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Abstract—Magnetic gears transform power between low-

torque, high-speed rotation and high-torque, low-speed rotation 

using magnetic fields instead of interlocking teeth.  This paper uses 

an extensive parametric finite element analysis study to 

quantitatively compare the optimal performances of two of the 

most promising magnetic gear topologies, radial flux coaxial 

magnetic gears and radial flux cycloidal magnetic gears, in terms 

of volumetric torque density and permanent magnet gravimetric 

torque density.  At low gear ratios, optimal coaxial gears generally 

achieve higher torque densities than optimal cycloidal gears.  

However, at medium and high gear ratios, the cycloidal topology 

can generally outperform the coaxial topology in both of these 

metrics unless very thick magnets are used.  Additionally, the 

cycloidal magnetic gear can realistically achieve much higher gear 

ratios than the coaxial magnetic gear, but the optimal gear ratio 

for a cycloidal design varies with other design parameters, such as 

outer radius.  However, cycloidal designs suffer from significant 

fabrication challenges because one rotor’s axis orbits the axis of 

the other rotor.  Additionally, cycloidal magnetic gear rotors 

experience strong magnetic forces, which must be supported by 

the bearings, whereas the net magnetic forces on each rotor in a 

coaxial magnetic gear can be canceled out using symmetry. 

Keywords—coaxial magnetic gear, cycloidal magnetic gear, 

finite element analysis, magnet utilization, magnetic force, magnetic 

gear, permanent magnet, radial flux, torque density, torque ripple 

I. INTRODUCTION 

Like mechanical gears, magnetic gears transform power 
between low-speed, high-torque rotation and high-speed, low-
torque rotation.  However, magnetic gears accomplish this 
power transformation without relying on physical contact 
between the rotors, using magnetic fields instead of 
mechanically interlocking teeth.  This provides magnetic gears 
with a plethora of potential advantages over mechanical gears, 
including improved reliability, reduced maintenance, reduced 
acoustic noise, and inherent overload protection.  Thus, 
magnetic gears have recently attracted significant interest [1]-
[4] and have been proposed for several applications, including 
wind energy [5], [6], wave energy [7], [8], ship propulsion [9], 
and traction [10].  The radial flux coaxial magnetic gear, which 
is illustrated in Fig. 1(a), has received most of the recent 
attention [1]-[10].  However, the radial flux cycloidal magnetic 
gear, which is illustrated in Fig. 1(b), has also been the subject 
 

 

           (a) (b) 

Fig. 1. (a) Coaxial and (b) cycloidal radial flux magnetic gears with surface 

permanent magnets. 

of some studies which tout its ability to achieve high torque 
densities and high gear ratios [11]-[14].  This paper provides a 
thorough comparison of the two topologies. 

Although the two topologies have significant differences, 
they rely on similar underlying operating principles: the 
differing permanent magnet (PM) pole counts on the inner and 
outer rotors are able to produce the spatial flux harmonics 
necessary to achieve the gearing behavior due to the spatial 
harmonics of the air gap permeance function.  In coaxial gears, 
the ferromagnetic modulators placed between the inner and 
outer rotors create these permeance harmonics, as explained in 
[1].  For optimal operation, the number of modulators (QM) 
should be equal to the sum of the pole pairs on the inner rotor 
(PIn) and the pole pairs on the outer rotor (POut), as given by 

 QM = PIn + POut. (1) 

While multiple modes of operation are possible, the highest gear 
ratio and the highest low speed rotor stall torque are obtained by 
fixing the outer rotor and allowing the modulator structure and 
inner rotor to rotate about their common axis.  Then, the inner 
rotor serves as the high speed rotor, and the modulator assembly 
serves as the low speed rotor, with the gear ratio (G) given by 

 𝐺 =
𝜔𝐼𝑛

𝜔𝑀𝑜𝑑𝑠
=

𝑄𝑀

𝑃𝐼𝑛
, (2) 

where ωIn and ωMods are the steady-state speeds of the inner rotor 
and modulator assembly, respectively. 
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In cycloidal gears, the non-uniform, time-varying air gap 
creates the permeance harmonics, as explained in [11].  Unlike 
the coaxial gear, the cycloidal gear’s rotors are not centered 
about the same axis.  Instead, the inner rotor’s axis is parallel to, 
but offset from the outer rotor’s axis, and it moves in an orbital 
revolution around the outer rotor’s stationary central axis.  This 
orbital motion rotates the air gap permeance function, which 
modulates the spatial flux harmonics to facilitate the gearing 
behavior.  Since the fundamental spatial harmonic of the air gap 
is unity, the inner and outer rotor pole pairs should be related by 

 POut = PIn + 1 (3) 

for optimal operation, as indicated in [12].  The orbital 
revolution is connected to the high speed shaft.  The low speed 
rotation can be provided by either the inner rotor or the outer 
rotor rotating about its own axis, but it is probably most practical 
to keep the outer rotor stationary and connect the rotation of the 
inner rotor about its own axis to the low speed shaft.  This yields 
the gear ratio given by 

 𝐺 =
𝜔𝑂𝑟𝑏

𝜔𝐼𝑛
= −𝑃𝐼𝑛, (4) 

where ωOrb is the speed of the inner rotor’s orbital revolution 
about the outer rotor’s axis and ωIn is the speed of the inner 
rotor’s rotation about its own axis.  The negative sign in (4) 
indicates that the shafts will rotate in opposite directions.  This 
operation is directly analogous to a mechanical cycloidal drive 
and is illustrated in Fig. 2, which demonstrates that the inner 
rotor completes one clockwise orbital revolution about the outer 
rotor’s axis in the same time that the inner rotor rotates one pole 
pair pitch about its own axis.  The gear in Fig. 2 uses 12 inner 
pole pairs; therefore, for each step in Fig. 2, the inner rotor 
rotates 3.75° counterclockwise about its own axis, while its own 
axis orbits 45° clockwise about the outer rotor’s axis. 

 

Fig. 2. Example cycloidal magnetic gear operation motion sequence.  The 
inner rotor’s axis (red ‘+’) orbits the outer rotor’s axis (black dot) along the 

green path while the inner rotor rotates about its own axis. 

A comparison of the gear ratio expressions in (2) and (4) 
suggests that it is generally more practical to achieve a higher 
gear ratio with the cycloidal gear than with the coaxial gear 
because there are practical limitations to the maximum number 
of modulators or poles that can be used on a rotor.  While 
relatively high gear ratios can be achieved by using coaxial 
magnetic gears with PIn = 1, this generally results in relatively 
high torque ripple [5].  Additionally, a few papers [11]-[13] state 
that cycloidal magnetic gears can achieve higher torque 
densities than coaxial magnetic gears.  Furthermore, one paper 
[12] also claims that cycloidal magnetic gears can achieve better 
magnet utilization than coaxial magnetic gears. 

While these foundational cycloidal magnetic gear studies 
[11]-[14] do an excellent job of introducing the cycloidal 
magnetic gear topology, explaining its operating principle, 
demonstrating its potential for high torque densities at high gear 
ratios, and even describing working prototypes, their 
comparisons of coaxial and cycloidal magnetic gears’ torque 
density capabilities are based on theoretical observations and 
anecdotal comparisons of individual designs or extremely 
limited optimizations, rather than thorough numerical 
comparisons of the topologies.  As an example, [12] describes 
an un-optimized radial flux cycloidal magnetic gear prototype 
design constructed using the same number of outer rotor pole 
pairs and approximately the same air gap radius as the un-
optimized coaxial magnetic gear described in [2].  While the 
cycloidal magnetic gear design in [12] achieves approximately 
double the torque density of the coaxial gear design in [2], this 
comparison is of limited value without some measure of the 
relative optimizations of the two designs, especially since they 
use the same outer rotor pole pair count, which is unlikely to be 
equally optimal for both of the different topologies.  If one 
design is very sub-optimal while the other is nearly optimal, this 
can bias the comparison heavily in favor of the more optimal 
design.  Furthermore, [12] also describes a very limited 
cycloidal magnetic gear optimization study using an analytical 
model which achieves a volumetric torque density of 183 
kN∙m/m3 and states that this is almost twice the commonly cited 
typical radial flux coaxial magnetic gear volumetric torque 
density of 100 kN∙m/m3 provided in [1].  However, this study 
only considers a single pole pair combination for the cycloidal 
gear (pole pair counts are an extremely important design 
parameter as demonstrated in this study), and multiple more 
recent studies have demonstrated that the radial flux coaxial 
magnetic can achieve significantly higher torque densities than 
the 100 kN∙m/m3 figure, depending on the design constraints [3], 
[7], [15], [16].  This paper builds upon these studies, which 
clearly demonstrate the radial flux cycloidal magnetic gear’s 
tremendous potential for high torque densities at high gear 
ratios, by providing the first extensive parametric 2D and 3D 
finite element analysis (FEA) design study comparing the 
optimum magnetic performance potentials of the radial flux 
versions of the two topologies to produce thorough quantitative 
assessments of their relative capabilities and characterizations of 
their respective design trends. 

II. DESIGN STUDY METHODOLOGY 

The two primary metrics considered in this study are 
volumetric torque density (VTD) and PM gravimetric torque 



density (PM GTD).  VTD is defined as the low speed rotor stall 
torque (τLSR) divided by the active volume, as given by 

 VTD =
𝜏𝐿𝑆𝑅

𝜋∙𝑅𝑂𝑢𝑡
2 ∙𝐻

, (5) 

where ROut is the outer radius of the outer rotor back iron and H 
is the stack length.  Similarly, PM GTD is defined as the low 
speed rotor stall torque divided by the total mass of the gear 
PMs, which provides a practical quantitative measure of each 
design’s magnet utilization. 

Both topologies were simulated using FEA.  For both 
topologies, the back irons are made from M47 steel, and the PMs 
are made from NdFeB N42 with a remanence of 1.3 T.  The 
modulators in the coaxial magnetic gear are also made from 
M47 steel.  Table I shows the design parameter values 
considered for each of the two topologies, excluding the inner 
pole pair counts, and Tables II and III show the inner pole pair 
counts evaluated for the two topologies.  The inner pole pair 
counts specified in Tables II and III for the coaxial gear were 
selected to ensure that that the optimal values for both VTD and 
PM GTD were always inside the range considered, since the 
outer radius, air gap size, and gear ratio can significantly affect 
these values.  The same set of inner pole pair counts was always 
considered for the cycloidal designs, since the inner pole pair 
count directly determines a cycloidal design’s gear ratio 
according to (4).  This range also includes the optimal inner pole 
pair count with respect to both VTD and PM GTD for all 
evaluated cycloidal gear designs.  A derived parameter, kPM, is 
used to control the ratio between the PM thicknesses on the two 
rotors, as given by 

 TPM2 = kPM ∙ TPM1, (6) 

where TPM1 and TPM2 are the radial thicknesses of the PMs on the 
inner and outer rotors, respectively.  The kPM range given for the 
coaxial topology in Table I is based on the optimal values 
indicated by the studies in [15], [16].  For the coaxial gear, GInt 
is a derived parameter which represents the integer part of the 
desired gear ratio and is used to maintain an approximately 
constant target gear ratio while varying the inner rotor pole 
count, as shown in 

 𝑃𝑂𝑢𝑡 = {
(𝐺𝐼𝑛𝑡 − 1) ∙ 𝑃𝐼𝑛 + 1     for 𝐺𝐼𝑛𝑡 ∙ 𝑃𝐼𝑛 odd

 (𝐺𝐼𝑛𝑡 − 1) ∙ 𝑃𝐼𝑛 + 2     for 𝐺𝐼𝑛𝑡 ∙ 𝑃𝐼𝑛  even
. (7) 

Using (7) avoids coaxial designs with integer gear ratios, which 
are prone to very large torque ripples [5], and coaxial designs 
with an odd number of modulators, which have unbalanced 
magnetic forces acting on each rotor.  The outer rotor pole pair 
counts are determined by (7) and (3) for the coaxial and 
cycloidal topologies, respectively.  For each coaxial design, the 
inner and outer air gap each have the same thickness, TAG.  All 
possible combinations of the parameter values listed in Tables I, 
II, and III were evaluated using 2D FEA, except for cases which 
would result in a negative inner radius.  Based on the 2D FEA 
simulation results, the best 906 coaxial designs and 6678 
cycloidal designs were evaluated at each of the stack lengths 
specified in Table I using 3D FEA.  The results presented in the 
next section are based on 3D FEA for designs with stack lengths 
of 50 mm, except where specified otherwise. 

TABLE I.  PARAMETER SWEEP VALUES 

Parameter Coaxial Cycloidal 

Integer part of gear ratio (GInt) 4, 9, 16 N/A 

Outer radius (ROut) 50, 75, 100, 150 mm 

Inner back iron thickness (TBI1) 5, 10, 20 mm 

Outer back iron thickness (TBI2) 

         For TBI1 = 5 mm 

         For TBI1 = 10 mm 

         For TBI1 = 20 mm 

 

5 mm 

5, 10 mm 

5, 10, 20 mm 

Inner PM thickness (TPM1) 3, 6, 9, 12, 15 mm 

PM thickness ratio (kPM) 0.5, 0.625, 0.75 0.5, 0.625, … 1 

Minimum air gap thicknesses (TAG) 1 mm, ROut /50 

Axis Offset (TOff) N/A 1, 2, 3, 4, 5, 7, 10 mm 

Modulator thickness (TMods) 10 mm N/A 

Stack Length (LStack) 5, 10, 20, 30, 50 mm 

TABLE II.  INNER POLE PAIR COUNT (PIn) VALUES WITH TAG = 1 mm 

ROut  

(mm) 

Coaxial 

(GInt = 4) 

Coaxial 

(GInt = 9) 

Coaxial 

(GInt = 16) 
Cycloidal 

50 3, 5, 7 3, 5, 7 3, 5 5, 9, … 89 

75 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, … 89 

100 3, 5, 7, … 17 3, 5, 7, 9, 11 3, 5, 7 5, 9, … 89 

150 3, 5, 7, … 21 3, 5, 7, … 13 3, 5, 7, 9 5, 9, … 89 

TABLE III.  INNER POLE PAIR COUNT (PIn) VALUES WITH TAG = ROut/50 

ROut  

(mm) 

Coaxial 

(GInt = 4) 

Coaxial 

(GInt = 9) 

Coaxial 

(GInt = 16) 
Cycloidal 

50 3, 5, 7 3, 5, 7 3, 5 5, 9, … 89 

75 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, … 89 

100 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, … 89 

150 3, 5, 7, 9, 11 3, 5, 7 3, 5 5, 9, … 89 

III. DESIGN STUDY RESULTS 

Figs. 3 – 5 illustrate several design trends for the coaxial and 
cycloidal magnetic gears.  Fig. 4 compares the maximum VTDs 
and PM GTDs that both topologies achieve at different outer 
radii.  With a fixed air gap, the VTD and PM GTD both increase 
with the outer radius for both topologies (assuming that the 
cycloidal gear ratio is allowed to vary, as in the black curves in 
Figs. 3-5).  However, when the air gap increases proportionally 
with the outer radius, both VTD and PM GTD vary much less 
with the outer radius for both topologies, but there is more 
variation for the cycloidal topology than for the coaxial 
topology, due in part to the fact that cycloidal gears only have a 
single air gap.  Fig. 4 also illustrates that at lower gear ratios, 
optimal coaxial gears tend to achieve higher VTDs and PM 
GTDs than optimal cycloidal gears, and this advantage increases 
as the permissible outer radius increases.  This is because a range 
of inner rotor pole pair counts can be used to achieve similar 
gear ratios for the coaxial gear (thus providing the freedom to 
optimize this important design parameter), but a given inner 
rotor pole pair value directly determines a cycloidal design’s 
gear ratio.  However, the coaxial topology’s achievable VTD 
and PM GTD tend to decrease significantly as the gear ratio is 
increased (due to the increased discrepancy between the inner 
and outer rotor magnet pole counts and pole arcs).  Accordingly,  



 

Fig. 3. Legend for Figs. 4 and 5.  (Each curve is based on 3D FEA for designs 

with 50 mm stack lengths.) 

  
             (a)              (b) 

  
           (c)            (d) 

Fig. 4. Variation of the maximum VTD with outer radius for designs with (a) 
TAG = 1 mm and (b) TAG = ROut /50 and variation of the maximum PM GTD with 

outer radius for designs with (c) TAG = 1 mm and (d) TAG = ROut /50. 

  
             (a)             (b) 

Fig. 5. Variation of the maximum (a) VTD and (b) PM GTD with the inner 

rotor PM thickness for designs with ROut = 150 mm and TAG = 1 mm. 

at medium to high gear ratios, unless the magnets are very thick 
and the air gaps relatively small, optimal coaxial designs tend to 
achieve lower VTDs and PM GTDs than optimal cycloidal 
designs.  Furthermore, if any cycloidal gear ratio is permissible 
(corresponding to the black curves in Figs. 3-5), then the 

cycloidal topology can generally achieve higher torque densities 
than the coaxial topology at most design points in this study. 

Fig. 5 illustrates the impact of the inner rotor magnet 
thickness on VTD and PM GTD.  For both topologies, within 
the evaluated range of thicknesses, VTD increases as the inner 
PM thickness is increased, whereas PM GTD decreases as the 
inner PM thickness is increased.  However, as the PM thickness 
increases, the coaxial topology tends to benefit more in terms of 
VTD and suffer less in terms of PM GTD than the cycloidal 
topology. 

For the coaxial topology, the optimal gear performance is 
generally achieved with a relatively low gear ratio [7].  
However, for the cycloidal topology, the optimal gear ratio 
varies significantly based on the other design criterion.  Fig. 6 
illustrates how the optimal gear ratio changes with outer radius.  
The gear ratio for maximizing PM GTD is generally higher than 
the gear ratio for maximizing VTD.  This is because maximum 
PM GTD designs favor thinner magnets (and thus smaller 
effective air gaps), which can tolerate higher pole counts and 
shorter pole arcs without suffering from reduced torque densities 
due to increased tangential leakage flux [7], [15], [16].  
Additionally, the optimal gear ratio tends to increase with the 
outer radius but decrease as the air gap increases.  This is 
because the increased air gap leads to increased leakage flux per 
pole, which can be counteracted by lower pole counts and longer 
pole arcs.  Another important parameter that affects both the 
achievable performance and the optimal gear ratio of the 
cycloidal magnetic gear is the offset between the axes of the 
inner and outer rotors.  As shown in Fig. 7, the optimal gear ratio 
tends to decrease significantly as the axis offset increases.  
Again, this is partially because a larger axis offset leads to a 
 

  
          (a)           (b) 

  
         (c)           (d) 

Fig. 6. Variation of the maximum VTD with outer radius and gear ratio for 

cycloidal designs with (a) TAG = 1 mm and (b) TAG = ROut /50 and variation of 
the maximum PM GTD with outer radius and gear ratio for cycloidal designs 

with (c) TAG = 1 mm and (d) TAG = ROut /50.  The dotted line indicates the gear 

ratio that maximizes VTD or PM GTD for each outer radius. 



  
         (a)         (b) 

Fig. 7. Variation of the maximum (a) VTD and (b) PM GTD with the axis 
offset and gear ratio for cycloidal designs with ROut = 150 mm and TAG = 1 mm.  

The dotted line indicates the gear ratio that maximizes VTD or PM GTD for 

each axis offset. 

larger average effective air gap, which leads to more leakage 
flux per pole if the pole arc lengths are not increased. 

Another important factor that impacts magnetic gear 
performance is end-effects.  Fig. 8 compares the maximum 
achievable VTDs for designs with different stack lengths based 
on both 2D and 3D FEA.  Fig. 8 shows a greater discrepancy 
between 2D and 3D FEA for the coaxial designs than for the 
cycloidal designs, which means that the coaxial designs suffer 
 

  
             (a)              (b) 

  
             (c)              (d) 

 
(e) 

Fig. 8. Variation of the maximum VTD with the stack length for (a) coaxial 
designs with TAG = 1 mm, (b) coaxial designs with TAG = ROut /50, (c) cycloidal 

designs with TAG = 1 mm, and (d) cycloidal designs with TAG = ROut /50 for (e) 

different outer radii based on both 2D and 3D FEA. 

  
          (a)           (b) 

  
          (c)          (d) 

Fig. 9. Variation of 3D end-effects on the maximum VTD designs of Fig. 6, 

but at a stack length of 20 mm, with outer radius and gear ratio for cycloidal 
designs with (a) TAG = 1 mm and (b) TAG = ROut /50, and variation of the 3D end-

effects of the maximum PM GTD designs from Fig. 6, but at a stack length of 

20 mm, with outer radius and gear ratio for cycloidal designs with (c) TAG = 1 

mm and (d) TAG = ROut /50. 

more from end-effects, likely due to the phenomenon of 
escaping flux in coaxial magnetic gears [16], [17].  Additionally, 
the higher pole counts favored by cycloidal designs inherently 
lead to shorter flux paths and reduced end-effects, as 
demonstrated by the graphs in Fig. 9 which indicate that 
cycloidal designs suffer smaller torque reductions due to end-
effects at higher gear ratios (and, thus, higher pole counts).  This 
difference in end-effects also means that the VTD and PM GTD 
advantages of the cycloidal topology over the coaxial topology 
will become more significant in applications requiring a smaller 
stack length, but these advantages will be reduced for 
applications requiring a larger stack length. 

IV. THE SPATIAL DISTRIBUTION OF TORQUE PRODUCTION 

The previous section numerically illustrates differences in 
design trends between the two topologies.  Some of these 
differences can be explained by considering an approximate 
analysis of the spatial distribution of torque production in the 
cycloidal topology.  This analysis is based on a couple of 
simplifying assumptions, which make its implications more 
intuitive but prevent it from being used for exact analysis.  First, 
only the fundamental harmonics from the PMs on the inner and 
outer rotors are considered, and other spatial magnetomotive 
force (mmf) harmonics are neglected.  Second, the torque 
distribution at any angle, θ, from the axis of the outer rotor is 
proportional to the sine of the difference between the 
electromagnetic angles of the two rotors, kτ, as given by 

 kτ = sin(PIn ∙ θ' – POut ∙ θ + θEM1 – θEM2), (8) 

where θEM1 and θEM2 are the electromagnetic angles of the inner 
and outer rotors at θ = 0.  Note that θ' represents the angle from 



the axis of the inner rotor, which will be slightly different than θ 
due to the cycloidal gear’s axis offset.  Fig. 10(a) plots both kτ 
and the inverse effective air gap function, g–1, as functions of θ 
for an example cycloidal magnetic gear, and Fig. 10(b) 
illustrates kτ as the color in the air gap of the example cycloidal 
magnetic gear.  (Note that the thicknesses of the PMs on the two 
rotors are included in the effective air gap.) 

When a cycloidal magnetic gear is at its maximum torque 
orientation, as shown in Fig. 10, positive torque is being 
produced in the area with the smallest air gap, and negative 
torque is being produced in the area with the largest air gap.  
However, as the PM thicknesses increase, the effective air gap 
increases.  To maintain the same ratio between the maximum 
and minimum values of the effective air gap, the axis offset must 
increase, as demonstrated in Fig. 11.  While increasing the axis 
offset reduces the negative torque produced in the region where 
kτ is negative, it also increases the air gap in much of the region 
where kτ is positive, which reduces the positive torque produced.  
On the other hand, in the coaxial magnetic gear, the modulators 
allow discrete steps in the effective air gap function.  This 
contrast explains why increasing the PM thickness is more 
beneficial to the coaxial topology in terms of VTD and less 
detrimental to the coaxial topology in terms of PM GTD. 

This analysis also provides a partial explanation for why 
higher pole counts favor smaller axis offsets for the cycloidal 
gear.  As the pole count increases, the flux paths become shorter.  
Thus, the axis offset must be reduced to maintain the same 
torque production in the regions where kτ is positive; 
furthermore, because of these shorter flux paths, this reduction 
of the axis offset will not result in a large increase in the negative 
 

  

              (a)                     (b) 

Fig. 10. (a) Variation of kτ and the inverse effective air gap function (both in 

per unit values) with spatial position in an example cycloidal magnetic gear and 

(b) kτ plotted as the color in the air gap of the same cycloidal magnetic gear. 

  
       (a)        (b) 

Fig. 11. Variation of the maximum (a) VTD and (b) PM GTD with the inner 

PM thickness and axis offset for cycloidal designs with ROut = 150 mm and TAG 
= 1 mm.  The dotted line indicates the axis offset that maximizes VTD or PM 

GTD for each inner PM thickness. 

torque produced in regions where kτ is negative.  Another factor 
driving the optimal axis offset is that the axis offset affects the 
geometric transformation between θ and θ', which determines 
how much of the gear is producing positive torque. 

V. ROTOR FORCES AND TORQUE RIPPLES 

Another significant difference between the two topologies is 
the presence of net magnetic forces on the rotors of the cycloidal 
topology.  Fig. 12 shows the net magnetic forces on the inner 
rotors of the designs with the highest VTDs and PM GTDs for 
each outer radius, which correspond to the points in Figs. 4(a) 
and 4(c).  While the cycloidal magnetic gear designs experience 
significant net magnetic forces, the coaxial designs experience 
negligible (zero if there are no manufacturing tolerances) net 
magnetic forces on the rotors due to the symmetry imposed by 
(7).  Fig. 12 also illustrates that the net magnetic forces tend to 
increase as the outer radius increases, which is largely due to the 
increase in air gap area.  Furthermore, Fig. 12 indicates that the 
maximum VTD designs have larger net magnetic forces than the 
maximum PM GTD designs, which is largely due to the thicker 
PMs of the maximum VTD designs. 

Fig. 12 illustrates the net magnetic forces at the maximum 
torque points for the designs, but the magnetic forces do vary 
significantly with the operating point.  Figs. 13 and 14 illustrate 
the variation of torques and forces based on 2D FEA as the 
torque angle changes for the cycloidal designs with the absolute 
maximum VTD and PM GTD.  The torque angle is defined as 
the difference between the electromagnetic angles of the two 
rotors at the point where the air gap is minimal.  Figs. 13(a) and 
13(b) show that the maximum force occurs at the operating point 
where the torque angle is 0 and there is no torque.  Fig. 14 
illustrates that the angle of the net magnetic force varies with the 
torque angle.  If too much torque was applied to either shaft and 
the gear began to slip, the forces on the inner rotor would trace 
the paths shown in Fig. 14.  The bearings on the inner rotor must 
be able to withstand these magnetic forces, which are 
significantly larger than the active weight of the inner rotor.  For 
reference, the total combined masses of the back irons and PMs 
on the inner rotor are about 7.1 kg and 4.2 kg for the maximum 
VTD and maximum PM GTD designs, respectively. 

  
              (a)               (b) 

 
(c) 

Fig. 12. The net forces on the inner rotor at the maximum torque points of (a) 

the maximum VTD designs corresponding to the points in Fig. 4(a) and of (b) 
the maximum PM GTD designs corresponding to the points in Fig. 4(c) for (c) 

both topologies based on 3D FEA for designs with 50 mm stack lengths. 



 
            (a) 

 
             (b) 

Fig. 13. The 2D FEA variation of (a) low speed shaft torque and (b) net 

magnetic forces on the inner rotor as the torque angle is varied for the maximum 

VTD and PM GTD cycloidal designs from the entire simulation study. 

 

Fig. 14. The variation of the forces in the direction of the axis offset and in the 

direction perpendicular to the axis offset based on 2D FEA as the torque angle 
is varied for the maximum VTD and PM GTD cycloidal designs from the entire 

simulation study. 

Fig. 15 illustrates the torque and force ripple characteristics 
for the same optimal designs used in Figs. 13 and 14 during 
steady-state operation at the maximum torque angle based on 2D 
FEA.  The rotation angle is defined as the electromagnetic angle 
which the inner rotor has both simultaneously rotated and 
orbited in opposite directions.  Fig. 15 shows that both designs 
exhibited negligible torque and force ripples.  Additionally, 
when either gear is operating in steady-state at a constant torque,  
 

 

                (a) 

 

             (b) 

Fig. 15. The variation of the (a) low speed shaft torque and (b) net magnetic 

forces on the inner rotor based on 2D FEA during steady-state operation at the 

maximum torque angle for the maximum VTD and PM GTD cycloidal designs 

from the entire simulation study. 

the angle of net magnetic force is fixed with respect to the axis 
offset.  Alternatively, for a coaxial magnetic gear, the net 
magnetic forces on the rotors and the rotor torque ripples are 
heavily dependent on the pole pair count selections.  Coaxial 
gears designed with proper symmetry ideally experience zero 
net magnetic forces on their rotors.  Furthermore, coaxial gear 
designs with relatively high lowest common multiples between 
PIn, POut, and QM and non-integer gear ratios can also achieve 
very low torque ripples.  Both of these conditions can generally 
be simultaneously achieved by using (7).  For example, the 
coaxial magnetic gear in [7] uses a PIn = 6, POut = 68 and QM = 
74 design, resulting in simulated peak-to-peak high speed rotor 
and low speed rotor torque ripples of 2.2% and 0.02%, 
respectively.  However, a nearly identical variation of the design 
which only changes the pole pair count combinations to PIn = 6, 
POut = 66 and QM = 72, resulting in an integer gear ratio, exhibits 
significantly larger high speed rotor and low speed rotor torque 
ripples of 134.5% and 1.88%, respectively. 

VI. CONCLUSION 

This study employs an extensive parametric evaluation to 
quantitatively compare the optimal achievable performances of 
coaxial magnetic gears and cycloidal magnetic gears in terms of 
volumetric torque density (VTD) and magnet utilization (PM 
GTD).  Each topology has its own benefits and drawbacks with 
respect to gear ratio, torque, and mechanical design. 

Regarding gear ratio, the cycloidal magnetic gear can 
realistically achieve significantly higher gear ratios than the 
coaxial magnetic gear.  The coaxial gear generally favors 
relatively low gear ratios with the performance (torque density) 



getting significantly worse as the gear ratio increases.  However, 
the optimal gear ratio for a cycloidal magnetic gear varies 
significantly with other design parameters, especially the outer 
radius, because the magnitude of the gear ratio is equivalent to 
the pole pair count on the inner rotor.  Additionally, the cycloidal 
gear actually performs relatively poorly at low gear ratios, 
especially at larger outer radii.  On the other hand, the coaxial 
gear consistently performs best at low gear ratios, regardless of 
outer radius, because both sets of pole counts can be varied with 
the outer radius without significantly changing the gear ratio. 

Regarding torque, the cycloidal magnetic gear can generally 
outperform the coaxial magnetic gear in terms of both VTD and 
PM GTD, assuming that the optimal gear ratio is used for the 
cycloidal magnetic gear.  However, if the gear ratio is restricted 
to a relatively low value, the coaxial topology can generally 
achieve higher VTD and PM GTD values.  Furthermore, the 
coaxial magnetic gear benefits more in terms of VTD and suffers 
less in terms of PM GTD when the magnet thicknesses are 
increased.  Thus, a coaxial magnetic gear may be more compact 
if relatively thick PMs can be used, which may be advantageous 
when size and mass are more important than material cost, but, 
when the PM thickness is constrained to limit the material cost, 
the cycloidal magnetic gear will generally be able to achieve 
higher VTDs and PM GTDs than the coaxial magnetic gear.  For 
the coaxial magnetic gear, torque ripple can be kept small simply 
by choosing pole count combinations with a large lowest 
common multiple.  The cycloidal topology itself ensures that the 
torque ripple in a cycloidal magnetic gear will be minimal, 
regardless of the pole counts. 

Finally, there are significant differences regarding 
construction.  The modulators present a challenge to the 
fabrication of coaxial magnetic gears because they must be held 
between the two sets of PMs and withstand strong magnetic 
forces, which can make it mechanically challenging to maintain 
small air gaps.  The cycloidal magnetic gear also presents a 
couple of fabrication challenges.  First, the axis of the inner rotor 
revolves around the axis of the outer rotor.  This requires that 
the movement of the inner rotor be separated into two 
components, its orbital revolution about the axis of the outer 
rotor and its rotation about its own axis.  (The dual-stage solution 
proposed in [11] does simplify this challenge at the expense of 
reduced VTD and PM GTD.)  Additionally, the revolution of the 
inner rotor moves the gear’s center of mass, which must be 
counterbalanced to avoid creating vibrations.  Second, the rotors 
in a cycloidal magnetic gear experience strong magnetic forces, 
which must be supported by the bearings, whereas the net 
magnetic forces on the rotors of a coaxial magnetic gear can be 
canceled out using symmetry.  The additional stress placed on 
the bearings of a cycloidal magnetic gear by these magnetic 
forces and the challenges of the inner rotor’s revolution may 
reduce the reliability, maintenance, and acoustic noise benefits 
inherent in the noncontact power transmission of magnetic gears 
and mitigate some of the topology’s advantages relative to 
coaxial gears with respect to achieving high torque densities at 
high gear ratios. 

ACKNOWLEDGMENT 

The authors would like to thank ANSYS for their support of 
the EMPE lab through the provision of FEA software. 

REFERENCES 

[1] K. Atallah and D. Howe, “A novel high-performance magnetic gear,” 
IEEE Trans. Magn., vol. 37, no. 4, pp. 2844–2846, Jul. 2001. 

[2] P. O. Rasmussen, T. O. Anderson, F. T. Jorgensen, and O. Nielsen, 
“Development of a High Performance Magnetic Gear,” IEEE Trans. Ind. 
Appl., vol. 41, no. 3, pp. 764-770, May/June 2005. 

[3] K. K. Uppalapati, J. Z. Bird, J. Wright, J. Pitchard, M. Calvin, and W. 
Williams, “A magnetic gearbox with an active region torque density of 
239Nm/L,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1331-1338, 
Mar./Apr. 2018 

[4] P. M. Tlali, R.-J. Wang, and S. Gerber, “Magnetic gear technologies: A 
review,” in Proc. Int. Conf. Elect. Mach., 2014, pp. 544–550. 

[5] N. W. Frank and H. A. Toliyat, “Gearing ratios of a magnetic gear for 
wind turbines,” in Proc. IEEE Int. Elect. Mach. and Drives Conf., 2009, 
pp. 1224–1230. 

[6] L. N. Jian, K. T. Chau, D. Zhang, J. Z. Jiang and Z. Wang, “A Magnetic-
Geared Outer-Rotor Permanent-Magnet Brushless Machine for Wind 
Power Generation,” in Proc. IEEE Ind. Appl. Annual. Meeting, 2007, pp. 
573-580. 

[7] M. Johnson, M. C. Gardner, H. A. Toliyat, S. Englebretson, W. Ouyang, 
and C. Tschida, "Design, Construction, and Analysis of a Large Scale 
Inner Stator Radial Flux Magnetically Geared Generator for Wave Energy 
Conversion," IEEE Trans. Ind. Appl., pp. 1-1, 2018. 

[8] K. K. Uppalapati, J. Z. Bird, D. Jia, J. Garner, and A. Zhou, “Performance 
of a magnetic gear using ferrite magnets for low speed ocean power 
generation,” in Proc. IEEE Energy Convers. Congr. and Expo., 2012, pp. 
3348–3355. 

[9] L. MacNeil, B. Claus, and R. Bachmayer, “Design and evaluation of a 
magnetically-geared underwater propulsion system for autonomous 
underwater and surface craft,” in Proc. Int. Conf. IEEE Oceans, 2014, pp. 
1-8. 

[10] T. V. Frandsen, L. Mathe, N. I. Berg, R. K. Holm, T. N. Matzen, P. O. 
Rasmussen, and K. K. Jensen, “Motor integrated permanent magnet gear 
in a battery electrical vehicle,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 
1516–1525, Mar./Apr. 2015. 

[11] J. Rens, K. Atallah, S. D. Calverley and D. Howe, “A Novel Magnetic 
Harmonic Gear,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 206-212, 
Jan./Feb. 2010. 

[12] F. T. Jorgensen, T. O. Andersen and P. O. Rasmussen, “The Cycloid 
Permanent Magnetic Gear,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 
1659-1665, Nov./Dec. 2008. 

[13] K. Davey, T. Hutson, L. McDonald and G. Hutson, “The design and 
construction of cycloidal magnetic gears,” in Proc. IEEE Int. Elect. Mach. 
And Drives Conf., 2017, pp. 1-6. 

[14] K. Li, J. Bird, J. Kadel and W. Williams, “A Flux-Focusing Cycloidal 
Magnetic Gearbox,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1-4, Nov. 
2015. 

[15] M. Johnson, M. C. Gardner, and H. A. Toliyat, “Design Comparison of 
NdFeB and Ferrite Radial Flux Surface Permanent Magnet Coaxial 
Magnetic Gears,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1254-1263, 
Mar./Apr. 2018. 

[16] M. C. Gardner, B. E. Jack, M. Johnson, and H. A. Toliyat, "Comparison 
of Surface Mounted Permanent Magnet Coaxial Radial Flux Magnetic 
Gears Independently Optimized for Volume, Cost, and Mass," IEEE 
Trans. Ind. Appl., vol. 54, no. 3, pp. 2237-2245, May/June 2018. 

[17] S. Gerber and R-J. Wang, “Analysis of the end-effects in magnetic gears 
and magnetically geared machines,” in Proc. IEEE Int. Conf. Elect. 
Mach., 2014, pp. 396-402. 

 


