UT DALLAS
ANONYMIZATION TOOLBOX

In an effort to promote our research in the area of privacy preserving data analysis,
as UT Dallas Data Security and Privacy Lab, we complied our implementation of various
anonymization methods into a toolbox for public use by researchers. This document explains
basic information on how to invoke these anonymization methods (section 1), various features
of our implementation of the methods (section 2 and detailed information for those that
would like to extend the toolbox (section 3).

An important design consideration during development of the toolbox has been possible
memory issues due to large input sizes. In order to facilitate anonymization of arbitrarily
large datasets, the toolbox works through an embedded database (SQLite [1]) to minimize
memory requirements.

1 Basics

This section is primarily intended for those that want to anonymize some dataset through
our toolbox. We explain the input file format in section 1.1. Section 1.2 provides the details
on various output file format choices made available to the user. Then, in section 1.3, struc-
ture of the configuration file that specifies identifier, quasi-identifier and sensitive attributes
along with generalization hierarchies is discussed. Finally, section 1.4 discusses possible user
options in executing the toolbox through command line.

1.1 Input format

Currently, the toolbox only supports unstructured text files. In the near future, we plan to
add support for database connectivity, XML files and possibly the RDF data model.

By unstructured text files, we refer to ASCII files where each line corresponds to a record
and attribute values of a record are separated by some character sequence (e.g., comma, tab,
semi-column), specified in the configuration file or passed as an argument to the toolbox.
This structure conforms with the default file format of many data repository (e.g., [2]).

All descriptive information regarding attribute types and indices will be collected through
the configuration file. Therefore, unlike [3], a header with such description will not be
necessary.

1.2 QOutput format

By default, output format is the same as the input format. The only difference caused by
anonymization is over quasi-identifier attributes through replacement of specific values with
their generalizations. We refer to this output format as genVals in the toolbox.

The toolbox also allows outputting anonymized records with additional information,
as described in some studies. Among these, the first approach proposed in [4] that tries
to increase the accuracy of classification models built on anonymized data by releasing
equivalence-wide statistics on each quasi-identifier attribute, called QI — statistics. For
numerical attributes, such statistics contain the mean and variance across the equivalence
class. For categorical attributes, on the other hand, the complete distribution is provided.
We refer to this format as genValsDist in the toolbox, with reference to the distribution
information padded to quasi-identifier attributes.

The last output format supported by the toolbox approach is “anatomization” described
in [5]. Anatomization involves releasing two datasets at the end of anonymization. Both
datasets contain as many tuples as there are in the input file. The first table, ST, is built by
replacing the quasi-identifier by a new attribute that represents the group (i.e., equivalence
class) that the tuple belongs in. The second table QIT contains the same new attribute plus
the ground level quasi-identifier values. The idea here is that, the two tables can be joined
through the group identifier but the join result cannot be utilized the attack the underlying
privacy definition. We refer to this format as anatomy in the toolbox.

1.3 Configuration file

The configuration file is structured in XML format!. Every configuration starts with a root
node config. The first field of config, if specified, provides the anonymization method
choice. Depending on the privacy definition, config might also contain a variety of fields
corresponding to privacy parameters. These include k for k-anonymity, [for entropy I-
diversity, ¢ for (c,[) recursive [-diversity and ¢ for t-closeness. Notice that setting none,
multiple or all of these parameters is allowed, in which case the toolbox would select the
appropriate parameter(s) depending on the anonymization method. Alternatively, these
parameters can be specified through command line arguments (see section 1.4.
The root node config has at most 5 children specified in arbitrary order:

1. input: Input parameters. The filename field is mandatory. Separator field, separator,
can be skipped. The default value is comma.

2. output (optional): Output parameters. The filename field is mandatory. Output
format field, format, assumes a value from the set {genVals, genValsDist, anatomy}.
If no value is specified, genVals is set by default.

3. id (optional): List of identifier attributes. For each attribute, index field of the cor-
responding node, which represents the index of the attribute in the dataset has to be

ITo distinguish between dataset attributes and XML node’s attributes, we refer to the later as a field.

set. These attributes will be removed from the output to ensure anonymity.

4. qid: List of quasi-identifier attributes. The field index of each node att should be set.
Also for categorical attributes, a mapping (map) from categories to integer values is
required. We recommend that the mapping start with 0 and is incremented by 1 for
each successive category. The next node, vgh that follows is optional? and its structure
is further discussed below.

5. sens (optional): List of sensitive attributes. Again, index field of the attribute should
be set. For categorical attributes, the user also needs to specify a mapping. Similar
to qid attribute mappings, it is recommended that the mapping start with the value 0
and is incremented by 1.

The vgh nodes of quasi-identifier attributes help specify the value generalization hierar-
chies (VGHs). Since configuration file is in XML format, the natural way to represent the
VGHs is to use a tree structure. Starting with the suppression value, denoted by the root
node vgh of the VGH, every set of child nodes at the same level corresponds to a generalized
domain.

Associated with each node node is the field value that specifies the range of values that
can be generalized to it. Ranges for generalized values are expressed mathematically. For
example, (z : y) contains all values between x and y, excluding x and y. Similarly, (z : y]
implies the upper bound is inclusive.

An important issue in declaring the VGHs is the question of inclusion of the ground
domain (i.e., the original, non-generalized domain). For continuous attributes, there is simply
infinitely many values in the ground domain and including all is not possible. Therefore, the
VGH should exclude the ground domain. Since we wanted to treat categorical and discrete
attributes in a similar fashion, and reduce the tedious work of declaring VGHs, we suggest
the same for all attributes. Consequently, most-specific values (from the ground domain)
never appear in the VGHs.

Notice that the mapping of categorical quasi-identifier attribute domains from categories
to integer values should be performed cautiously so that the generalized domains are consis-
tent with the integer values. We recommend that the integer values be assigned in order of
breadth-first traversal of the VGH, starting with 0.

An example configuration over the “census-income” dataset of [2] is provided below. In
this configuration, the user specifies only one privacy parameter, £ = 5 as a field of the
root node. Apparently, the privacy definition at hand is k-anonymity®. In the below con-
figuration, the 2"¢ and 3"¢ attributes are considered identifiers. The 13" and 1% attributes
together form the quasi-identifier and the only sensitive attribute is the 42¢" attribute. The
corresponding VGHs are depicted in figure 1.

2Not every anonymization method requires a value generalization hierarchy (e.g., Mondrian [6]).
3 Alternatively, all parameters could be specified, in which case the first line becomes “<config k = ‘5’ 1
=3 c=021t="102 >".

<?7xml version="1.0"7>
<config method = ’Datafly’ k = ’5’>

<input filename=’census-income_ALL.data’ separator=’,’/>
<output filename=’census-incomeK5.data’ format =’genValsDist’/>
<id>

<att index=’1’ name=’attl’/>
<att index=’2’ name=’att2’/>

</id>
<gqid>
<att index=’12’ name=’sex’>
<map>
<entry cat=’Female’ int=’0’ />
<entry cat=’Male’ int=’1’ />
</map>
<vgh value=’[1:2]’>
</vgh>
</att>

<att index=’0’ name =’age’>
<vgh value=’[0:100)’>
<node value=’[0:50)’>
<node value=’[0:25)’/>
<node value=’[25:50)’/>
</node>
<node value=’[50:100)’>
<node value=’[50:75)’/>
<node value=’[75:100)’/>
</node>
</vgh>
</att>
</qid>
<sens>
<att index=’41’ name=’salary’>
<map>
<entry cat=’- 50000.’ int=’0’ />
<entry cat=’50000+.’ int=’1’ />
</map>
</att>
</sens>
</config>

Input validation is performed while the configuration file is parsed. For example, privacy
parameters k, [, t, and ¢ should be assigned positive values. The range for ¢ is (0, 1).

AGE SEX
[0:100) [1:2]

I
[0:50) [50:100) Female Male
[0] [1]

[0:25) [25:50) [0:50) [50:100)

Figure 1: Graphical representation of VGHs of Age and Sex attributes

’ Parameter H Domain or explanation H Default ‘
“method Choose. from {Data.ﬂy, Incognito_k, Incognito_l, Mondrian
Incognito_t, Mondrian, Anatomy }
-config path to the configuration file config.xml
-k any positive integer value 10
-1 any positive real value 10
-C any positive real value 0.2
-t any value within the range (0, 1) 0.2
max. number of tuples to be suppressed
-suppThreshold (applies only to Dart)aﬂy and Inclz};nito,K) k
-input input filename N/A
-separator character sequence separating attribute values | comma
-output output filename N/A
-outputFormat | Choose from {genVals, genValsDist, anatomy} | genVals

Table 1: Parameters that can be set through program arguments

Similarly, for domain-generalization methods, we make sure that every leaf of the VGH is at
the same depth.

1.4 Parameters

The configuration file helps specify almost every parameter of anonymization but does not
cover all of them. Specifically, unless the configuration file is named “config.xml” (the de-
fault value), configuration filename should be passed as a program argument. Additionally,
it is possible to set the anonymization method, privacy parameters and input/output pa-
rameters from command line as well. Such flexibility facilitates easy batch processing for
experimentation purposes.

Table 1 provides the exhaustive list of command line parameters. The first column lists
the parameter keys and the second column lists the values that will be recognized by the
toolbox. The default value of each parameter is given in the third column.

When executing the toolbox, these parameter keys should be followed by the correspond-
ing values separated by whitespace characters. For example, the argument list

-method Datafly -config config.xml -outputFormat anatomy

sets the method as Datafly, configuration file as config.xml and output format as anatomy. Of
course, the order of parameter keys is insignificant as long as the coupling with corresponding
values is preserved.

2 Anonymization Methods

The toolbox currently contains 6 different anonymization methods over 3 different privacy
definitions. We discuss implementation details of each next.

2.1 Datafly

Datafly was the first algorithm to satisfy k-anonymity privacy definition [7]. The algorithm
consists of full-domain generalization until every combination of quasi-identifier values ap-
pears at least k times. As described in [7], apart from generalization, another tool is sup-
pression that removes certain tuples altogether from the anonymized dataset.

By default, our implementation sets the maximum number of tuples that can be sup-
pressed to k as suggested in [7]. However, through program arguments, this parameter can
be reset to another values (maybe 0, if suppression is not desirable).

Since Datafly performs full-domain generalization, upon initialization, the toolbox first
validate the VGHs of all quasi-identifier attributes. The check fails if there are any leaf nodes
of VGH that are not at the same depth as the others.

2.2 Mondrian Multidimensional k-Anonymity

Full-domain generalization methods (e.g., Datafly) tend to over-generalize the data because
generalization is performed at the domain level. Mondrian multidimensional anonymization
method solves this problem by performing generalization at the equivalence level [6]. The
resulting dataset typically contains more equivalence classes and release more accurate infor-
mation on quasi-identifier attributes without violating the privacy definition, k-anonymity.

Mondrian operates through an attribute selection heuristic that determines which quasi-
identifier attribute an equivalence will be partitioned on. Our implementation in the toolbox
uses the heuristic described in section 4 of [6] that “chooses the dimension with the widest
(normalized) range of values”. When multiple dimensions have the same width, we simply
select the first dimension that has an allowable cut.

Once a dimension is chosen, our implementation performs partitioning independently of
the corresponding VGH (if specified®). Partitioning is performed over the median value such
that any values less than or equal to the median resides in the left equivalence and all other
in the right equivalence.

4Rather than removing the tuples, we set the quasi-identifier attribute values to the lowest granularity
value in corresponding VGHs. This approach maintains input/output tuple synchronization.
SEffectively, this implies that all VGH specifications are ignored by Mondrian.

2.3 Incognito

Given a set of quasi-identifiers and their VGHs, often there are multiple anonymizations of a
dataset that satisfies the privacy definition and respects the domain-generalization require-
ment. The method Incognito [8] tries to choose the most specific (i.e., least generalized) in
an efficient manner.

Various implementation choices are discussed in [8]. Among these, our implementation
uses the bottom-up pre-computation optimization described in Section 3.3.2 of the paper.

After the entire generalization lattice is traversed (in breadth-first order), among all
successful anonymizations, the toolbox chooses the one that yields the maximum number of
equivalence classes. Definitely, this selection heuristic agrees with the approach of choosing
the minimum height anonymization described in [8] since generalization can only reduce the
number of equivalences.

Similar to Datafly, Incognito can perform suppression as well. Therefore, by default,
our implementation sets the suppression threshold parameter of anonymization to k. As
discussed before in section 2.1 this functionality can be turned off by setting suppT hreshold
parameter to 0 using program arguments.

2.4 Incognito with l-diversity

k-anonymity privacy definition is vulnerable to adversaries that have strong background
knowledge on individuals represented in the dataset. [-diversity tries to overcome such
vulnerabilities by diversifying sensitive values within each equivalence class [9)].

The toolbox implements two instantiations of I-diversity discussed in [9]. These are
entropy [-diversity and recursive (c,[)-diversity. The algorithm determines on a particular
instantiation based on whether parameter ¢ is set as a parameter or not. This basically
implies that if ¢ < 0, entropy [-diversity will be assumed and otherwise, recursive (c,1)-
diversity.

Our approach to multiple-sensitive attributes relies on the solution described in [9]. All
sensitive attributes should be merged into a single attribute, which then is specified as the
only sensitive attribute.

Incognito anonymization with k-anonymity as the privacy definition allowed suppression
by default, where suppression threshold was set to k. Notice that a similar approach does
not apply to [-diversity, since the purpose of anonymization is to diversify the sensitive value
distribution. Therefore, suppression is disable within this version of Incognito.

2.5 Incognito with t-closeness

In [10], it is argued that [-diversity is too strong and unnecessary a requirement for datasets
with skewed sensitive attribute distributions. Instead, another privacy definition, t-closeness
is proposed. t-closeness restrict the distance between the distributions of the sensitive at-
tribute value within the original table and each equivalence. Any table where such distance
is above t for at least one equivalence violates the privacy definition.

Our implementation handles only one sensitive attribute, which could be numerical or
categorical, but not hierarchical. Data type of the sensitive attribute is inferred from the
configuration file (i.e., if a categorical to numeric domain mapping has been specified, then
the sensitive attribute is considered categorical).

Similar to our [-diversity implementation with Incognito, suppression option is disabled
for t-closeness. Also, as was the case with [-diversity, only one sensitive attribute should be
specified.

2.6 Anatomy

Anatomization [5] is another method of generating [-diverse equivalences. In this approach,
the privacy definition is a distinct instantiation of the [-diversity concept discussed in [9]. The
Anatomization algorithm outputs equivalences of size [such that each equivalence contains
at least [well-represented sensitive values.

One major disadvantage of Anatomization is the eligibility requirement [5], which requires
that “every sensitive value be associated with at most n/l records”, where n is the dataset
size. Whenever this condition is not met, our implementation simply outputs an error
message and exits.

Another important property Anatomization is that, the output format can only be
anatomy. The reason behind is quite simple, without generalization in place, quasi-identifier
values cannot be represented properly with other output format. As a result, regardless of
the parameters specified as program arguments or the configuration file, the toolbox sets the
output format as anatomy.

3 Extending The Toolbox

We expect the toolbox to be updated frequently, and extended by other researchers in the
area. Therefore, in this section, we explain the basic approach that should be taken to
writing a new anonymization method. To this end, we discuss the various data structures
and objects within the anonymizer package. Every anonymization method implemented by
the toolbox extends the abstract Anonymizer class within this package by overriding certain
member functions.

3.1 Importing the source code

As explained before, we work with an embedded version of the SQLite database. Apart from
extracting the jar that contains the source code, some work has to be done to adjust system
parameters to introduce the correct driver and library.

Fortunately, most necessary commands are provided in the shell scripts included in the
toolbox package. More specifically, one needs to provide the SQLite library using the com-
mand

-Djava.library.path=path-to-sqlite-library-directory

8

where path-to-sqlite-library-directory represents the path to directory that contains the SQLite
native library (either sqlite.dll or libsqlite.so depending on the environment).

Also required is the addition of the JDBC driver for the corresponding OS. For Win-
dows systems, include sqlite Win.jar and for Linux systems, include sqliteLinux.jar to your
classpath.

3.2 Data representation

At any time during anonymization, two tables of type AnonRecordT able and EquivalenceT able
contain the most current version of generalized data. Among these, the FquivalenceT able
has the following schema:

EquivalenceTable = {EquivalencelID (auto-increment, key), Interval_1, ...,
Interval_q}

Basically, for each equivalence class, we store an identifier assigned automatically by the
database and as many intervals as the number of quasi-identifier attributes. In the above
schema, ¢ quasi-identifier attributes is assumed and Interval_i corresponds to the general-
ization of quasi-identifier attribute ¢ for that equivalence.

The other table, AnonRecordTable, contains all necessary attribute values in ground
form, represented by double-precision values. The schema is as follows:

AnonRecordTable = {RecordID (auto-increment, key), EquivalencelD,
QuasildentifierAttribute_1, ..., QuasildentifierAttribute_q,
SensitiveAttribute_1, ..., SensitiveAttribute_s}

Here, the field RecordID is generated automatically by the database. Fquivalencel D at-
tribute references an entry in the EquivalenceT able as a pointer to the current generalization
of a tuple. Also included as attributes are quasi-identifier attribute values and sensitive at-
tribute values. If any algorithm does not require or specify sensitive attribute (e.g., Datafly),
the last set of attributes can be skipped quite easily.

Although the toolbox removes the database files at the end of execution, it is possible to
drop any of these tables during execution. In fact, we recommend dropping all unnecessary
tables to reduce the burden on the database.

3.3 Reading the input

Given the input filename, the toolbox reads the records line by line, skipping all lines that
contain an unknown value, i.e., an attribute value set to ‘?’. With every tuple, typically, two
insertions are performed:

1. Into a table of type EquivalenceTable: First we map categorical attribute values to
numerical values using the mappings obtained from the configuration file. Then, we
construct intervals based on raw attribute values (e.g., value 1 mapped to interval [1]).
Next, we build an equivalence class from these intervals and check whether a similar

entry exists in the table. If it does, no insertion is actually performed and the identifier
of the matching equivalence is returned. Otherwise, a new equivalence is inserted and
its identifier is returned.

2. Into a table of type AnonRecordTable: This step is rather straightforward. The only
necessary information is the equivalence identifier obtained from the insertion into
EquivalenceT able and raw attribute values in numerical form.

3.4 Anonymization

Since all data records are stored in an embedded database, by generating multiple in-
stances of EquivalenceT able and AnonRecordT able objects, one can actually store multiple
anonymizations of the same dataset simultaneously. With many methods, this has been our
approach.

Anonymization starts with the initial anonymized record and equivalence tables that
result from reading the input into the database. Then, depending on whether the method
at hand is iterative (e.g., Datafly) or recursive (e.g., Mondrian), at each step either new
database tables are created or existing tables are altered into a new state of generalization.

The only requirements of correctness are that, at the end of the anonymization step:

e Anonymizer.anonTable contains all records with the original record identifiers.

e Anonymizer.eqTable contains a set of equivalence classes that satisfies the privacy
definition.

e Every equivalence identifiers of Anonymizer.anonTable references an entry of
Anonymizer.eqTable.

The outputting of anonymized records is performed separately of anonymization. Notice
that while reading input data into the database, we got rid of all irrelevant attributes to
improve efficiency. The cost of this approach is, while outputting the results, we need to go
back to the input file and fetch the discard attributes. Therefore, in this step, we go through
the records in the input file and for each line fetch relevant data from the database.

If the output format is set as genValsDist, outputting of anonymized records is preceded
by a statistical information collection step, where distribution data of each equivalence are
computed.

10

References

1]
2]

3]

[9]

[10]

“Sqlite home page,” Online, http://www.sqlite.org/.

D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI repository of machine learning
databases,” 1998.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: An update,” SIGKDD FEzxplorations, vol. 11:1, 2009.

A. Inan, M. Kantarcioglu, and E. Bertino, “Using anonymized data for classification,”
in ICDE, 2009, pp. 429-440.

Xiao and Y. Tao, “Anatomy: simple and effective privacy preservation,” in VLDB ’06:
Proceedings of the 32nd international conference on Very large data bases. VLDB
Endowment, 2006, pp. 139-150.

K. Lefevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-
anonymity,” in ICDFE '06: Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06). Washington, DC, USA: IEEE Computer Society, 2006, pp.
25-36.

L. Sweeney, “Achieving k-anonymity privacy protection using generalization and sup-
pression,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 571-588,
2002.

K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Incognito: efficient full-domain k-
anonymity,” in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM, 2005, pp. 49-60.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “l-diversity:
Privacy beyond k-anonymity,” ICDE 2006, p. 24, 2006.

N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity
and l-diversity,” in Data Engineering, 2007. ICDE 2007. IEEFE 23rd International Con-
ference on, 15-20 April 2007, pp. 106-115.

11

