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Abstract In this paper, new theorems are proved which show how in some cases the
asymptotic distribution of Maximum A Posteriori (MAP) estimates can be obtained
for parameter redundant probability models which are possibly misspecified. The
new methods are then empirically investigated in a simulation study investigating
confidence interval coverage for Cognitive Diagnostic Models (CDMs). The empir-
ical results are shown to be relevant in the application of CDMs to small sample size
situations.
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1 Introduction

A key challenge in probabilistic inference is the construction of an appropriate prob-
abilistic model. If the probability model is too constrained, then the possibility of
model misspecification is likely to increase with undesirable consequences. One ap-
proach to addressing the misspecification challenge is to implement a nonparametric
modeling methodology in which a very flexible model with many free parameters
is used to estimate the data generating process. However, there are several major
challenges associated with parameter estimation in flexible probability models.

First, highly flexible models with many parameters require larger sample sizes to
ensure reliable and unique parameter estimates. Second, the presence of redundant
parameters can lead to overfitting phenomena and larger sampling error. Third,
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standard asymptotic statistical theory used to characterize the asymptotic behavior
of parameter estimates typically makes strong assumtions that the probability model
is not parameter redundant and optimal parameters are locally identifiable.

A variety of methods for parameter redundancy detection (Catchpole and Mor-
gan, 1997; Cole et al., 2010; Ran and Hu, 2017, Theorem 17; Cole, 2020) and
parameter redundancy correction (Catchpole et al., 1998; Dasgupta et al., 2007; Ran
and Hu, 2017, Theorem 18; Cole, 2020) have been proposed. However, many of
these discussions have not focused upon the development of methods for parameter
redundancy detection and correction which are valid in the presence of possible
model misspecification.

In this paper, we theoretically investigate the asymptotic distribution of maximum
likelihood estimates and Maximum A Posteriori (MAP) estimates when parameter
redundancy is present without requiring the assumption of correct model specifi-
cation. When parameter redundancy is present, the asymptotic distribution of the
maximum likelihood estimates is not necessarily Gaussian. However, it is shown that
the asymptotic distribution of linear combinations of model parameters may still be
Gaussian under certain conditions. Some aspects of the resulting mathematical the-
ory are then empirically investigated in a series of simulation studies by evaluating
the effectiveness of confidence interval estimation in the presence of parameter re-
dundancy for a Deterministic Input Noisy And (DINA) Cognitive Diagnostic Model
fit to an extract of the Tatsuoka (1983) Fraction-Subtraction data set.

2 MAP Estimation Theory for Parameter Redundant Models

The goal of this section is to develop a theory of maximum likelihood estimation
and Maximum A Posteriori estimation for probability models which are possibly
parameter redundant and possibly misspecified. To simplify the exposition, it is
assumed the Data Generating Process is a bounded sequence of discrete random
vectors but this assumption can be relaxed.

2.1 Assumptions and Definitions

2.1.1 DGP and Modeling Assumptions

The Data Generating Process (DGP) is a mechanism which generates a data set using
the DGP probability mass function (DGP pmf).

Assumption (A1. Data Generating Process) Let Ω be a finite subset of R𝑑 . The
data set D𝑛 ≡ [x1, . . . , x𝑛] is a realization of the stochastic sequence D̃𝑛 ≡
[x̃1, . . . , x̃𝑛] of i.i.d. 𝑑-dimensional random vectors with common DGP pmf
𝑝𝑒 : Ω → [0, 1]. □
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Let Θ be a closed, bounded, subset of R𝑞 . A model representation for a DGP pmf
𝑝𝑒 : Ω → [0, 1] is a function 𝑝Θ : Ω × Θ → [0, 1] defined such that 𝑝Θ (x|𝜽) is the
probability of observing x given some 𝜽 . A probability model, MΘ, with parameter
space Θ is a collection of probability mass functions defined with respect to a model
representation such that MΘ ≡ {𝑝Θ (·|𝜽) : 𝜽 ∈ Θ}.

Assumption (A2. Probability Model Smoothness) LetΘbe a convex, closed, bounded
subset ofR𝑞 . Let 𝑝Θ : Ω×Θ → [0, 1] be a model representation. Assume log 𝑝Θ (x, ·)
is a twice continuously differentiable function on Θ for each x ∈ Ω. □

2.1.2 MAP and ML Estimation Algorithms

Let the observed data D𝑛 ≡ [x1, . . . , x𝑛] be defined as in Assumption A1. Assume
a smooth probability model MΘ = {𝑝Θ (·|𝜽) : 𝜽 ∈ Θ} as in Assumption A2. Let
𝑝𝜃 : Θ → (0,∞) be an absolutely continuous density function which is called the
parameter prior. The goal of MAP estimation (Maris, 1999; Golden, 2020, Chapter
13) is to compute a parameter estimate �̂�𝑛 such that:

�̂�𝑛 ≡ arg min
𝜽∈Θ

ℓ̂𝑛 (𝜽), ℓ̂𝑛 (𝜽) = −(1/𝑛)
𝑛∑︁
𝑖=1

log 𝑝(x𝑖 |𝜽) − (1/𝑛) log 𝑝𝜃 (𝜽). (1)

When the density 𝑝𝜃 is a uniform density on Θ, then the MAP estimation goal
specified in (1) is equivalent to Maximum Likelihood (ML) estimation for each
sample size 𝑛. Moreover, we make the strong assumption there exists a finite number
𝐾 such that | log 𝑝𝜃 (𝜽) | < 𝐾 so that the second term on the right-hand side of (1)
converges to zero as 𝑛→ ∞. This latter result implies that the MAP estimation goal
in (1) is asymptotically equivalent to ML estimation as 𝑛→ ∞.

Given the above assumptions, it follows from the Uniform Law of Large Numbers
(e.g., Golden, 2020, Theorem 13.1.1) that as 𝑛 → ∞, ℓ̂𝑛 → ℓ uniformly with
probability one where

ℓ(𝜽) ≡ −
∑︁
x∈Ω

𝑝𝑒 (x) log 𝑝(x|𝜽). (2)

When model misspecification is present, a true parameter value 𝜽∗ defined such
that 𝑝Θ (x|𝜽∗) = 𝑝𝑒 (x) for all x ∈ Ω does not exist. However, in the special case
where 𝜽∗ is a true parameter value, then it can be shown that 𝜽∗ will correspond to
a global minimum of (2). Therefore, to provide a general framework for estimation
and inference in the presence of model misspecification, the goal of the parameter
estimation process is formulated as seeking a strict local minimizer of ℓ(𝜽).
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2.1.3 Theorem Assumptions and Notation

The Theorems in the remainder of this paper all assume that the observed data
D𝑛 ≡ [x1, . . . , x𝑛] is defined as in Assumption A1. In addition, all theorems assume
a smooth probability model MΘ = {𝑝Θ (·|𝜽) : 𝜽 ∈ Θ} as in Assumption A2. The
parameter space Θ is assumed to be a closed, convex, and bounded subset of R𝑞

which contains a strict local minimizer of ℓ(𝜽) denoted by 𝜽∗. It is further assumed
that 𝜽∗ is the unique global minimizer of ℓ on Θ and 𝜽∗ is located in the interior
of Θ. The notation log refers to the natural logarithm. Let gΘ (x, 𝜽) denote the
column-vector valued function which is the gradient of − log 𝑝Θ (x, 𝜽) with respect
to 𝜽 .

Define A(x, 𝜽) as the Hessian of− log 𝑝Θ (x|𝜽). Let ḡΘ (𝜽) =
∑

x∈Ω gΘ (x, 𝜽)𝑝𝑒 (x).
The Hessian of ℓ(𝜽), ĀΘ, and Outer-Product Gradient (OPG) matrix, B̄Θ, defined
with respect to model representation 𝑝Θ are given respectively by:

ĀΘ (𝜽) =
∑︁
x∈Ω

AΘ (x, 𝜽)𝑝𝑒 (x) and B̄Θ (𝜽) =
∑︁
x∈Ω

gΘ (x, 𝜽)gΘ (x, 𝜽)𝑇 𝑝𝑒 (x). (3)

Let the notation A∗
Θ

≡ Ā(𝜽∗) and B∗
Θ

≡ B̄(𝜽∗). Let the notation g∗
Θ

≡ ḡ(𝜽∗).
In practice, A∗

Θ
and B∗

Θ
are not directly observable and are typically estimated

respectively by Â𝑛 which is the second derivative of ℓ̂𝑛 evaluated at �̂�𝑛 and
B̂𝑛 ≡ (1/𝑛)∑𝑛

𝑖=1 gΘ (x𝑖 , �̂�𝑛)gΘ (x𝑖 , �̂�𝑛)𝑇 . The notation 0𝑞 refers to the 𝑞-dimensional
column vector of zeros. The notation I𝑞 refers to the 𝑞-dimensional identity matrix.

2.1.4 Identifiability and Redundancy Definitions

Definition 1 (Observationally Equivalent (Rothenberg, 1971; Bowden, 1973))
Let MΘ ≡ {𝑝Θ (·|𝜽) : 𝜽 ∈ Θ} be a probability model. Two distinct parameter vectors
𝜽1 and 𝜽2 in the parameter space Θ of model MΘ are said to be observationally
equivalent if 𝑝Θ (x|𝜽1) = 𝑝Θ (x|𝜽2) for all x ∈ Ω.
Definition 2 (Locally Identifiable (Bowden, 1973; Ran and Hu, 2017)) A param-
eter vector 𝜽∗ ∈ Θ is said to be globally identifiable on Θ if there is no point other
than 𝜽∗ in Θ which is observationally equivalent to 𝜽∗. A parameter vector 𝜽∗ ∈ Θ is
said to be locally identifiable if there exists a neighborhood of 𝜽∗ such that no point
in that neighborhood other than 𝜽∗ is observationally equivalent to 𝜽∗.
Definition 3 (Parameter Redundant Model Representation (Ran and Hu, 2017))
Let Θ ⊆ R𝑞 . Let Ψ ⊆ R𝑘 . Let 𝑝Θ : Ω × Θ → [0, 1] and 𝑝Ψ : Ω × Ψ → [0, 1] be
two model representations for the same DGP pmf. Assume a continuous function
¥𝝍 : Θ → Ψ exists such that 𝑝Θ (x|𝜽) = 𝑝Ψ (x| ¥𝝍(𝜽)) for all 𝜽 ∈ Θ and for all x ∈ Ω.
Then ¥𝝍 is called a reparameterization function. If the dimension of 𝑘 is strictly less
than 𝑞 then the model representation 𝑝Θ is called parameter redundant on Θ. Let Γ
be a set of reparameterization functions. If 𝑝Θ is not parameter redundant for every
reparameterization function in Γ, then 𝑝Θ is called a minimal parameterization with
respect to Γ.
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2.2 Theorems

2.2.1 Parameter Redundancy and Identifiability

The following theorem is similar to existing theorems in the literature (e.g., Bowden,
1973; Ran and Hu, 2017, Theorem 5, Theorem 6). The Theorem shows that if A∗ is
positive definite, then that is a sufficient condition for 𝜽∗ to be locally identifiable.

Definition 4 (Hessian Positive Definiteness Condition) The Hessian Positive Def-
initeness Condition holds with respect to model representation 𝑝Θ and DGP pmf 𝑝𝑒
when A∗ is positive definite.

Theorem 1 (Sufficient Local Identifiability Condition) If (i) g∗
Θ
= 0𝑞 , and (ii) the

eigenvalues of A∗
Θ

are positive, then 𝜽∗ is locally identifiable.

Proof By Theorem 5.3.3 of Golden (2020) (a standard optimization theory result)
it follows that from conditions (i) and (ii) that 𝜽∗ is a strict local minimizer of
ℓ(𝜽). Since 𝜽∗ is a strict local minimizer, there exists a closed, bounded, convex
neighborhood of 𝜽∗, N∗, such that 𝜽∗ is the unique global minimizer on N∗. This
implies that:

ℓ(𝜽) − ℓ(𝜽∗) = −
∑︁
x∈Ω

𝑝𝑒 (x) log
𝑝Θ (x|𝜽)
𝑝Θ (x|𝜽∗) (4)

is strictly positive when 𝜽 ≠ 𝜽∗. Now suppose that 𝜽∗ is not globally identifiable
on N∗. This means that there exists a 𝜽+ ∈ N∗ which is not equal to 𝜽∗ such that
𝑝Θ (x|𝜽+) = 𝑝Θ (x|𝜽∗) for all x ∈ Ω. But this would mean that ℓ(𝜽+) − ℓ(𝜽∗) = 0
from (4) when 𝜽 ≠ 𝜽∗ resulting in a contradiction. □

The following theorem and proof have been previously discussed in the literature
(e.g., Catchpole and Morgan, 1997; Ran and Hu, 2017, Theorem 18) but more
explicit details of the argument are provided here. The Theorem shows that if B∗ is
positive definite, then that is a sufficient condition for the model representation 𝑝Θ
to be minimal parameterization on a neighborhood of 𝜽∗.

Definition 5 (OPG Positive Definiteness Condition) The OPG Positive Definite-
ness Condition holds with respect to model representation 𝑝Θ and DGP pmf 𝑝𝑒
when B∗ is positive definite.

In practice, B∗ is often estimated by B̂𝑛. A necessary but not sufficient condition
for the 𝑞-dimensional matrix B̂𝑛 to be positive definite is that the number of data
points, 𝑛, is greater than the number of free parameters 𝑞.

Theorem 2 (Sufficient Condition for No Parameter Redundancy) Let N be a
closed, bounded subset of Θ. Assume Ψ is a bounded subset of R𝑘 where 𝑘 ≤ 𝑞.
Let Γ be the set of all continuously differentiable reparameterization functions with
domain N and range Ψ. If the 𝑞-dimensional matrix BΘ (𝜽) defined with respect
to 𝑝Θ in (3) is positive definite on N , then 𝑝Θ is a minimal parameterization with
respect to Γ.



6 Richard M. Golden

Proof Suppose there exists a continuously differentiable reparameterization function
𝝍 : R𝑞 → R𝑘 in Ψ and model representation 𝑝Ψ such that 𝑝Θ (x|𝜽) = 𝑝Ψ (x|𝝍(𝜽))
where 𝑘 < 𝑞. From the matrix chain rule:

−gΘ (x, 𝜽)𝑇 =
𝑑 log 𝑝Θ (x|𝜽)

𝑑𝜽
=
𝑑 log 𝑝Ψ (x|𝝍(𝜽))

𝑑𝜽
=
𝑑 log 𝑝Ψ (x|𝝍(𝜽))

𝑑𝝍

𝑑𝝍

𝑑𝜽
. (5)

Using (5),

BΘ (𝜽) = 𝐸{gΘ (x̃, 𝜽)gΘ (x̃, 𝜽)𝑇 } =
(
𝑑𝝍

𝑑𝜽

)𝑇
𝐸{gΨ (x̃,𝝍)gΨ (x̃,𝝍)𝑇 }

𝑑𝝍

𝑑𝜽
(6)

which has rank 𝑘 < 𝑞 and is therefore singular on N . By a contrapositive argu-
ment, this implies that if BΘ (𝜽) is positive definite on N , then 𝑝Θ is a minimal
parameterization on Γ. □

Theorem 2 shows that the OPG positive definiteness condition is sufficient to en-
sure the absence of parameter redundancy near a strict local minimizer 𝜽∗. Theorem
1 shows that the Hessian positive definiteness condition is sufficient to ensure local
identifiability at 𝜽∗. However, the Hessian positive definiteness condition does not
necessarily imply the OPG positive definiteness condition holds (e.g., Ran and Hu,
2017; Fox and Golden, 2022). Still, in the special case where the probability model is
correctly specified at a strict local minimizer 𝜽∗, then the OPG positive definiteness
and Hessian positive definiteness conditions are equivalent.

Theorem 3 (Information Matrix Equality) If there exists a point 𝜽∗ in the interior
of Θ such that 𝑝(x|𝜽∗) = 𝑝𝑒 (x) for all x ∈ Ω, then A∗

Θ
= B∗

Θ
.

Proof See Golden (2020, Theorem 16.3.1) for a proof. □

Theorem 4 (Equivalence of Redundancy and Identifiability Conditions) If there
exists a point 𝜽∗ in the interior of Θ such that 𝑝(x|𝜽∗) = 𝑝𝑒 (x) for all x ∈ Ω and
either A∗

Θ
or B∗

Θ
is positive definite, then both AΘ (𝜽) and BΘ (𝜽) are positive definite

on a neighborhood of 𝜽∗.

Proof By assumption and the the Information Matrix Equality Theorem, both A∗
Θ
=

B∗
Θ

have strictly positive eigenvalues at the point 𝜽∗. Those eigenvalues will also be
strictly positive in some neighborhood of 𝜽∗ since those eigenvalues are continuous
functions of AΘ and BΘ (Franklin, 1968, p. 191) which are, by definition, continuous
functions of 𝜽 . □

In many discussions of parameter redundancy and identifiability in the literature,
the conclusion of the Information Matrix Equation Theorem (Theorem 4) is assumed
to hold (Bowden, 1973, Equation 7; Dasgupta et al., 2007, Assumption A9; Little
et al., 2010; Proof of Theorem 3;Ran and Hu, 2014, Equation 18). However, if the
model is misspecified, the conclusion of (Theorem 4) may not hold.
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2.2.2 MAP Estimate Asymptotic Distribution

The next theorem investigates the asymptotic normality of the MAP estimates.
The statement of the following theorem, unlike usual treatments of the asymptotic
distribution of maximum likelihood estimates (e.g., White, 1994, Assumption 3.9,
Assumption 6.1, Theorem 6.4; Golden, 2020, Chapter 13, Chapter 15) does not
assume that A∗

Θ
and B∗

Θ
are positive definite.

The essential idea is to reparameterize the model with a linear transformation of
the parameters using methods similar to those discussed by (Catchpole et al., 1998;
Dasgupta et al., 2007; Ran and Hu, 2017). Unlike many of these approaches, we
focus on a particular linear parameterization strategy specified by the reparameter-
ization function: ¥𝜽 (𝝍) = 𝜽∗ + P(𝝍 − 𝝍∗) with 𝝍∗ ≡ P𝑇𝜽∗. The 𝑞𝑥𝑘-dimensional
projection matrix P consisting of 𝑘 orthonormal columns is constructed to ensure
the reparameterized model is locally identifiable at 𝜽∗ and not parameter redundant
in a neighborhood of 𝜽∗. This is achieved by choosing P such that A∗

Ψ
≡ P𝑇A∗

Θ
P and

B∗
Ψ
≡ P𝑇B∗

Θ
P are both positive definite which respectively imply local identifiability

by Theorem 1 and no local redundancy by Theorem 2.
In addition, the approach investigated here differs from many previous approaches

in which a reparameterized model is constructed to support inference (e.g., Catchpole
et al., 1998; Dasgupta et al., 2007; Ran and Hu, 2017; Cole, 2020) since the results
are subsequently projected back into the original parameter space. Consequently, the
resulting model remains parameter redundant but now it becomes possible to show
that some (but not all) linear combinations of parameter estimates have well-defined
asymptotic Gaussian distributions despite the presence of parameter redundancy.
Formally, a set of linear combinations of elements of the 𝑞-dimensional MAP es-
timate �̂�𝑛 is represented by S�̂�𝑛 where S is called the selection matrix. If S is the
identity matrix, this corresponds to the standard case where the asymptotic distri-
bution of �̂�𝑛 is of interest. Choosing S to be the 𝑚th row vector of a 𝑞-dimensional
identity matrix corresponds to the situation where S�̂�𝑛 is the 𝑚th element of �̂�𝑛. It is
important to emphasize that S�̂�𝑛 will only have an asymptotic multivariate Gaussian
distribution for certain choices of S so it is necessary to check that the covariance
matrix of S�̂�𝑛 denoted as C∗

𝑆
is positive definite. With this introduction, the following

new theorem is introduced.
Theorem 5 (Asymptotic Normality with Parameter Redundancy) Let N∗ be a
neighborhood of a strict local minimizer 𝜽∗ of ℓ(𝜽) such that: (i) 𝜽∗ is the unique
global minimizer in the interior of N∗ ⊆ Θ, and (ii) �̂�𝑛 is a minimizer of ℓ̂𝑛 (𝜽) on N∗

for 𝑛 = 1, 2, . . .. Assume the span of A∗
Θ

and B∗
Θ

is specified by 𝑘 orthonormal vectors
corresponding to the columns of the full column rank matrix P ∈ R𝑞×𝑘 such that
A∗

Ψ
≡ P𝑇A∗

Θ
P and B∗

Ψ
≡ P𝑇B∗

Θ
P are positive definite. Let C∗

Ψ
≡ (A∗

Ψ
)−1B∗

Ψ
(A∗

Ψ
)−1.

Let S ∈ R𝑞×𝑠 have positive column rank 𝑠. Then the following results hold.
1. As 𝑛→ ∞, S𝑇 �̂�𝑛 → S𝑇𝜽∗ with probability one.
2. As 𝑛 → ∞,

√
𝑛S𝑇

(
�̂�𝑛 − 𝜽∗

)
converges in distribution to a zero mean Gaussian

random vector with covariance matrix C∗
𝑆

≡ S𝑇PC∗
Ψ

P𝑇S provided S𝑇P has
positive row rank 𝑠.
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Proof
Part 1. Define �̂�𝑛 ≡ P𝑇 �̂�𝑛. Consider the empirical risk function ¥ℓΨ𝑛 : Ψ → R

defined such that:

¥ℓΨ𝑛 (𝝍) ≡ ℓ̂𝑛 ( ¥𝜽 (𝝍)) = −(1/𝑛)
𝑛∑︁
𝑖=1

log 𝑝Θ (x̃𝑖 , ¥𝜽 (𝝍)).

Since �̂�𝑛 → 𝝍∗ as 𝑛 → ∞ by standard M-estimation theorems (e.g., White, 1994,
Theorem 3.4; Golden, 2020, Theorem 13.1.1) and the definition of the continuous
function ¥𝜽 (𝝍) it follows that: �̂�𝑛 = ¥𝜽 (�̂�𝑛) → ¥𝝍∗

= 𝜽∗ as 𝑛→ ∞.
Part 2. Since, by assumption, S𝑇P has full positive row rank 𝑠 and C∗

Ψ
is positive

definite, it follows that
√
𝑛S𝑇P(�̂�𝑛 − 𝝍∗) converges in distribution to a zero-mean

multivariate Gaussian random vector with positive definite covariance matrix C∗
𝑆

using standard M-estimation theorems (e.g., White, 1994, Theorems 6.2, 6.4; Golden,
2020, Theorem 15.2.2). Therefore,

√
𝑛S𝑇P(�̂�𝑛 − 𝝍∗) =

√
𝑛S𝑇 (�̂�𝑛 − 𝜽∗) converges

in distribution to a zero-mean multivariate Gaussian random vector with covariance
matrix C∗

𝑆
.

□

3 Simulation Study

3.1 Methods

3.1.1 Data Set, Model, and Estimation Algorithm

This simulation study used an extraction of the Tatsuoka (1983) Fraction-Subtraction
data set consisting of 15 questions, 5 skills, and 536 students. In this study, 200 boot-
strap data sets each of sample size 𝑁 were generated by sampling with replacement
from the original data set which consisted of 536 data records. Next, each of the 200
bootstrap data sets was fit to a Reparameterized Deterministic Input gate (RDINA)
CDM (DeCarlo, 2011). The RDINA CDM was specified by a known independent
attribute Bernoulli distribution (Maris, 1999) and 15 two-parameter item models for
each of the 15 questions respectively. A MAP estimation methodology was used that
incorporated an uninformative Gaussian prior. The uninformative Gaussian parame-
ter prior was designed to specify the most likely values of a guess or slip probability
parameter value to be 0.354 with a variance of 1e+8.

3.1.2 Evaluation of Confidence Interval Estimation Methods

Four different methods were used to evaluate how confidence intervals were cal-
culated. The No-Selection/No-Projection Method computed confidence intervals

https://orcid.org/0000-0001-7505-6832
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Table 1 Percentage of times bootstrap parameter estimates were not included in an averaged
95% confidence interval as a function of bootstrap data set sample size 𝑁 . Numbers in parentheses
indicate number of bootstrap data sets used to estimate percent inclusion. Bold-faced values indicate
close agreement with expected theoretical value of 0.05.

Sample Size No Selection Selection No Selection Selection
(30 parameters) No Projection No Projection Projection Projection

N = 15 0.56 (200) 0.58 (188) 0.59 (200) 0.06 (26)
N = 60 0.20 (200) 0.20 (197) 0.20 (200) 0.07 (121)
N = 120 0.11 (200) 0.10 (191) 0.11 (200) 0.07 (157)
N = 240 0.08 (200) 0.08 (192) 0.08 (200) 0.07 (176)
N = 536 0.06 (200) 0.06 (194) 0.06 (200) 0.05 (180)

for all of the 200 bootstrap data sets and used the averaged confidence inter-
val as the estimator using the identity matrix as the projection matrix P. The
Selection/No-Projection method only included bootstrap data sets for estimating
the two-dimensional confidence interval item model covariance matrix C∗

𝑆
which

had full numerical rank using the identity matrix as the projection matrix P. The No-
Selection/Projection Method computed confidence intervals for all 200 bootstrap
data sets using the projection matrix P𝐵 constructed such that its columns were the
𝑘 orthonormal eigenvectors of B̂Θ

𝑛 associated with the non-negligible eigenvalues.
The Selection/Projection Method only included bootstrap data sets where C∗

𝑆
had

full numerical rank using projection matrix P𝐵.

Results and Discussion

As shown in Table 1, when the sample size of a bootstrap data set was 𝑁 = 536, the
simulation results agreed relatively closely with the expected theoretically expected
prediction that 5% of the values would not be included in the average confidence
interval. The simulation results also agreed closely with the expected theoretical
results for the Selection-Projection Method for all sample sizes including the small
sample size case of N=15 where the number of data records was half the size
of the number of free parameters. For the N=15 case, the Selection-Projection
Method obtained good confidence interval coverage by strategically identifying 26
out of the 200 bootstrap data sets which contained sufficient information for reliable
inference. Without the use of the methods introduced here, however, confidence
interval estimation performance was ineffective for smaller sample sizes. In addition,
using either the Selection Method or the Projection Method by themselves was also
ineffective, both of these methods had to be used in combination to obtain reliable
inferences across all sample sizes.
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