UT DALLAS
CLASSIFYING ANONYMIZED DATA

Together with the anonymization toolbox, we also release the source code of our recent
study on classifying anonymized data [1]. In this study, we proposed methods for building
distance-based classification models over anonymized data. More specifically, investigated
methods included instance-based classifiers (also called k-nearest neighbor classification),
and support vector machines (SVMs). To implement anonymized versions of these models,
we extended the I B1 classifier (i.e., 1-nearest neighbor) of the WEKA data mining library [2]
and Java version of the LibSMV library for SVM classification [3].

Most research in the area assume that classification models will be both trained and
tested over anonymized data. However, as described in [1], various other alternatives are
possible in real-life applications. For example, the model might be built on original data and
queried with anonymized data or vice verse. Our experiments also focus on these distinct
test scenarios.

Below we provide detailed information on how our experimental results can be re-generated
using the Census — income dataset [4] or any other dataset. In section 1, we discuss shared
parameters of our implementation of IB1 and SVM classifiers over anonymized datasets.
Then section 2 provides the details on IB1 classification and section 3 on SVM classification.

1 Common Parameters

Three global parameters are common to both SVM and IB1 classification experiments. These
are:

e testScenario that specifies whether training and test datasets are anonymized or not.
Four different scenarios are possible:
— 00: training/testing over original data,
— 11: training/testing over anonymized data,
— 10: training over anonymized, testing over original data, and
— 01: training over original, testing over anonymized data.
If the parameter is set to 00, the performance of the corresponding classification over

original data can be obtained. In this case, the toolbox calls the unaltered I B1 method
of WEKA or SVM classifier of LibSV M.

e arff that specifies the path to text file which contains schema information of the input
dataset in ARFF file format [2]. This file should contain the QRELATION specifi-
cation for relation name, the QATTRIBUTE specifications for each attribute (in the
original dataset) and the @QDAT A mark indicating the end of attribute information.
An example file is provided for the C'ensus — income dataset.

e crossVal that specifies the number of folds of experiments to be performed. The
default value is set to 2.

Apart from these parameters, also common to both methods are anonymization param-
eters of the toolbox (e.g., output format, anonymization method, privacy parameters, etc.).
Please refer to the anonymization manual of the toolbox for details.

Among anonymization parameters, the option —output Format should always be omit-
ted. This is because in every possible test scenario, the toolbox will decide on the correct
output format based on the other parameters. If set, the value of this option will simply be
disregarded by the toolbox.

2 IB1 Classification

The only additional parameter necessary for IB1 classification over anonymized data is the
path to the anonymization configuration file. Based on the configuration, we read the value
generalization hierarchies (VGHs) of quasi-identifier attributes. These VGHs allow efficient
and accurate calculation of expected distance between original and/or anonymized values
from corresponding (possibly generalized) attribute domains.

Since our IB1 implementation extends that of the WEKA library, it is important that
anonymized data be represented in ARFF file format. This we achieve simply by declaring
quasi-identifier attributes as of type String. Then, our toolbox can resolve the specific value
(either generalized or not) by itself.

In order to use our anonymized IB1 classification method like other classifiers of the
WEKA library, one only needs to specify the configuration file used for generating the
anonymized data through the —config option. However, notice that, for proper handling of
anonymized data, as described above, all quasi-identifiers within the ARFF file should be
declared as of type String.

3 SVM C(Classification

SVM classification is much more trickier than IB1, because there are various different param-
eters regarding feature representation of anonymization data. On top these are the choices
of SVM kernel and expected distance function.

As discussed in [1], all 4 well-known kernel types are supported. The choice can be
specified through the —kernel option according to the following keys: 0 (linear kernel), 1
(polynomial kernel), 2 (RBF kernel) and 3 (Sigmoid kernel). Unfortunately, in each case,

’ Option H Value H Description ‘

-catRep 1 generalization is a new feature

-catRep 2 set all VGH values up to the suppression value as features
-catRep 3 set all ground domain values of the generalization
-numRep 1 generalization is a new feature

-numRep 2 replace with the mid-point

-numRep 3 set 2 features for upper and lower bound of generalization

Table 1: Feature representation options for categorical and numeric attributes

there is no way to specify kernel-related parameters. The toolbox currently uses the LibSV M
defaults.

In our previous studies, we proposed two methods of calculating expected distances
over anonymized data. The first one appear in [5] and assumes that all ground-domain
values of a generalization are uniformly distributed. For example, if AnySex represents
{Male, Female}, this expected distance method assumes Male and Female are equally
likely. This expected distance calculation method can be invoked by setting the —uni op-
tion to true (i.e., include —unitrue to your arguments). Automatically, the toolbox will set
the feature representation parameters as well as the anonymization configuration’s output
format (genVals will be assumed).

The other expected distance function was proposed in [1]. Here, the idea is to release
additional statistical information with every quasi-identifier attribute to facilitate more ac-
curate distance calculation without violating privacy. This method can be invoked by setting
—pdf option to true (i.e., include —pdftrue to your arguments). Again, the toolbox will set
the output format genValsDist automatically and take care of the parameters related to
feature representation.

Next we discuss how various feature representation heuristics can be invoked through
parameters. In [1] we proposed 3 heuristics each for categorical and numerical attributes.
The choices are set through the —cat Rep and —num Rep options respectively.

Notice that within such crowded a set of parameters, not every possible combination
is valid. Whenever the parameters set by the user are invalid, the toolbox either fires an
exception and exists, or tries to fix the situation by overwriting certain parameter values with
correct ones. Some such cases are discussed below. Yet, the list definitely is not exhaustive.

e —outputFormat option, if set, is always ignored.

e For anonymization methods that define their own VGHs (e.g., Mondrian [6], only cer-
tain feature representation heuristics can be used. These are —cat Rep3 in combination
with —numRepl or —numRep?2.

o If —pdf is set, —catRep, —numRep and —uni cannot be specified.

e Similarly, if —uni is set, —cat Rep, —numRep and —pdf cannot be specified.

References

1]

2]

A. Inan, M. Kantarcioglu, and E. Bertino, “Using anonymized data for classification,”
in ICDE, 2009, pp. 429-440.

[. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques,
2nd ed. Morgan Kaufmann, 2005.

C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, soft-
ware available at http://www.csie.ntu.edu.tw/ cjlin/libsvim.

D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI repository of machine learning
databases,” 1998.

A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco, “A hybrid approach to private
record linkage,” in ICDE, 2008, pp. 496-505.

K. Lefevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-
anonymity,” in ICDFE °06: Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06). Washington, DC, USA: IEEE Computer Society, 2006, pp.
25-36.

