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Abstract--Magnetic gears can perform the same function as 

mechanical gears with the added benefits inherent to contactless 

power transfer.  However, quick and accurate analysis tools are 

required for magnetic gears to reach their full potential.  As end 

effects can significantly impact the slip torque of a magnetic gear, 

2D models often overestimate the slip torques, so 3D models are 

frequently required.  Therefore, this paper proposes a 3D linear 

Magnetic Equivalent Circuit (MEC) or reluctance network 

model of radial flux magnetic gears with surface mounted 

magnets.   This is an extension of a previously developed 2D 

MEC model, and, like the previous 2D model, it is thoroughly 

parametrized so that it can be directly applied to a wide range of 

parametric cases.  This is Part I of a two-part paper and focuses 

on the implementation of the 3D MEC model.  Part II compares 

the 3D MEC model against nonlinear finite element analysis 

(FEA) models to validate the MEC model’s accuracy and to 

develop guidelines for discretizing the geometry. 

 
Index Terms--end effects, finite element analysis, magnetic 

equivalent circuit, magnetic gear, optimization, permeance 

network, radial flux, reluctance network, torque density. 

I.  INTRODUCTION 

AGNETIC gears transfer mechanical power between 

high-torque, low-speed rotation and low-torque, high-

speed rotation.  However, whereas magnetic gears perform the 

same function as mechanical gears, magnetic gears utilize the 

interaction of magnetic fields instead of interlocking teeth to 

transfer power between rotors.  This noncontact operation 

gives magnetic gears a plethora of potential advantages, 

including inherent overload protection, reduced maintenance 

 
This work was supported in part by the U.S. Army Research Laboratory 

and was accomplished under Cooperative Research and Development 
Agreement# 14-10. The views and conclusions contained in this document are 

those of the authors and should not be interpreted as representing the official 

policies, either expressed or implied, of the Army Research Laboratory or the 
U.S. Government. The U.S. Government is authorized to reproduce and 

distribute reprints for Government purposes notwithstanding any copyright 

notation herein. 
M. Johnson is with the U.S. Army Research Laboratory, College Station, 

TX 77843 USA (e-mail: matthew.c.johnson186.civ@mail.mil). 

M. C. Gardner is with the Electric Powertrains Lab at the University of 
Texas at Dallas, Richardson, TX 75080 USA (e-mail: 

Matthew.Gardner@utdallas.edu). 

H. A. Toliyat is with the Advanced Electric Machines and Power 
Electronics Lab at Texas A&M University, College Station, TX 77843 USA 

(e-mail: toliyat@tamu.edu). 

requirements, higher reliability, decreased acoustic noise, and 

physical isolation between the shafts.  These potential 

advantages have spurred significant recent research [1]-[4] in 

magnetic gears for various applications, including electric 

aircraft propulsion [5], wind [6] and wave [7] energy 

generation, ship propulsion [8], and electric vehicles [9]. 

Nevertheless, magnetic gears still struggle to compete with 

their mechanical counterparts with respect to basic metrics 

such as size, weight, and cost [10].  To make magnetic gears 

more competitive and allow them to realize their potential 

advantages, it is necessary to be able to conduct detailed, 

application-specific parametric optimizations [11]-[13].  The 

tools used to analyze magnetic gears include finite element 

analysis (FEA) models, analytical models, winding function 

theory (WFT), and magnetic equivalent circuit (MEC) or 

reluctance network models.  FEA models are most commonly 

used because of their accuracy, robustness, and flexibility, but 

they can be computationally intensive and slow.  WFT and 

analytical models are significantly faster than FEA but less 

accurate and flexible.  MEC models offer a compromise 

between the speed of WFT and analytical models and the 

robustness and accuracy of FEA models.  To investigate the 

advantages of MEC models, the authors previously 

implemented [14] and evaluated [15] a parameterized linear 

2D MEC model for radial flux magnetic gears with surface 

permanent magnets, as shown in Fig. 1.  The evaluation of the 

linear 2D MEC model demonstrated that it was significantly 

faster than a commercial finite element analysis (FEA) 

package and very accurate for most practical designs [15]. 

Another significant advantage of MECs is that they are  

 

 
Fig. 1.  Radial flux magnetic gear with surface permanent magnets. 
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well suited for development of 3D models, and a few studies 

have even suggested that MEC models’ advantages of reduced 

computational intensity and faster simulation times become 

even more pronounced compared to FEA models when these 

analysis techniques are extended to 3D models [16]-[18].  This 

is especially important for analysis of magnetic gears, as 3D 

effects are generally more significant in magnetic gears than in 

traditional electric machines due to the strong MMFs of the 

magnets, which oppose each other in some places, the large 

equivalent air gaps, and the axial leakage flux paths provided 

by the modulators [19].  Thus, 2D magnetic gear models 

frequently predict significantly higher torque ratings than 

those predicted by 3D models and measured on physical 

prototypes [11], [19]-[21].  Furthermore, one study even 

demonstrated that 2D and 3D magnetic gear models can yield 

different optimum cross-sectional gear designs [12]. 

This is Part I of a two-part study which extends the 

generalized 2D parametric linear MEC model of the coaxial 

radial flux magnetic gear topology implemented in [14] and 

evaluated in [15] to a full 3D model.  The coaxial radial flux 

magnetic gear shown in Fig. 1 consists of three rotors: the 

inner high speed rotor (HSR) with PHS permanent magnet pole 

pairs, the outer low speed rotor (LSR) with PLS permanent 

magnet pole pairs, and the intermediate modulator rotor with 

QM ferromagnetic pole pieces.  The number of modulators 

should be the sum of the number of pole pairs on the high 

speed rotor and low speed rotor, as given by 

 QM = PHS + PLS. (1) 

If the modulators are fixed, the HSR and LSR speeds are 

related by the gear ratio according to 
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where ωHS, ωLS, and ωMods are the speeds of the HSR, LSR, and 

modulators, respectively.  Alternatively, if the LSR is fixed 

and the modulators rotate instead, then the gear ratio becomes 

positive and increases in magnitude by one to 
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As detailed in [14], the concept of MECs, which are also 

known as reluctance networks, dates back into the 1800s [22].  

In particular, Hopkinson’s Law,  

 F = RΦ  (4) 

was formulated by 1886 and relates the scalar magnetic 

potential or MMF, F, drop across a flux tube to the reluctance, 

R, of the flux tube and the magnetic flux, Φ, flowing through 

it.  This is analogous to Ohm’s Law in electrical circuits.  

Many past studies [23]-[37] and books [38]-[40] demonstrated 

the enticing balance of speed and accuracy that MEC models 

can offer for analysis of electric machines.  Furthermore, 

MECs have been used to analyze rotary magnetic gears and 

magnetically geared machines [41]-[46] and linear magnetic 

gears [47].  However, none of these previous magnetic gear 

MECs systematically evaluated detailed 3D flux paths. 

This paper builds on these works and the authors’ previous 

2D MEC model [14] to present a more flexible and robust 3D 

approach than the conventional MECs used for electric 

machine analysis.  Rather than using a relatively small number 

of flux tubes, as in Ostovic’s pioneering MEC models of 

electric machines, which represented each tooth with a single 

flux tube [25]-[27], [37], [38], the proposed MEC 

systematically creates a parametric 3D mesh of the geometry, 

including space axially beyond the gear.  This facilitates 

scaling the number of flux tubes based on the gear geometry 

and allows accurate modeling of the complex flux paths, rich 

harmonic content, and end-effects, which are more significant 

in a magnetic gear than most conventional electric machines, 

across a wide range of parametric designs.  This generally 

results in many more flux tubes than conventional MECs.  

This approach most resembles the 3D MEC models of 

Amrhein and Krein [16]-[18], [32] and Hlioui et al. [37], but 

those works provide limited information about the matrix 

representation of the 3D aspects of the implementation.  This 

paper provides a thorough description of a unique parametric 

3D flux tube distribution implementation that enables higher 

accuracy over a wider range of designs.  Part I of this two-part 

paper describes how this 3D MEC can be implemented by 

combining scaled permeances from 2D cross-sections to 

reduce the number of necessary permeance calculations. 

II.  THE 3D NODE CELL 

The systematic, parameterized 2D MEC implementation 

presented in [14] and [15] can easily be extended to a 3D 

model in order to characterize the impacts of end effects.  The 

3D MEC mesh is systematically formed by using the same 

angular and radial layers employed in the 2D MEC and further 

subdividing the system geometry into axial or z-coordinate 

layers (ZL).  Each intersection of a radial layer, an angular 

layer, and an axial layer defines a 3D node cell similar to those 

described in [16]-[18], [32], and [37].  Every 3D node cell 

consists of two radially directed permeances, two tangentially 

directed permeances, and two axially directed permeances, 

each of which is connected to the center node of the cell and 

one of the cell’s radial, tangential, or axial boundaries, as 

shown in Fig. 2.  The radial and tangential permeances, as 

well as the radially injected fluxes from the permanent 

magnets, are calculated in the same manner as for the 2D 

MEC [14].  A conceptual illustration of an axially oriented 
 

 
Fig. 2.  Annotated 3D node cell schematic. 
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Fig. 3.  Conceptual illustration of an axially oriented flux tube. 

 

flux tube is provided in Fig. 3 and the formula for the 

permeance of each axially directed flux tube, Pax, is given by  

 P𝑎𝑥 = ∫
𝜇⋅Δ𝜃⋅𝑟⋅𝑑𝑟

Δ𝑧

𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

= (
𝜇⋅Δ𝜃

2⋅Δ𝑧
) (𝑟𝑜𝑢𝑡

2 − 𝑟𝑖𝑛
2 ). (5) 

Each axially directed flux tube corresponds to the full radial 

width of its node cell, the full angular width of its node cell, 

and half of the axial height of its node cell.  Thus, rin indicates 

the inner radius of the flux tube, rout denotes the outer radius of 

the flux tube, Δθ is the uniform angular width of the flux tube 

(in radians), Δz is the uniform axial height of the flux tube, 

and μ is the permeability of the flux tube material. 

Applying Gauss’s law for magnetism to each 3D node cell 

in the full MEC, such as the one depicted in Fig. 2, yields a 

node MMF equation of the form given by 

 ∑ P𝑖F𝑥
6
𝑖=1 − ∑ P𝑖F𝑖

6
𝑖=1 = −Φ𝑖𝑛𝑗,2 +Φ𝑖𝑛𝑗,4. (6) 

This expression can be rearranged into the form of 

 Φ𝑥,2𝐷 + ∑ P𝑖F𝑥
6
𝑖=5 − ∑ P𝑖F𝑖

6
𝑖=5 = −Φ𝑖𝑛𝑗,2 +Φ𝑖𝑛𝑗,4, (7) 

which clearly demonstrates the relationship between the basic 

3D MEC node MMF equation and the basic 2D node MMF 

equation given by (12) in [14].  The first term in (7), Φx,2D, is 

defined by  

 Φ𝑥,2𝐷 = ∑ P𝑖F𝑥
4
𝑖=1 − ∑ P𝑖F𝑖

4
𝑖=1  (8) 

as the algebraic sum of all fluxes flowing out of node x due to 

the MMFs of nodes in the same axial layer and it is equal to 

the entire left side of the 2D MEC node MMF equation given 

by (12) in [14].  The second term on the left side of (7) is 

simply the product of the sum of all axially directed 

permeances attached to the target node (node “x”) and the 

MMF of the target node, Fx.  The third term in (7) represents 

the algebraic sum of the axial flux components flowing out of 

node x due to the axially directed permeances attached to node 

x and the MMFs of the corresponding axially adjacent nodes.  

As in the 2D MEC node MMF equation, the terms on the right 

side correspond to the algebraic sum of the injected flux 

sources flowing into the target node. 

The use of 3D node cells is effectively equivalent to 

building the full 3D MEC by stacking 2D MEC layers on top 

of each other and connecting corresponding nodes in adjacent 

2D MEC layers (adjacent axial layers) with axially directed 

permeances.  The 3D MEC schematic snippet in Fig. 4 

illustrates this layering arrangement for the eight node cells 

formed by the intersection of two adjacent angular layers, two 

adjacent axial layers, and two adjacent radial layers.  The 3D 

MEC model includes both the gear geometry and a defined 

region of nonmagnetic material axially beyond the gear.  The 

total number of axial layers, NZL, in the 3D MEC is the sum of 

the number of axial layers in the gear, NLIG, and the number of 

axial layers outside of (axially beyond) the gear, NLOG, which 

are both independent user-controlled parameters, in addition to 

the 8 other 2D MEC mesh discretization parameters 

introduced in [14].  Also, because tighter axial resolution is 

generally required at the axial ends of the gear, relative to the 

axial middle of the gear, the distribution of the axial heights of 

the various axial layers is not necessarily uniform and can be 

directly specified as needed for different designs.  Finally, in 

addition to the periodic symmetry exhibited by certain 

designs, the basic radial flux magnetic gear topology always 

has symmetry about the z plane corresponding to the axial 

middle of the gear such that no axial flux crosses the axial 

middle of the gear.  Since this is true for all ideal designs 

(assuming negligible axial misalignment), only one axial half 

of the gear stack is considered in this implementation of the 

3D MEC model to reduce the necessary number of axial 

layers.  The full 3D MEC solution information is then 

obtained by repeating the “half-stack” model results.  This 

solution is exactly equivalent to that which would be obtained 

by including the full axial stack in the 3D model. 

Each node in the 3D MEC corresponds to a node MMF 

equation of the same basic form as the one shown in (6) or (7) 

and there are N3D total nodes in a 3D MEC model, where N3D 

is the product of the number of angular layers, the total 

number of radial layers, and the total number of axial layers.  

Thus, the resulting system of linear equations for the full 3D 

MEC model can be expressed by the matrix equation  

 P3DF3D = Φ3D, (9) 

where P3D is the (N3D x N3D) 3D system permeance matrix, 

F3D is the (N3D x 1) column vector of unknown MMFs for 

each corresponding node in the 3D MEC, and Φ3D is the (N3D 

x 1) column vector of the algebraic sums of the injected fluxes 

entering each corresponding node in the 3D MEC.  The ith row 

in P3D corresponds to the ith node in the MEC and contains the 

permeance coefficients for that node’s MMF equation, such as 

those shown on the left side of (6).  The jth column in P3D also 
 

 
Fig. 4.  Construction of 3D MEC from axially connected 2D MEC layers. 
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corresponds to the jth node in the MEC.  Entry P3D(i,j) in P3D 

contains the permeance coefficient which describes the impact 

of the jth node’s MMF on the net flux leaving the ith node.  

Each diagonal entry, P3D(i,i), in P3D contains the positive sum 

of all equivalent permeances attached directly to the ith node.  

The permeance coefficient of Fx in (6) is an example of a 

diagonal entry in the matrix representation of the system of 

equations.  Each diagonal entry indicates the impact of the 

corresponding node’s MMF on the net flux leaving that node.  

Each off-diagonal entry P3D(i,j) in P3D (entries where i ≠ j) 

contains the negative value of the equivalent permeance 

directly connecting the ith and jth nodes.  If there is no direct 

connection between the ith and jth nodes (a permeance path that 

does not go through another node), then the corresponding 

entry in P3D is zero.  The permeance coefficients of F1, F2, 

F3, F4, F5, and F6 in (6) are examples of off-diagonal entries 

in the matrix representation of the system of equations. 

Alternatively stated, since each row in P3D corresponds to 

an equation in the form of (6), the ith row in P3D has six 

negative entries corresponding to the permeances directly 

connecting the ith node to the 6 adjacent nodes.  However, 

nodes on the axial and radial boundaries of the model do not 

have 6 adjacent nodes, so the rows corresponding to these 

nodes have fewer negative entries.  In every row, the diagonal 

entry is the positive sum of all the permeances connecting that 

node to the adjacent nodes.  Thus, the sum of all the entries in 

each row is 0.  The exception to this occurs for nodes on the 

tangential boundaries of periodic models with odd symmetry.  

For models with odd symmetry, the off-diagonal entries 

corresponding to the permeances crossing the tangential 

boundaries become positive.  Since each row only has 7 

nonzero entries (except for the rows corresponding to the 

nodes on radial or axial boundaries, which have less than 7 

nonzero entries), P3D is a very sparse matrix. 

III.  THE 3D PERMEANCE MATRIX 

P3D, can be constructed in a general form with its 

constituent submatrices as shown in this section.  The 

arrangement of these matrices is based on the MEC model 

node numbering system in which the first N2D rows and the 

first N2D columns in P3D correspond to the nodes in the first 

axial layer, and the next N2D rows and the next N2D columns 

correspond to the nodes in the second axial layer, and so on.  

Within each set of N2D rows or columns, the first NAL, which is 

the number of angular or circumferential layers in the model, 

rows or columns correspond to nodes in the first radial layer of 

that axial layer, and the next NAL rows or columns correspond 

to nodes in the second radial layer of that axial layer, and so 

on, as was the case for the organization of a single 2D MEC 

system permeance matrix, P2D [14]. 

P3D can be formed using the 2D permeance matrices 

developed in [14] and some additional diagonal matrices that 

represent the permeances of the axial flux tubes between 2D 

layers as submatrices, as shown in  
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P2D(i) is the 2D cross-section permeance matrix for the ith axial 

layer, as developed in [14], and PAx(j:j+1) is the matrix 

representing the axial permeances between the jth and (j+1)th 

axial layers.  PAx(j:j+1) is a diagonal matrix with the kth diagonal 

element representing the axial permeance between the kth 

nodes in the jth and (j+1)th axial layers. 

The previous paragraph provides a general approach to 

forming P3D.  However, due to the assumption of magnetic 

linearity and the geometry of the radial flux magnetic gear 

(assuming that all gear components have the same axial 

length), all of the axial layers inside the gear are identical to 

each other, except for potentially having different axial 

heights, and all of the axial layers outside the gear are also 

identical to each other, except for potentially having different 

axial heights.  Therefore, the rest of this section presents an 

approach to forming P3D that uses this fact to limit the number 

of permeance calculations required by scaling the permeances 

for each axial layer based on that layer’s axial height. 

The first three submatrices used in the construction of P3D 

correspond to permeances inside the active gear geometry and 

are given by  

 

2 2

, (1:1)

, (2:2)

,

, ( : )

0 0

0

0

0 0
D D

Ax IG

Ax IG

Ax IG

Ax IG N N

 
 
 
 =
 
 
 
  

P

P
P

P

 (11) 

 P𝐼𝐺(𝑚:𝑚−1) = P𝐼𝐺(𝑚−1:𝑚) =
2P𝐴𝑥,𝐼𝐺

ℎ𝐼𝐺,𝑚+ℎ𝐼𝐺,𝑚−1
 (12) 

 P𝐼𝐺(𝑚:𝑚) = ℎ𝐼𝐺,𝑚P2𝐷,𝐼𝐺. (13) 

PAx,IG, defined in (11), is an (N2D x N2D) matrix in which each 

diagonal entry, PAx,IG(i:i), contains the “per-meter” value of the 

axial permeance connected to the ith node in each 2D layer, 

assuming that the axial flux tubes are one meter long and 

contained entirely in the gear (and not the region outside of the 

gear).  All off-diagonal entries in PAx,IG are zero.  The (N2D x 
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N2D) axial permeance matrix, PIG(m:m-1), corresponding to the 

axial permeances connecting in-gear axial layer m to in-gear 

axial layer m-1 can then be formed from PAx,IG, according to 

(12).  The scaling term used in (12) is the inverse of the 

appropriate axial path length, which is the average of the axial 

height of in-gear axial layer m, hIG,m, and the axial height of in-

gear axial layer m-1, hIG,m-1.  As indicated in (13), the (N2D x 

N2D) matrix of radial and tangential permeances corresponding 

to in-gear axial layer m, PIG(m:m), is formed by scaling the 2D 

MEC in-gear system permeance matrix, P2D,IG, by the height 

of in-gear axial layer m.  The matrix P2D,IG is formed exactly 

as it is in a 2D MEC model, assuming a unit height [14]. 

There is an analogous out-of-gear permeance matrix 

corresponding to each of the three previously described in-

gear permeance matrices.  The matrix PAx,OG is defined 

similarly to PAx,IG in (11) as an (N2D x N2D) matrix in which 

each diagonal entry, PAx,OG(i:i), contains the “per-meter” value 

of the axial permeance connected to the ith node in each 2D 

layer, assuming that the axial flux tubes are one meter long 

and contained entirely in the region outside of the gear.  As 

was the case with PAx,IG, all off-diagonal entries in PAx,OG are 

zero.  The (N2D x N2D) axial permeance matrix, POG(m:m-1), 

corresponding to the axial permeances connecting out-of-gear 

axial layer m to out-of-gear axial layer m-1 can then be formed 

by scaling PAx,OG, similarly to PIG(m:m-1) in (12), where the 

scaling factor is the inverse of the appropriate axial path 

length, which is the average of the axial height of out-of-gear 

axial layer m, hOG,m, and the axial height of out-of-gear axial 

layer m-1, hOG,m-1.  As in (13), the (N2D x N2D) matrix of radial 

and tangential permeances corresponding to out-of-gear axial 

layer m, POG(m:m), is formed by scaling the 2D MEC out-of-

gear system permeance matrix, P2D,OG, by the height of out-of-

gear axial layer m.  P2D,OG is formed in the same manner as 

P2D,IG, but all of the permeabilities used in the individual 

permeance calculations are set to μ0 because the flux tubes are 

located entirely in nonmagnetic material. 

All of the preceding terms correspond to permeances 

located either entirely in the active gear region or entirely in 

the region outside of the gear.  However, the set of equivalent 

axial permeances connecting the last (top) in-gear axial layer 

to the first (bottom) out-of-gear axial layer, is formed by the 

series connection of the axial permeances corresponding to the 

top half of the last in-gear axial layer and the axial permeances 

corresponding to the bottom half of the first out-of-gear axial 

layer.  PBound is an (N2D x N2D) diagonal matrix, representing 

these boundary axial permeances.  Each diagonal entry, 

PBound(i:i), contains the equivalent axial permeance connecting 

the ith node in the last in-gear axial layer to the ith node in the 

first out-of-gear axial layer.  As defined in 

 P𝐵𝑜𝑢𝑛𝑑(𝑖:𝑖) = (
ℎ𝐼𝐺,𝑁𝐿𝐼𝐺

2P𝐴𝑥,𝐼𝐺(𝑖:𝑖)
+

ℎ𝑂𝐺,1

2P𝐴𝑥,𝑂𝐺(𝑖:𝑖)
)
−1

, (14) 

each diagonal entry, PBound(i:i), is formed by the scaled series 

combination of the corresponding diagonal entries in PAx,IG 

and PAx,OG (PAx,IG(i:i) and PAx,OG(i:i)).  All off-diagonal entries in 

PBound are zero. 

The portion of P3D corresponding to the in-gear nodes is 

constructed according to  
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 (16) 

 P3𝐷,𝐼𝐺 = P3𝐷,𝐴𝑥,𝐼𝐺 +P3𝐷,𝐶𝑆,𝐼𝐺. (17) 

The (NLIGN2D x NLIGN2D) matrix P3D,Ax,IG, defined in (15), 

contains the coefficients corresponding to axial permeances 

connected to in-gear nodes.  Each diagonal submatrix entry 

P3D,Ax,IG(m,m) in P3D,Ax,IG contains the sum of the diagonal axial 

permeance matrices corresponding to axial permeances 

connected to nodes in the mth in-gear axial layer.  Each 

individual diagonal entry P3D,Ax,IG(i,i) in P3D,Ax,IG contains the 

sum of all equivalent axial permeances connected to the ith in-

gear node.  These diagonal entries are analogous to the 

permeance coefficient of Fx in (7).  Each off-diagonal 

submatrix entry, P3D,Ax,IG(m,n), in P3D,Ax,IG (entries where m ≠ n) 

contains the negative diagonal axial permeance matrix 

corresponding to axial permeances connecting the mth in-gear 

axial layer to the nth in-gear axial layer.  Each individual off-

diagonal entry, P3D,Ax,IG(i,j), in P3D,Ax,IG (entries where i ≠ j) 

contains the negative value of the equivalent axial permeance 

connecting the ith in-gear node to the jth in-gear node.  These 

off-diagonal entries are analogous to the permeance 

coefficients of F5 and F6 in (7).  Thus, for the in-gear nodes, 
P3D,Ax,IG represents the terms on the left side of (7), excluding 

Φx,2D.  The (NLIGN2D x NLIGN2D) matrix P3D,CS,IG, defined in 

(16), contains the coefficients corresponding to permeances 

connected to in-gear nodes within their own cross-sectional 

2D layer (radial and tangential permeances, but not axial 

permeances).  Each submatrix entry, P3D,CS,IG(m,m), on the 

diagonal of P3D,CS,IG is the 2D MEC system permeance matrix 

corresponding to the mth 2D in-gear cross-sectional layer.  

These submatrices are analogous to the permeance coefficients 

in the Φx,2D term of (7), as defined in (8).  The portion of P3D 
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corresponding to the in-gear nodes, P3D,IG, is formed by 

adding these submatrices as shown in (17).  Note that the first 

submatrix row of P3D,Ax,IG only uses a single diagonal axial 

submatrix, PIG(1:2).  This is due to the previously discussed use 

of a “half-stack” fractional model based on the gear’s 

symmetry about the z-plane corresponding to its axial center.  

This effectively imposes the necessary zero axial flux 

boundary condition on the axial bottom of the “half-stack” 

model (the axial middle of the full stack gear model).  If 

designs without this symmetry need to be evaluated, such as 

those with skewed magnets or axial misalignment, the 3D 

MEC system permeance matrix can easily be adjusted, using 

the same basic formation process, to model the full gear stack 

and two regions outside of the gear (one on each axial end). 

Again, there is an analogous out-of-gear permeance matrix 

corresponding to each of the three previously described in-

gear permeance matrices, and the portion of P3D 

corresponding to the out-of-gear nodes is constructed 

similarly.  The (NLOGN2D x NLOGN2D) matrix P3D,Ax,OG contains 

the coefficients corresponding to axial permeances connected 

to out-of-gear nodes.  P3D,Ax,OG can be defined similarly to 

P3D,Ax,IG in (15); however, the PBound submatrix is added to the 

upper left term instead of the bottom right term.  Each 

diagonal submatrix entry, P3D,Ax,OG(m,m), in P3D,Ax,OG contains 

the sum of the diagonal axial permeance matrices 

corresponding to axial permeances connected to nodes in the 

mth out-of-gear axial layer.  Each individual diagonal entry, 

P3D,Ax,OG(i,i), in P3D,Ax,OG contains the sum of all equivalent 

axial permeances connected to the ith out-of-gear node.  Each 

off-diagonal submatrix entry, P3D,Ax,OG(m,n), in P3D,Ax,OG (entries 

where m ≠ n) contains the negative diagonal axial permeance 

matrix corresponding to axial permeances connecting the mth 

and nth out-of-gear axial layers.  Each individual off-diagonal 

entry, P3D,Ax,OG(i,j), in P3D,Ax,OG (entries where i ≠ j) contains 

the negative value of the equivalent axial permeance 

connecting the ith and jth out-of-gear nodes.  The (NLOGN2D x 

NLOGN2D) matrix P3D,CS,OG can be defined similarly to P3D,CS,IG 

in (16) and contains the coefficients corresponding to 

permeances connected to out-of-gear nodes within their own 

cross-sectional 2D layer (radial and tangential permeances, but 

not axial permeances).  Each diagonal submatrix entry, 

P3D,CS,OG(m,m), in P3D,CS,OG is the 2D MEC system permeance 

matrix corresponding to the mth 2D out-of-gear cross-sectional 

layer.  The portion of P3D corresponding to the out-of-gear 

nodes, P3D,OG, is formed by adding these submatrices similarly 

to the formation of P3D,IG in (17). 

The (NLIGN2D x NLOGN2D) matrix P3D,Bound, defined in  

 3 ,

0 0

0

0 0

D Bound

Bound

 
 
 
 =
 
 
 
  

P

P

, (18) 

contains the portion of the overall 3D MEC system permeance 

matrix corresponding solely to the boundary axial permeances 

connecting nodes in the top in-gear layer and the bottom out-

of-gear layer.  All of the entries in this matrix are zeros, except 

for the single submatrix PBound in the corner.  P3D is created 

from the submatrices P3D,Bound, P3D,Bound
T

 (the transpose of 

P3D,Bound), P3D,IG, and P3D,OG, in the arrangement indicated by 

 
3 , 3 ,

3 T

3 , 3 ,

D IG D Bound

D

D Bound D OG

 
 =
 
 

P -P
P

-P P
. (19) 

P3D is always symmetric because all permeances in the MEC 

are bidirectional. 

Each node in the 3D MEC has six adjacent nodes: one on 

the radial inside, one on the radial outside, one on the 

clockwise circumferential side, one on the counterclockwise 

circumferential side, one on the axial bottom side, and one on 

the axial top side.  The only exceptions to this rule are the 

nodes in the innermost radial layer, which do not have any 

adjacent nodes on the radial inside, the nodes in the outermost 

radial layer, which do not have any adjacent nodes on the 

radial outside, the nodes in the bottom in-gear axial layer, 

which do not have any adjacent nodes on the axial bottom 

side, and the nodes in the top out-of-gear axial layer, which do 

not have any adjacent nodes on the axial top side.  In light of 

this observation and close inspection of the matrices defined in 

(10)-(19), it is evident that each row in P3D which does not 

correspond to one of these boundary layers has seven non-zero 

entries, one for each adjacent node, as well as the diagonal 

entry in each row.  Thus, 3D MEC permeance matrices are 

even sparser than 2D MEC permeance matrices; therefore, the 

MATLAB implementation of the MEC model stores P3D as a 

sparse matrix in order to dramatically reduce the requisite 

amount of memory used by the program. 

IV.  SOLVING THE SYSTEM 

The 3D MEC model is “solved” by solving the linear 

system of equations given in (9) for the N3D unknown node 

MMFs in the column vector F3D.  As indicated in the 

description of the 2D MEC implementation [14], if the 3D 

MEC model has cross-sectional periodic symmetry, then it can 

be analyzed by solving the subset of equations corresponding 

to nodes in a symmetrical periodic fraction of the “half-stack” 

model and extending that solution to the remaining 

symmetrical fraction(s).  Additionally, the same rules for the 

treatment of a reference node provided in the discussion of the 

2D MEC solution [14] also apply to the 3D MEC solution. 

Ideally, the MEC system can be solved by inverting the 

appropriate part of the system permeance matrix to solve for 

the node MMFs throughout a symmetrical periodic fraction of 

the magnetic gear.  However, the 3D MEC system is much 

larger than its corresponding 2D MEC system; therefore, it is 

even less feasible to simply invert the 3D MEC system matrix 

due to the computational time and memory requirements.  In 

order to mitigate these issues, the MATLAB implementation 
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of the 3D MEC model uses the same approach applied in the 

2D MEC [14] and solves the system by factorizing the system 

permeance matrix and solving the corresponding triangular 

systems as described in [48].  The use of sparse matrices and 

an optimal factorization method are even more beneficial with 

respect to memory requirements and simulation run times for 

the solution of 3D MEC models. 

Once a 3D MEC model has been “solved” for the vector of 

node MMFs, this information can be used along with the 

reluctances of the flux tubes to calculate various other 

quantities of interest, such as the flux in any flux tube and the 

flux density at any position in the gear.  Like the 2D MEC 

model, the 3D MEC model also uses Maxwell stress tensors 

for torque calculations.  In particular, the torque on the HSR, 

τHSR, and the torque on the LSR, τLSR, are calculated using 

Maxwell stress tensors according to 

  𝜏𝐻𝑆𝑅 = 2(
𝑟𝐻𝑆
2

𝜇0
) ∫ ∫ 𝐵𝑟(𝑟𝐻𝑆, 𝜃, 𝑧)𝐵𝜃(𝑟𝐻𝑆 , 𝜃, 𝑧)𝑑𝜃𝑑𝑧

2𝜋

0

𝐿/2

0
 (20) 

  𝜏𝐿𝑆𝑅 = −2(
𝑟𝐿𝑆
2

𝜇0
) ∫ ∫ 𝐵𝑟(𝑟𝐿𝑆, 𝜃, 𝑧)𝐵𝜃(𝑟𝐿𝑆 , 𝜃, 𝑧)𝑑𝜃𝑑𝑧

2𝜋

0

𝐿/2

0
, (21) 

where rHS and rLS represent the radii of the integration paths in 

the high speed air gap and low speed air gap, while Br and Bθ 

represent the radial and tangential components of the magnetic 

flux density, which are both functions of the position in the 

gear.  L denotes the axial length of the full stack model 

(including the regions beyond both axial ends of the gear).  

This implementation of the 3D MEC uses a symmetrical “half-

stack” model; therefore, the torques are calculated by 

integrating the Maxwell stress tensor over the full axial length 

of the “half stack” model (from z = 0 to z = L/2) and doubling 

that torque to account for the other half of the stack.  The 

torque on the entire modulator structure, τMods, is then given by 

 𝜏𝑀𝑜𝑑𝑠 = −(𝜏𝐻𝑆𝑅 + 𝜏𝐿𝑆𝑅). (22) 

V.  CONCLUSIONS 

This is the first part of a two-part paper on the extension of 

an existing 2D linear MEC or reluctance network model [14] 

for radial flux magnetic gears to a 3D model.  This part 

presents the systematic discretization of the magnetic gear 

geometry into node cells.  In addition to the radial and angular 

layers for the 2D model, the 3D model divides the geometry 

into axial layers, both within and outside of the gear.  The 

intersection of a radial layer, an angular layer, and an axial 

layer forms a node cell.  For each node cell, Gauss’s Law for 

magnetism is used to write an equation relating the potential 

of each node with the potentials of the adjacent nodes, based 

on the permeances of the flux tubes between the nodes and the 

equivalent fluxes injected by the presence of any permanent 

magnets.  These equations are arranged into a very sparse 

matrix equation, which can be solved for the node potentials.  

Then, the fluxes and flux densities can be calculated to 

determine quantities of interest, such as torques. 

Several factors can be employed to accelerate this process.  

First, assuming negligible axial misalignment, symmetry 

results in no axial flux crossing the axial middle of the gear.  

Thus, only the region outside the gear on one axial end and 

half of the gear’s stack need to be included in the model.  

Second, because the cross-section of each axial layer in the 

gear is the same, and the cross-section of each axial layer in 

the region outside the gear is the same, the system matrix can 

be assembled from a few different submatrices and scaled 

based on the axial height of each axial layer.  Third, as with 

the 2D model, periodic symmetry can be used to only evaluate 

a fraction of the geometry, reducing the number of angular 

layers required [14].  Finally, solving the matrix equation 

using efficient methods can result in significant reductions in 

the required time and computational memory [48]. 

The second part of this two-part paper compares the MEC 

model against FEA for different designs and different stack 

lengths.  This is used to develop guidelines for choosing the 

axial layer distributions inside the gear and in the region 

axially beyond the gear.  Additionally, the second part of this 

two-part paper evaluates the torque prediction accuracy of the 

3D MEC model against 2D and 3D FEA for a parametric 

design study with 144,000 cases, which demonstrates the 

accuracy and usefulness of the 3D MEC model. 
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