SUMMARY OF OPTIMIZATION STUDY RESULTS 

Metric 
Coarse Mesh 

MEC 

Fine Mesh 

MEC 
FEA 

Minimum Percent Error -5.6% -1.8% N/A 

Maximum Percent Error 6.9% 4.2% N/A 

Average Percent Error -0.4% 0.6% N/A 

Average Absolute Percent Error 1.3% 0.8% N/A 

Total Simulation Time (sec) 7,160 112,000 659,000 

Average Simulation Time (sec) 0.41 6.4 38 

VI. CONCLUSION 

A systematic linear 2D MEC implementation is proposed for 
coaxial radial flux magnetic gears with Halbach arrays and no 
back irons.  Three base designs are evaluated to verify the 
accuracy of the MEC.  With enough node cells, the torque 
predicted by the MEC converges to within 2.4%, 0.3%, and 
1.7% of the torque predicted by a nonlinear 2D FEA for the three 
cases.  Additionally, the air gap flux densities predicted by the 
MEC and the FEA show very good agreement for each of the 
three cases. 

To further validate the usefulness of the MEC, an extensive 
parametric study is performed with both the MEC and the FEA.  
Guidelines are used to determine the node cell distribution based 
on the pole arcs of each design.  With a relatively coarse mesh, 

the torques predicted by the MEC are in the range of 94-107% 
of those predicted by the FEA, with the predicted torques being 
within 1.3% of the FEA predictions on average.  With a finer 
mesh, the torque range was limited to 98-104% of the FEA 
predictions, with the predicted torques being within 0.8% of the 
FEA predictions on average.  The coarse mesh MEC was almost 
two orders of magnitude faster than the FEA, and the fine mesh 
MEC was about a factor of 5 times faster than the FEA.  For 
both mesh conditions, the MEC accurately predicted the impact 
of each design parameters on torque performance.  The MEC 
also accurately tracked the design trends associated with each 
parameter swept in the parametric study.  Thus, the MEC can be 
used as an effective tool for rapid initial evaluation of a large 
number of designs. 

This systematic MEC approach can be extended in a few 
ways.  First, the node cell network can be extended to the third 
dimension to evaluate the impact of end-effects.  Additionally, 
this MEC approach can be applied to conventional electric 
machines or to other topologies of magnetic gears.  However, 
iron saturation introduces much more nonlinearity in 
conventional electric machines, so the MEC permeance matrix 
will need to be nonlinear and likely require an iterative solution. 
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