
Chapter 1
Fitting a drift-diffusion Item Response Theory
model to complex cognition response times

Ritesh K. Malaiya1[0000−0002−1300−7768]

Abstract Drift Diffusion Models (DDM) have been widely successful in modeling
fast decision response times. DDM describes the underlying (cognitive) decision
process as a function of a diffusion process drifting toward a decision threshold. A
few studies have shown that introducing within-trial variability in DDM parameters
or describing DDM parameters as a function of item properties improves the DDM
model fit for response times of the Complex Decision Task (CDT) as well. One such
extension of DDM is the Item Response theory-based Q-diffusion model (QDM).
QDM has been successful in modeling response times of CDT such as chess ability
assessment. The current study further examined whether QDM can fit response
times corresponding to certain problem-solving tasks. First, the drift rate parameter
of standard DDM was extended to approximate the within-trial variability in the
reasoning process as discussed in existing meta-reasoning studies that examine such
within-trial dynamics for problem-solving tasks. Then, the response times were
simulated using the standard DDM and the mentioned extension of the standard
DDM. Then, the goodness-of-fit of QDM was examined using a Bayesian model
fit method - Posterior Predictive Check (PPC). PPC analysis revealed that the fitted
QDM was able to effectively describe the simulated response time mean. However,
the fitted QDM was not able to describe the simulated response time variance.

1.1 Introduction

The Drift Diffusion Model (DDM) is a process model of decision tasks and has
been widely successful in modeling the response accuracy, response times, and
final confidence judgments (subjective judgment in the likelihood of being accurate)
of fast two-choice decision tasks (see Ratcliff et al., 2016, for a review). Also,
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several extensions of DDM have been proposed to model complex decision tasks
such as risky gambling task (Diederich and Trueblood, 2018), and ability-based
assessments, e.g., chess ability (van der Maas et al., 2011). Also, DDMs have been
utilized to study the underlying mechanisms of several psychological conditions
such as attention deficit (Feldman and Huang-Pollock, 2021) and emotion regulation
(Warren et al., 2020). Overall, DDMs have been found helpful in examining the
underlying cognitive mechanisms of a decision-making process.

A complex decision task may require an individual to reason through multiple
potential solutions to select a single response with a higher probability of being
accurate. Reasoning can be understood as a multi-step cognitive search process
over a mental space of solution states associated with a problem at hand. While
a reasoning process is being executed, the meta-reasoning processes estimate the
likelihood of success of the current reasoning process through multiple heuristic cues
such as familiarity (Ackerman, 2019). Meta-reasoning studies typically examine the
growth patterns of subjective confidence levels by requiring participants to elicit
their intermediate confidence judgment on the likelihood of being accurate in the
current state of their response. (see Ackerman and Thompson, 2017, for a review).

These meta-reasoning studies suggest that the evolution pattern of the reasoning
process can evolve in both linear and non-linear (e.g., piecewise, exponential, log-
arithmic) growth patterns (Ackerman, 2014). Also, these evolution patterns depend
on the participant’s initial state of confidence level and item characteristics. DDMs
have been widely utilized to generate such linear and non-linear growth patterns,
e.g., the Wiener process and the Ornstein-Uhlenbeck (OU) process respectively. In
DDMs, the probability of transitioning from the current state to the next state is
defined using a drift rate parameter. The drift rate parameter influences the evolution
pattern and direction of the state transition. A constant drift rate within a decision
process typically would lead to a linear evolution of the decision process, whereas
the variable drift rate (variability introduced based on current state or time) typi-
cally would lead to a non-linear evolution of the decision process (Diederich and
Busemeyer, 2003).

Typically, DDMs utilized to model complex decision tasks consider drift rate
to be variable within a trial (e.g., Diederich and Trueblood, 2018). Expressing the
constant drift rate in terms of participant and item properties has also been utilized
to model complex decision response times. This model is known as the Q-diffusion
model (QDM) and was proposed by van der Maas et al. (2011). QDM has been
successful in modeling response accuracy and response time of complex decision
tasks such as the chess ability test (van der Maas et al., 2011) and the English spelling
test (Rijn and Ali, 2017).

The current study further examined whether QDM can fit response time distri-
butions that may result due to the within-trial evolution patterns of the reasoning
process as discussed in meta-reasoning studies. First, a constant drift rate parame-
ter was used to describe the fast and slow linear growth decision processes. Then,
to approximate exponential and piecewise growth in the decision process (as dis-
cussed in meta-reasoning studies, e.g., Ackerman (2014)), state-based exponential
and piecewise functions were proposed to introduce variability in the drift rate pa-
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rameter. Then, these diffusion processes were utilized to simulate response accuracy
and response time distributions. Then, QDM was fitted to each of these simulated re-
sponse accuracy and response time distributions using Bayesian inference methods.
Then, the goodness of fit of the fitted QDM was examined using Bayesian model fit
evaluation methods.

1.2 Describing Diffusion process as a Markov Random walk
process

A diffusion process, such as the Wiener process, can be understood as a Markov
random walk in a space of a finite number of states (Diederich and Busemeyer,
2003). The diffusion random walk starts from an initial state and then transitions
to the next state based on a transition matrix. Diederich and Busemeyer (2003)
discussed that a birth-death transition matrix may be utilized to create the required
transition matrix for the diffusion process. A birth-death transition matrix describes
the probability of the random walk transitioning from the current to the next or the
previous state, or remaining in the current state. Also, Diederich and Busemeyer
(2003) proposed a method to create the birth-death transition matrix using the drift
rate parameter and a pre-defined unit of time-step (see Eq. 15 of Diederich and
Busemeyer, 2003). The birth-death transition matrix used in the current study, Eq.
1.1, is a simplified version of the birth-death transition matrix proposed by Diederich
and Busemeyer (2003).

𝑝𝑠, 𝑗 =


1

2𝛼
(
1 − 𝑣(𝑠)

√
𝜏
)

if 𝑗 − 𝑠 = −1
1

2𝛼
(
1 + 𝑣(𝑠)

√
𝜏
)

if 𝑗 − 𝑠 = +1
1 − 1

𝛼
if 𝑗 = 𝑠

0 otherwise

(1.1)

Here, 𝑝𝑠, 𝑗 describes the probability of the random walk transitioning from the
𝑠𝑡ℎ state to the 𝑗 𝑡ℎ state, 𝑣(𝑠) is the drift rate parameter which can be defined either
as a constant or as a function of the current state 𝑠, and 𝜏 is the pre-defined unit of
time-step. The 𝛼 parameter is also pre-defined and is chosen to be larger than 1 so that
the discrete-time diffusion random walk, Eq. 1.1, closely resembles the continuous-
time diffusion process. Also, the transition probability 𝑝0,1 = 𝑝𝑆,𝑆−1 = 0 to ensure
that the diffusion process stops when either 0 or 𝑆 decision threshold boundary is
reached.

The Eq. 1.1 describes a Wiener process, if the drift rate parameter 𝑣(𝑠) is defined
as constant across states 𝑠. Also, describing 𝑣(𝑠) = 𝛿 − 𝛾 · 𝑠 represents the Ornstein-
Uhlenbeck (OU) process (Diederich and Busemeyer, 2003). Here, 𝛿 describes the
rate and direction of the transition and 𝛾 ·𝑠 describes the decay in the rate of transition.

The random walk stops when it reaches the upper or the lower decision threshold.
The response time can then be calculated by multiplying the number of steps taken to
reach the decision boundary by 𝜏. Also, typically, the response is considered accurate
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if the random walk reaches the upper boundary. Hence, such a random-walk diffusion
process can be utilized as a data-generating process to generate response accuracy
and response time distribution for a desired decision process.

1.3 Simulating Response Distributions using DDM random walk

In the current study, the reasoning response accuracy and response times were
simulated using the random walk diffusion process utilizing the transition matrix
described in Eq. 1.1. The below section describes the drift rate configurations used
to approximate the reasoning processes. Also, the below section describes how the
drift rate varied across the simulated population. Also, the below section describes
the random walk method used to simulate the response data.

1.3.1 Drift Rate Configurations

Fig. 1.1 The impact of four proposed configurations of positive drift rates, 𝑣(𝑠) , on a 13-state
transition matrix expressing 0-10% confidence states. The additional 2 states, 𝐿 and 𝑈 describe
the Lower and Upper decision boundary. Here, CDR means Constant Drift Rate and VDR means
Variable Drift Rate. A lighter (or darker) colored box depicts a lower (or higher) probability of
transitioning from the current state (𝑠) shown in the y-axis to the next states shown in the x-axis. The
exponential 𝜖 (𝑠) and piecewise 𝜙 (𝑠) functions are described in Eq. 1.2 and Eq. 1.3, respectively.

A constant drift rate 𝑣(𝑠) = 5 and 𝑣(𝑠) = 2 across all states was used to calculate
the birth-death transition matrix describing fast and slow diffusion processes (see
Fig 1.1a and 1.1b respectively). The proposed state-based exponential function 𝜖 (𝑠)
used to introduce variability in the drift rate 𝑣(𝑠) was: (see Fig 1.1c for the resulting
birth-death transition matrix).

𝜖 (𝑠) = 𝑒𝑦 (𝑠)

𝑏
; 𝑦(𝑠) = 𝑣𝑠 + 𝑠 × 𝜌; 𝜌 =

(𝑣𝑒 − 𝑣𝑠)
(𝑆 − 1) ; (1.2)
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Here, the start 𝑣𝑠 and end 𝑣𝑒 drift rates were predefined to be 0.04 and 4 respec-
tively. The 𝑏 parameter describes a constant used to reduce the magnitude of 𝜖 (𝑠) so
that the drift rates do not get too large, 𝑠 is the current state, and 𝑆 = 103 is the total
number of states.

The proposed state-based piecewise function 𝜙(𝑠) used to introduce variability
in the drift rate 𝑣(𝑠) was (see Fig 1.1d for the resulting birth-death transition matrix)

𝜙(𝑠) =
{

0.5 if 0 < 𝑠 < 75
5 if 76 < 𝑠 < 103

(1.3)

The birth-death transition matrix described the diffusion process in terms of
confidence levels 0-100% (see Fig. 1.1 for a 13-state transition matrix); (also see
Appendix C of Pleskac and Busemeyer, 2010, for a related discussion). The total
number of states was kept at 103, where the additional 2 states represented the upper
and lower decision threshold boundaries.

To introduce variability in drift rates among the participant population, a small
noise, sampled from Normal(0, 0.01) distribution, was added to the constant and
variable drift rates. Also, given a positive (or negative) drift rate describes a higher
probability of getting correct (or incorrect) responses, half of the participant popula-
tion was assigned positive drift rates and the other half were assigned negative drift
rates. Then, the transition matrix required for the random walk was calculated using
the Eq. 1.1.

1.3.2 Random Walk

The response accuracy and response time distributions were simulated for 500 partic-
ipants and 20 tasks. The initial state of the random walk was fixed at the center of the
103 confidence states, i.e., 51st confidence state. This reflects the idea that typically in
reasoning tasks, participants may be unbiased towards any possible response options
for a given task. Then, based on the transition matrix, the probability of transitioning
to the neighboring states was identified. Then, the multinomial distribution function
was used over these identified transition probabilities to draw the next transition
state. This process was repeated until the upper or the lower decision boundary was
reached (see Fig. 1.2). The response time was calculated by multiplying the number
of steps taken to reach the upper (or lower) boundary and the smallest unit of time
(𝜏 = 0.01) assumed for each step. Also, assuming the upper (and lower) boundary
represents the correct (and incorrect) response, response accuracy was calculated
based on the boundary threshold that the random walk reached (see Fig 1.2).
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1.4 The Q-diffusion Model (QDM)

The QDM, proposed by van der Maas et al. (2011), is an Item Response Theory-
based extension of the DDM that has no within-trial variability in the parameters. In
QDM, the probability of reaching an upper or a lower decision boundary in 𝑡 time is
modeled as, log(𝑡) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑡 , 𝜎2

𝑡 ), where

𝜇𝑡 = log(𝐸𝑡 ) −
1
2

[
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𝐸𝑡

]
𝜎2
𝑡 = log

[
1 + 𝑉𝑡

𝐸𝑡

]
𝐸𝑡 =

( 𝑎
2𝑣

) 1 − 𝑒−𝑎𝑣

1 + 𝑒−𝑎𝑣
+ 𝑡𝑒 𝑉𝑡 =

( 𝑎

2𝑣3

) −2ℎ𝑒 (−𝑎𝑣) − 𝑦𝑒 (−2𝑎𝑣) + 1
(𝑒−𝑎𝑣 + 1)2

(1.4)

Here, 𝐸𝑡 and 𝑉𝑡 describe the expected value, and the variance of the response
time, respectively. Also, the drift rate (𝑣 = 𝑣𝑝

𝑣𝑖
) and the boundary separation (𝑎 = 𝑎𝑝

𝑎𝑖 )
parameters are factored into a participant (𝑝) and an item-specific (𝑖) parameter.
The parameter 𝑣𝑖 represents item difficulty, 𝑎𝑖 represents item time pressure, 𝑣𝑝
represents person-specific drift rate, and 𝑎𝑝 represents person-specific boundary
separation. QDM also contains a person-specific non-decision time parameter, 𝑡𝑒,
that describes the time required to register a response once a decision has been made.
Also, in QDM, the probability of a response being correct or incorrect is modeled
as:

𝑃(𝑥 = 1|𝑎, 𝑣) = 𝑃(𝑥 = 0|𝑎, 𝑣) = 1
1 + 𝑒−𝑎𝑣

(1.5)

1.5 Bayesian modeling of the Q-diffusion model

A Bayesian model is typically represented as a joint probability model, also known
as parameter posterior distribution, of the likelihood function (e.g., Eq. 1.4 and Eq.
1.5), and a plausible prior distribution of the model parameters. The current study
utilized the Bayesian formulation of QDM proposed by van der Maas et al. (2011).
Also, the Bayesian QDM was implemented using the Python software package -
PyMC v5.8.2 (Salvatier et al., 2015).

1.5.1 Bayesian Inference

To perform Bayesian inference, samples were drawn from the parameter posterior
distribution using the No-U-Turn Sampler (Hoffman and Gelman, 2011), Markov
Chain Monte Carlo (MCMC) method, implemented in Python software package -
PyMC v5.8.2. Four MCMC sampling chains were initialized from different starting
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points to sample from the posterior distribution. The �̂� metric estimated MCMC
sample convergence. The �̂� metric checks convergence by comparing the estimated
variance of the parameter estimates within a particular MCMC sampling chain with
the estimated variance across chains (Gelman et al., 2013). Overall, 5,500 samples
were drawn from the posterior distribution, out of which an initial 1,000 samples
were considered warm-up samples and were discarded from further analysis. These
parameter samples were further utilized to perform a model fit evaluation of the
fitted QDM.

1.5.2 Bayesian Model Fit Evaluation

The posterior Predictive Distribution (PrD) was utilized to perform the Bayesian
model fit evaluation. Posterior PrD is a marginal distribution of the unobserved
response data, marginalized over the posterior distribution of parameter 𝜃 (Gelman
et al., 2013). The current study described the posterior PrD, 𝑃(𝑡 |𝑡), of the unobserved
response time 𝑡 as:

𝑃(𝑡 |𝑡) =
∫
Θ

𝑃(𝑡 |𝜃)𝑃(𝜃 |𝑡)𝑑𝜃 (1.6)

The predictive response dataset was sampled (predicted) from 𝑃(𝑡 |𝑡) for each of the
parameter samples drawn from the parameter posterior distribution 𝑃(𝜃 |𝑡). Then,
the model fit analysis was performed by visually comparing the expected 𝑃(𝑡 |𝑡)
response dataset and the observed response dataset used to fit QDM. The expected
𝑃(𝑡 |𝑡) response dataset was estimated by averaging the 𝑃(𝑡 |𝑡) response samples over
the 𝑃(𝜃 |𝑡) parameter samples.

1.6 Results

1.6.1 Simulated Dataset

The drift rate parameter influences the evolution pattern of the diffusion random
walk (see Fig. 1.2). For example, Fig. 1.2b shows that a lower drift rate, 𝑣(𝑠) = 2,
introduced more uncertainty in the random walk patterns, resulting in more number
of steps required to reach a decision boundary as compared to Fig. 1.2a having a
drift rate 𝑣(𝑠) = 5. Also, as can be seen in Fig. 1.2, varying the drift rate across states
also affected the diffusion random walk trajectory. The diffusion random walk with
variable drift rates (Fig. 1.2c and Fig. 1.2d) followed a different evolution pattern
than the constant drift rate diffusion random walk (Fig. 1.2a and Fig. 1.2b). Also,
the resulting response time density differed across the four drift rate configurations
(as depicted in Fig. 1.2).
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Fig. 1.2 For each of the four configurations of positive drift rate parameter, 𝑣(𝑠) , this figure shows
the trajectories of the diffusion random walks performed over a 103 confidence level state space
(shown in y-axis). Here, CDR means Constant Drift Rate and VDR means Variable Drift Rate. The
exponential 𝜖 (𝑠) and piecewise 𝜙 (𝑠) functions are described in Eq. 1.2 and Eq. 1.3, respectively.
The x-axis shows the number of steps taken by the random walk to reach a decision boundary.
The density plot on top of each figure shows the density of response time generated by the random
walks.

Expressing the drift rate as a piecewise function of the current state resulted in
a random walk trajectory that initially stayed in the states surrounding the initial
starting state. Then after reaching a slightly higher state, the random walk proceeded
rapidly toward the decision boundary (see Fig. 1.2c). When expressing the drift rate
as an exponential function of the current state, the random walk trajectory displayed a
curved growth pattern that gradually increased its slope as the random walk reached
higher states. The trajectory growth patterns were found to be similar for positive
and negative drift rates (due to limited space, Fig. 1.2, only shows the trajectory for
positive drift rates).

1.6.2 Model Fit

The model converged for all four drift rate configurations. The values of �̂� for the
four drift rate configurations were: 1) Fast: 1.004±0.009, 2) Slow: 1.000±0.002, 3)
Exponential: 1.000±0.001, and 4) Piecewise: 1.001±0.004. The posterior predictive
response times sampled from the fitted QDM model were in the log scale. This is
because QDM describes the response time in the log scale (see Eq. 1.4). Hence,
the model fit was examined by converting the simulated response times into the log
scale as well. Fig. 1.3 compared the mean and standard deviation of the simulated
response time datasets and the expected posterior predictive response time datasets.
As can be seen, for all four drift rate configurations, the means of both simulated
and expected posterior predictive response time datasets were similar. However, the
standard deviations had lesser similarity for all four drift rate configurations.
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Fig. 1.3 For each of the four drift rate configurations, this figure compares the mean and standard
deviation of the simulated response times and the expected posterior predictive response times, in
log scale. Here, CDR means Constant Drift Rate and VDR means Variable Drift Rate.

1.7 Conclusion

Existing studies have shown that the item response theory-based extension of the
diffusion model, Q-diffusion model (QDM), can be fitted to complex decision tasks
such as Chess Ability assessment (van der Maas et al., 2011) and Spelling Test (Rijn
and Ali, 2017). The current study further examined whether QDM can be fitted to
problem-solving tasks as well. The current study found that the unobserved response
times predicted from the fitted QDM were representative of the overall mean of
the simulated problem-solving response times for all four simulation configurations.
However, the current study also found that QDM was less effective in describing the
overall variance in the simulated response times. The overall variance in a response
time distribution is a result of between-trial and between-participant variations in
response time. Hence, QDM can be further extended to model such between-trial
and between-participant variations to better fit the overall variance in the response
time distribution (see Kang et al., 2022, for a similar extension of item response
theory diffusion model).

Also, the current study introduced state-based variability in the drift rate parameter
of the standard diffusion random walk model. The drift rate was manipulated to
approximate certain growth patterns of intermediate confidence judgments (ICJ)
typically observed in the meta-reasoning studies administering problem-solving tasks
(Ackerman, 2014; Metcalfe and Wiebe, 1987). The simulation results suggested that
within-trial variability in the drift rate parameter impacts the tails of response time
distributions differently than a constant within-trial drift rate parameter (see Fig. 1.2).
Also, different within-trial drift rate configurations impact the tails of response time
distributions differently (see Fig. 1.2c and 1.2d). Hence, the results indicated that
a diffusion model (or item response theory-based extension of the diffusion model)
designed to model complex cognition response times, may benefit by modeling the
within-trial variations in the drift rate parameter (see Diederich and Trueblood, 2018,
for a similar extension of the standard diffusion model).
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Also, the current study only examined situations where ICJ grows (on average)
within a task. However, some studies have shown that ICJ may either remain con-
stant or may first deteriorate and then improve as time elapses during a complex
cognitive task (Vernon and Usher, 2003). Also, in the current study, QDM was fitted
to response time datasets where each task had the same characteristics within the
dataset. However, in the ability-based educational assessments typically adminis-
tering complex cognitive tasks, there would be a higher degree of variations in the
administered task characteristics within the assessment. Hence, to further examine
the applicability of QDM for such ability assessments, studies may be conducted
using a response dataset simulated by combining item responses drawn from differ-
ent diffusion random walk processes having different drift rate configurations, each
approximating a different ICJ growth pattern.
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