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Abstract--Magnetic gears offer a promising alternative to 

mechanical gears with the added benefit of contactless power 

transfer.  However, quick and accurate analysis tools are 

required to optimize magnetic gear designs and commercialize 

the technology.  Therefore, this work proposes an extremely fast 

and accurate 2D Magnetic Equivalent Circuit (MEC) model of 

radial flux magnetic gears with surface mounted magnets.  This 

MEC model’s distinguishing characteristics include a heavily 

parameterized gear geometry and a parametrically adjustable 

systematic flux tube distribution which allow for accurate and 

efficient analysis of a wide array of designs.  Furthermore, the 

model is fully linear which results in very quick simulation run 

times without sacrificing significant torque prediction accuracy 

for most practical designs.  This is Part I of a two part paper and 

focuses on the implementation of the MEC model.  Part II 

validates the accuracy of the MEC model by comparing its 

torque and flux density predictions with those produced by 

nonlinear Finite Element Analysis (FEA). 

 
Index Terms--finite element analysis, magnetic equivalent 

circuit, magnetic gear, optimization, permeance network, radial 

flux, reluctance network, torque density. 

I.  INTRODUCTION 

VER the past two decades, magnetic gears have received 

significant attention as an intriguing alternative to 

traditional mechanical gears [1]-[4].  Magnetic gears 

accomplish the same fundamental behavior as mechanical 

gears.  However, magnetic gears rely on the modulated 

interaction of fluxes generated by permanent magnets (PMs) 

on the rotors, instead of mechanical contact between the 

moving components.  This provides a plethora of potential 

advantages, including inherent overload protection, reduced 

maintenance requirements, decreased acoustic noise, and 

physical isolation between the input and output shafts.  Thus, 
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magnetically geared systems offer the potential to combine the 

compact size and cost effectiveness of mechanically geared 

systems with the reliability of direct drive machines.  

Additionally, several different magnetically geared machine 

topologies integrate a magnetic gear directly with a higher 

speed motor or generator to produce a single extremely 

compact device capable of directly interfacing with a lower 

speed, higher torque load or prime mover [5], [6].  Therefore, 

magnetic gears have received interest for use in a wide variety 

of applications such as wind turbines [7], wave energy 

harvesting [8], electric vehicles [6], and electric ships [9]. 

Nonetheless, magnetic gears still struggle to compete with 

their mechanical counterparts and achieve parity or superiority 

with respect to crucial fundamental considerations such as 

size, weight, and cost [10].  For this technology to realize the 

full extent of its potential advantages, it is necessary to be able 

to perform extensive, application specific parametric 

optimizations [11].  This requires fast and accurate analysis 

tools capable of characterizing the performance of numerous 

parametric design variations.  The basic tools commonly used 

for evaluation of electromechanical devices include finite 

element analysis (FEA) models, analytical models, winding 

function theory, and magnetic equivalent circuit (MEC) 

models, all of which can be applied to magnetic gears.  While 

FEA models are generally very accurate, robust, and flexible, 

analytical and winding function theory models are much faster 

than FEA but less accurate and less flexible.  MEC models 

represent a compromise between the accuracy and flexibility 

of FEA models and the speed of analytical models. 

The basic concept of an MEC (also known as a reluctance 

network) is to decompose a physical electromagnetic system 

into flux tubes (defined paths through which magnetic flux 

flows) and represent each tube using lumped reluctances, 

magnetomotive force (MMF) sources, and flux sources to 

collectively form a lumped parameter magnetic equivalent 

circuit, which is directly analogous to a traditional lumped 

parameter electrical circuit and can be solved using the same 

set of analysis techniques.  Just as Kirchhoff’s current and 

voltage laws define the system of equations for an electrical 

circuit, Gauss’s law for magnetism and Ampere’s circuital law 

define the corresponding system of equations for MECs. 

Although MEC and FEA models both analyze a system by 

breaking it up into pieces of varying sizes, there are some 
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critical differences between the two approaches.  The most 

significant distinction is that flux flow directions are 

predetermined in MEC models by the definition of the flux 

tubes, but in FEA models the flux orientation in each element 

is only determined as a result of the model solution.  Thus, 

MEC models typically, although not universally, use scalar 

quantities such as MMFs (scalar magnetic potentials) or scalar 

fluxes as the unknown state variables, whereas FEA models 

commonly use vector quantities, such as vector magnetic 

potentials.  Additionally, MEC models traditionally rely 

heavily on prior empirical knowledge of system behavior and 

use significantly fewer elements than FEA models; however, 

this difference is not necessarily an intrinsic characteristic of 

the two approaches. 

The concepts of a magnetic circuit and reluctance date back 

well into the 1800s [12].  Furthermore, Hopkinson’s Law,  

 F = RΦ  (1) 

was formulated by 1886 and relates the scalar magnetic 

potential or MMF, F, drop across a flux tube to the magnetic 

flux, Φ, flowing through the flux tube and the reluctance, R, 

of the flux tube.  Since that time, there have been several 

studies demonstrating the ability of MEC models to analyze 

both induction motors and various synchronous machines, 

often with better accuracy than simplified analytical models 

and significantly faster simulation run times than 

corresponding FEA models [13]-[24].  A few works have also 

established that MEC techniques are well suited for adaptation 

to 3D models, with their advantages of reduced computational 

intensity and faster simulation times becoming even more 

pronounced as compared to 3D FEA models [25]-[27]. 

This is Part I of a two part study of a generalized, 

parametric linear MEC model for analysis of the coaxial radial 

flux magnetic gear topology with surface mounted permanent 

magnets shown in Fig. 1.  The coaxial magnetic gear 

possesses three rotors: the high speed permanent magnet rotor 

(HSR), the low speed permanent magnetic rotor (LSR), and 

the intermediate ferromagnetic modulator rotor.  The 

relationship between the number of permanent magnet pole 

pairs and the number of modulators is given by 

 QM = PHS + PLS (2) 

where PHS is the number of pole pairs on the HSR, PLS is the 

number of pole pairs on the LSR, and QM is the number of 

modulators.  If the modulators are fixed, the speeds of the 

HSR and LSR are related by the gear ratio according to 
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where ωHS, ωLS, and ωMods are the speeds of the HSR, LSR, and 

modulators, respectively.  Alternatively, if the LSR is fixed 

and the modulators rotate instead, then the gear ratio becomes 

positive and increases in magnitude by one to 
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Fig. 1.  Radial flux magnetic gear with surface permanent magnets. 

 

Although MECs have been used extensively to model 

various types of electric machines, there are only a few 

instances in which the concept has been applied to the analysis 

of rotary magnetic gears and magnetically geared machines 

[28]-[31] or linear magnetic gears [32].  Furthermore, while 

[28]-[31] do demonstrate the potential for MEC models to 

evaluate a gear design much more rapidly than FEA models, 

they use extremely coarse reluctance networks with very few 

elements in the MEC.  Also, they provide no analysis of the 

MEC discretization’s impact on its accuracy and little 

indication of how the MEC’s accuracy varies with different 

design parameters.  Additionally, only the work in [30] offers 

limited discussion of a 3D MEC model with very few 

elements included to account for axial leakage flux.  This 

study uses an approach more in line with the MEC models 

developed in [18], [19], [22], and [24]-[27], in the sense that it 

systematically creates a fully parameterized flux tube mesh by 

breaking the magnetic gear up into pieces, referred to as node 

cells.  The levels of discretization in different regions of the 

gear are parameterized so that more mesh elements can be 

added to the areas that need high resolution for accuracy and 

fewer elements can be used in the other regions to minimize 

simulation run times.  Finally, whereas [28]-[31] all develop at 

least partially nonlinear models, this work employs a fully 

linear MEC model that assumes a constant permeability for 

both the modulators and the back irons.  The evaluation 

presented in Part II demonstrates that the linear model is still 

extremely accurate for analysis of the torque capabilities of 

most reasonable ideal designs, as suggested by the results in 

[32].  This occurs because the large linear reluctances of the 

two sets of magnets and the two air gaps dominate the much 

smaller nonlinear reluctances of the back irons and 

modulators, even if the back irons and modulators experience 

significant saturation.  The linear model allows for 

tremendously fast calculation of a gear design’s torque 

capabilities.  Furthermore, the MEC implementation, which is 

described in the following section, is well suited for extension 

to a nonlinear model using an iterative approach such as the 

one described in [33].  This extension to a nonlinear model is 

only necessary for analysis of additional considerations, such 

as losses or flux densities in the air regions beyond the rotor 

back irons, or designs which include features, such as a 

modulator bridge, that significantly increase the system’s 

nonlinearity.  
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II.  THE NODE CELL 

The 2D MEC mesh is systematically formed by dividing 

the magnetic gear cross-section into radial and circumferential 

(tangential or angular) layers as illustrated by the simple 

example shown in Fig. 2, which depicts a source free annular 

region in the r-θ plane, divided into 3 radial layers (RL) along 

the r dimension and 8 angular layers (AL) along the θ 

dimension.  Each intersection of a radial layer and an angular 

layer defines an annular sector, referred to as a 2D node cell.  

Every 2D node cell consists of two radially directed 

reluctances and two tangentially directed reluctances, each of 

which is connected to the center node of the cell and one of 

the cell’s radial or tangential boundaries as shown in Fig. 2.  

Each of these lumped reluctances corresponds to a flux tube 

oriented along the same direction, which allows flux to flow in 

a positive or negative direction along the specified path.  In 

this study, the MEC model is solved using node MMF analysis 

(which is analogous to node voltage analysis in electrical 

circuits), based on Gauss’s law for magnetism, in which the 

scalar magnetic potentials at each node represent the unknown 

state variables.  Therefore, it is more appropriate to use 

lumped permeances rather than their multiplicative inverses, 

lumped reluctances.  An alternate 2D MEC model 

implementation based on mesh flux analysis techniques 

derived from Ampere’s circuital law was also developed using 

fluxes as the unknown state variables, but the node MMF 

approach was ultimately selected for ease of extension to a 3D 

model, which has already been implemented and will be 

presented in a future paper.  However, while the node 

potential and mesh flux approaches are essentially 

computationally equivalent for a linear model, the mesh flux 

methodology may prove to be computationally advantageous 

when extending the MEC to a nonlinear model [34]. 

 

 
Fig. 2.  Definition of mesh node cells based on intersection of radial and 

angular layers. 

 

The lumped permeance of a uniform flux tube is given by 

 
l

A
==

R
P

1
 (5) 

where A represents the cross-sectional area of the flux tube 

surface normal to the flux path, μ is the permeability of the 

physical material that comprises the flux tube, and l is the total 

length of the flux tube flux path.  Using these relationships, 

the permeances of each radially directed flux tube (Prad) and 

each tangentially directed flux tube (Ptan) in the reluctance 

network mesh can be calculated according to the following 

formulas: 
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In each of these equations, rin indicates the inner radius of the 

flux tube, rout denotes the outer radius of the flux tube, Δθ is 

the uniform angular width of the flux tube (in radians), Δz is 

the uniform axial height of the flux tube (which corresponds to 

the full axial height of the system in a 2D model or the axial 

height of the axial layer in a 3D model), and μ is the 

permeability of the flux tube material.  If a flux tube overlaps 

with two different materials, the flux tube is divided into two 

parts, one for each material region, and the lumped 

permeances for each part are calculated and then combined in 

series or parallel, using the same formulas employed for 

combining series or parallel conductances in electrical circuits. 

Conceptual illustrations of radially and tangentially oriented 

flux tubes are provided in Fig. 3(a) and Fig. 3(b), respectively.  

Note that each radially directed flux tube corresponds to one 

radial half of its node cell, the full angular width of its node 

cell, and the full axial height of its node cell.  Equation (6) 

uses integration to calculate the total lumped radial permeance 

by combining the reluctances of series connected differential 

radial slivers of the flux tube.  Similarly, each tangentially 

directed flux tube corresponds to the full radial width of its 

node cell, one angular half of its node cell, and the full axial 

height of its node cell.  Equation (7) uses integration to 

combine the permeances of parallel connected differential 

radial slivers of the flux tube. 

 

  
(a) (b) 

Fig. 3.  Conceptual illustrations of (a) radially and (b) tangentially oriented 

flux tubes. 

 

The appropriate lumped parameter representations of flux 

tubes corresponding to permanent magnets can be derived by 

analyzing the linear 2nd quadrant permanent magnet B-H 

curve shown in Fig. 4 and the corresponding linear equation 
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 rPMPMPM BHB +=  (8) 

where BPM and HPM are the magnetic flux density and the 

magnetic field strength in the permanent magnet, Br is its 

remanence or residual flux density, Hc is its coercivity, and 

μPM is its recoil permeability defined according to 

 
c

r
PM
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B
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Only radially magnetized permanent magnets, and thus only 

radially oriented flux tubes within permanent magnets are 

considered in this analysis; however, the same process can 

easily be extended to permanent magnets with tangential or 

axial magnetization components for analysis of other magnet 

configurations such as Halbach arrays or axially oriented 

systems.  Ultimately, the flux tube can be represented by 

either of the equivalent circuit configurations in Fig 5(a) or 

Fig 5(b), which are analogous to Thévenin and Norton 

equivalent circuits, respectively.  In both cases, Prad is the 

permeance of the radial flux tube assuming a permeability of 

μPM.  The equivalent MMF and flux injected by the magnet, 

Finj and Φinj, respectively, are given by 
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If a flux tube path overlaps with multiple permanent magnets, 

then a weighted average of the relevant magnetizations is used 

to determine the value of the corresponding injected MMF or 

flux source. 

Like the use of Kirchhoff’s current law in node voltage 

analysis of electrical circuits, application of Gauss’s law for 

magnetism to each node cell in the MEC, such as the one 

shown in Fig. 6, yields a node MMF equation of the form 

 ( ) 4,2,

4

1
injinj

i
iixi +−=− =

FPFP . (12) 

For generality, Fig. 6 and (12) describe a permanent magnet 

node cell; however, the flux source terms are simply set to 

zero in node cells that do not correspond to permanent 

magnets.  The first term on the left side of (12) is merely the 

product of the sum of all permeances attached to the target 

node (node “x”) and the MMF of the target node (Fx).  This 

term describes the effect of the target node’s MMF on the net 

flux leaving the node, so it is has a positive permeance 

coefficient.  The second term on the left side of (12) 

corresponds to each of the nodes adjacent to the target node.  

Each term in this summation is the product of the permeance 

connecting the corresponding adjacent node to the target node 

and the MMF of the adjacent node.  These terms all have 

negative permeance coefficients.  The terms on the right side 

of (12) correspond to the algebraic sum of the injected flux 

sources flowing into the target node. 

 

 
Fig. 4.  Linear 2nd quadrant permanent magnet B-H curve. 

 

  
(a) (b) 

Fig. 5.  (a) Thévenin and (b) Norton equivalent circuit representations of 
radially oriented permanent magnet flux tubes. 

 

 
Fig. 6.  Annotated 2D node cell schematic. 

III.  THE PERMEANCE MATRIX 

In light of the analysis of a single 2D node cell, consider 

the MEC mesh distribution throughout the entire radial flux 

magnetic gear 2D cross-section.  The radial flux magnetic gear 

geometry shown in Fig. 1 consists of 7 distinct annular radial 

regions: the HSR back iron, the HSR permanent magnets, the 

inner HSR air gap, the modulators, the outer LSR air gap, the 

LSR permanent magnets, and the LSR back iron.  Each of 

these radial regions is meshed according to the previously 

described methodology depicted in Fig. 2.  Each radial region 

is divided into the same number of angular layers and an 

independently specified number of radial layers.  The number 

of angular layers used throughout the gear, NAL, and the 

number of radial layers used in each radial region (NRL,HSBI, 

NRL,HSPM, NRL,HSAG, NRL,Mods, NRL,LSAG, NRL,LSPM, and NRL,LSBI) are 

8 independent user controlled parameters that determine the 

mesh discretization for a 2D MEC model.  The lines in Fig. 7 

illustrate the flux path network resulting from the application 
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of a relatively coarse 2D MEC mesh to the full magnetic gear 

geometry, with NAL = 32, NRL,HSBI = 2, NRL,HSPM = 3, NRL,HSAG = 

1, NRL,Mods = 3, NRL,LSAG = 1, NRL,LSPM  = 2, and NRL,LSBI = 2.  

The resulting nodes for this mesh distribution are indicated by 

the black dots in Fig. 7.  Fig. 8 shows an example of the ladder 

MEC network resulting from an even coarser mesh overlaid 

on top of an unrolled linear representation of an overly 

simplistic magnetic gear geometry with PHS = 1, PLS = 2, and 

QM = 3 in the r-θ plane.  The left and right edges of Fig. 8 are 

connected by “wrap around” flux paths (not shown in Fig. 8) 

in accordance with the circular nature of the actual geometry. 

 

 
Fig. 7.  Example radial flux magnetic gear MEC flux path network. 

 

 
Fig. 8.  Example 2D MEC schematic overlay on unrolled radial flux magnetic 
gear geometry. 

 

Each node in the MEC corresponds to a node MMF 

equation of the same basic form as the one shown in (12), and 

there are N2D total nodes in a 2D MEC model, where N2D is the 

product of the number of angular layers, NAL, and the total 

number of radial layers, NRL.  Thus, the resulting system of 

linear equations for the full 2D MEC model can be expressed 

in matrix form according to 

 2D2D2D =FP  (13) 

where P2D is the (N2D x N2D) 2D system permeance matrix, 

F2D is the (N2D x 1) column vector of unknown MMFs for 

each corresponding node in the 2D MEC, and Φ2D is the (N2D 

x 1) column vector of the algebraic sums of the injected fluxes 

from the magnets entering each corresponding node in the 2D 

MEC.  The ith row in P2D corresponds to the ith node in the 

MEC and contains the permeance coefficients for that node’s 

MMF equation, such as those shown on the left side of (12).  

The jth column in P2D also corresponds to the jth node in the 

MEC.  Entry P2D(i,j) in P2D contains the permeance coefficient 

which describes the impact of the jth node’s MMF on the net 

flux leaving the ith node.  Each diagonal entry P2D(i,i) in P2D 

contains the positive sum of all equivalent permeances 

attached directly to node i.  The permeance coefficient of Fx 

in (12) is an example of what would become a diagonal entry 

in the matrix representation of the system of equations.  These 

diagonal entries indicate the impact of the corresponding 

node’s MMF on the net flux leaving that node.  Each off-

diagonal entry P2D(i,j) (where i ≠ j) in P2D contains the 

negative value of the equivalent permeance directly 

connecting nodes i and j.  If there is no direct connection 

between nodes i and j (a permeance path that does not go 

through another node), then the corresponding entry in P2D is 

zero.  The permeance coefficients P1, P2, P3, and P4 in (12) 

are each examples of what would become off-diagonal entries 

in the matrix representation of the system of equations. 

The overall 2D MEC permeance matrix, P2D, can be 

constructed in a general form with its constituent submatrices 

as shown in (14)-(16).  The arrangement of these matrices is 

based on the node numbering system used in the MEC model, 

in which the first NAL rows and the first NAL columns in P2D 

correspond to nodes in the first radial layer, and the next NAL 

rows and the next NAL columns correspond to nodes in the 

second radial layer, and so on.  The (NAL x NAL) matrix PRL(k:k) 

defined in (14) contains the permeance coefficients 

corresponding to nodes in the kth radial layer.  Each diagonal 

entry P(k:k),(i:i) in PRL(k:k) contains the positive sum of all 

equivalent permeances attached directly to the node at the 

intersection of the kth radial layer and the ith angular layer.  As 

indicated by (16), the diagonal entries in PRL(k:k) are also the 

diagonal entries of P2D.  Each off-diagonal entry P(k:k),(i:j) 

(where i ≠ j) in PRL(k:k), contains the negative value of the 

equivalent permeance directly connecting the node at the 

intersection of the kth radial layer and the ith angular layer and 

the node at the intersection of the kth radial layer and the jth 

angular layer.  Because all permeances in the MEC are 

bidirectional, each matrix PRL(k:k) is symmetric.  
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The (NAL x NAL) matrix PRL(k:k-1) defined in (15) contains the 

permeances corresponding to paths directly connecting nodes 

in the kth radial layer to adjacent nodes in radial layer k-1.  

Each diagonal entry P(k:k-1),(i:i) in PRL(k:k-1) contains the 

equivalent permeance directly connecting the ith node in the kth 

radial layer to the ith node in radial layer k-1.  All other entries 

in PRL(k:k-1) are zero.  Because all permeances in the MEC are 

bidirectional, the matrix PRL(k-1:k) is always equal to PRL(k:k-1).  

P2D, is then constructed from these constituent submatrices, as 

shown in (16).  Thus, the matrix P2D is always symmetric. 

Each node in the 2D MEC has four adjacent nodes: one on 

each of the radial inside, the radial outside, the clockwise 

circumferential side, and the counterclockwise circumferential 

side.  The only exceptions are the nodes in the innermost and 

outermost radial layers, which do not have any adjacent nodes 

on the radial inside and radial outside, respectively.  

Consequently, each row in P2D corresponding to a node in the 

first or last radial layers has four non-zero entries, and all 

other rows have five non-zero entries, one for each adjacent 

node, as well as the diagonal entry in each row.  Thus, NNZ2D, 

the total number of non-zero entries in P2D, is given by 

 ( )25 −= RLALNZ2D NNN  (17) 

and the sparsity of P2D can be calculated according to 

 %1001ofSparsity 









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
−=

2
2D

NZ2D
2D

N

N
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Consequently, permeance matrices resulting from MEC 

models with reasonable mesh resolutions are extremely sparse; 

therefore, the MATLAB implementation of the MEC model 

stores P2D as a sparse matrix in order to dramatically reduce 

the amount of memory used by the program.  For example, for 

each of the three base designs used in Part II, P2D has a 

sparsity of at least 99.96% for both the fine and coarse mesh 

settings. 

IV.  SOLVING THE SYSTEM 

The 2D MEC model is solved by solving the linear system 

of equations given in (13) for the N2D unknown node MMFs in 
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the column vector F2D.  If the 2D MEC model has symmetry, 

then it can be analyzed by solving only the subset of equations 

corresponding to nodes in a symmetrical fraction of the model.  

Because MMF values represent scalar potentials with respect 

to a reference node, in full 2D MEC models or fractional 

models with even symmetry, the first node is defined as the 

zero potential reference for the rest of the system.  This allows 

the first row of P2D and Φ2D and the first column of P2D to be 

eliminated, and the remaining system can be solved.  

However, for models with odd symmetry, it is desirable for 

corresponding nodes in adjacent fractions of the model to have 

potentials with the same magnitudes and opposite signs.  This 

choice effectively determines the zero potential reference, 

which may not correspond to any of the nodes.  Thus, for 

models with odd symmetry, the first row of P2D and Φ2D and 

the first column of P2D must not be eliminated. 

In theory, the solution to the system can be obtained by 

inverting the relevant portion of the permeance matrix, based 

on the application of the preceding discussion of symmetry 

and the reference node.  However, most practical MEC models 

with adequate mesh resolution result in system permeance 

matrices which would require a relatively significant amount 

of time and memory to invert; therefore, this implementation 

solves the MEC system by factorizing the matrix and solving 

the corresponding triangular systems as described in [35].  

This approach dramatically decreases the amount of memory 

and simulation time required to solve an MEC model.  To 

evaluate the design at different rotor positions, it is necessary 

to repeat this process with an adjusted permeance matrix and 

injected flux vector.  However, if the recoil permeability of the 

magnets is approximated as the permeability of free space (or 

if the magnets have a 100% tangential fill factor) and the 

modulators are used as the reference frame, only the injected 

flux vector must be adjusted.  This can result in significant 

time savings because the permeance matrix only needs to be 

factorized once per design, regardless of the rotor orientations. 

Once an MEC model has been solved for the vector of node 

MMFs, this information can be used along with the 

reluctances of the flux tubes to calculate various other 

quantities of interest, such as the flux in any flux tube and the 

flux density at any position in the gear.  Due to their coarse 

flux tube distributions, many of the other MEC models 

described in the literature, including most of the few previous 

magnetic gear MEC studies [28]-[30], [32], use the virtual 

work (coenergy) method to calculate torque.  However, this 

implementation uses Maxwell stress tensors for torque 

calculations from the more detailed solutions provided by its 

higher resolution flux tube distributions.  In particular, the 

torque on the HSR, τHSR, and the torque on the LSR, τLSR, are 

calculated using Maxwell stress tensors according to 
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where rHS and rLS represent the radii of the integration 

(summation) paths in the high and low speed air gaps, while 

Br(r,i) and Bθ(r,i) represent the radial and tangential 

components of the magnetic flux density in the ith angular 

layer at the specified radius.  This study uses integration paths 

corresponding to the radial middle of node cells in the middle 

layer of each air gap.  The flux densities are linearly 

interpolated with respect to radius and are assumed to be 

invariant with respect to angle within a flux tube.  The torque 

on the entire modulator structure, τMods, is then given by 

 ( )LSRHSRMods +−= . (21) 

V.  CONCLUSIONS 

This is the first part of a two part paper on the development 

of a radial flux magnetic gear MEC model.  This part presents 

the systematic implementation of the MEC model, while Part 

II provides a thorough evaluation and validation of the 

model’s accuracy by comparing its torque and flux density 

predictions against those produced by a commercial non-linear 

FEA model.  The MEC model is constructed by dividing the 

magnetic gear into radial and angular layers.  The number of 

radial layers in each of the magnetic gear’s 7 different radial 

regions and the number of angular layers are all independently 

controlled by 8 user specified resolution parameters.  Each 

annular sector defined by the intersection of a radial layer and 

an angular layer corresponds to a node cell, which is the basic 

building block of the MEC.  The center of each node cell is a 

node in the magnetic equivalent circuit.  Every node cell also 

contains two radially directed reluctances and two tangentially 

directed reluctances, which connect the node to the cell’s 

boundaries.  The reluctances in any one node cell connect to 

reluctances in neighboring cells and link all of the nodes 

together to form the MEC system network. 

The (N2D x N2D) MEC system permeance matrix defined in 

(16) contains one row and one column for each node in the 

network.  This matrix defines the relationship between each of 

the N2D node MMFs in the MEC, as described by the system 

matrix equation given in (13), and it is formed based on the 

user specified discretization settings, magnetic gear 

geometrical design parameters, and material properties.  

Because the system permeance matrix is constructed using 

user specified fixed permeabilities for the different materials, 

the MEC model and system of equations are linear.  Once the 

permeance matrix is constructed, it is factorized to solve the 

system of equations and calculate the MMF of each node in 

the MEC.  This particular implementation capitalizes on any 

symmetry in the gear geometry, as well as the symmetry and 

sparsity of the permeance matrix to accelerate the solution 

process and reduce its memory requirements.  The node 

MMFs can then be used along with the discrete MEC 

permeances to solve for flux densities and other quantities of 

interest, such as the torques on the different gear subsystem 

bodies.  This systematic implementation of a linear MEC 

model allows for extremely fast and accurate analysis of a 

wide range of practical magnetic gear designs, as 

demonstrated by the various results provided in Part II. 
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