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Statistical modeling methods are widely used in clinical science, Received 13 June 2018
epidemiology, and health services research to analyze data that Accepted 24 April 2019
has been collected in clinical trials as well as observational studies
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records. Diagnostic and prognostic inferences from statistical mod- Matrix Test; model
els are critical to researchers advancing science, clinical practitioners misspecification; model
making patient care decisions, and administrators and policy mak- selection; specification

ers impacting the health care system to improve quality and reduce analysis
costs. The veracity of such inferences relies not only on the quality
and completeness of the collected data, but also statistical model
validity. A key component of establishing model validity is determin-
ing when a model is not correctly specified and therefore incapable
of adequately representing the Data Generating Process (DGP). In
this article, model validity is first described and methods designed
for assessing model fit, specification, and selection are reviewed.
Second, data transformations that improve the model’s ability to rep-
resent the DGP are addressed. Third, model search and validation
methods are discussed. Finally, methods for evaluating predictive
and classification performance are presented. Together, these meth-
ods provide a practical framework with recommendations to guide
the development and evaluation of statistical models that provide
valid statistical inferences.

1. Introduction

Statistical modeling methods [1-17] are widely used in clinical science, epidemiology,
and health services research to analyze and interpret data obtained from clinical trials as
well as observational studies of existing data sources, such as claims files and electronic
health records. Diagnostic and prognostic inferences from statistical models are critical
if researchers are to advance science, clinical practitioners along with their patients are
to make informed care decisions, and administrators and policy makers are to positively
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impact the health care system to improve quality, enhance access, and reduce costs. The
veracity of such inferences relies not only on the quality and completeness of the collected
data, but also on the validity of the researcher’s model.

Models that can adequately represent the true underlying process by which the data
were created, known as the Data Generating Process (DGP) [18,19], reveal data structure,
provide performance of parameter estimators, evidence robustness of statistical inferences,
and allow evaluation of the underlying assumptions that support interpreting analytic find-
ings [20-23]. Such models also serve an important communicative function by facilitating
‘model transparency’ [20,24], which supports future scientific inquiry and more effective
distribution of research findings.

This article describes challenges and provides recommended strategies for developing
valid statistical models that more accurately approximate the underlying DGP. In particu-
lar, we focus on methods for regression analysis that pertain to generalized linear models
(GLM) [11], generalized additive models (GAM) [10], and the exponential family nonlin-
ear models [25], which also includes methods using supervised learning that are routinely
used in machine learning (ML) [7,26-32]. Discussions of current analytical methods are
provided with recommendations and more advanced strategies are identified to provide a
practical framework for developing improved statistical models.

As there is vast literature on these subjects, this is not a comprehensive discussion.
Rather, our article provides an overview of methods with guidance and references under-
scoring the critical nature of considering model specification as part of the development
process that: (i) describes model fit, model misspecification tests, and model selection
tests, (i) addresses data representation strategies, (iif) discusses automated model-building
approaches and validation methods, and (vi) reviews predictive and classification mea-
sures. We generally focus our discussion on regression methods that are typically applied
in practice [1,3,5-7,12,13,16,33-39] on complete data. For an overview of methods related
to analyzing data sets containing missing values [40-44] the reader is referred to Zhou
[45]. Further, while graphical methods [5-7,10,12,33,39,46-50] are important tools that
are recommended as part of the model development process, they are not the focus of this
article. Additionally, nonparametric statistical methods are discussed briefly as they pertain
to univariate analysis in support of multivariate modeling. See, for example, Wasserman,
Corder and Foreman, Hollander et al. for further information on nonparametric statis-
tics [51-53]. Finally, issues related to causality and its relationship to model validity are
not explicitly explored. However, see Kashner et al. [54], which addresses making causal
inferences [55-57] using regression analysis methods.

This article is organized around strategies that are necessary to the development of
correctly specified models that can evidence causal relationships and provide predictive
performance. In general, we address the frequentist paradigm where emphasis is placed
on statistical testing for model fit and misspecification including model development, clas-
sification and prediction. Bayesian methods for model averaging [58] and classification are
also presented. Each section begins by stating the analytic challenges and explaining their
significance, followed by recommended strategies to address those challenges. Section 2
discusses model fit measures, specification tests, model selection tests, and nonparamet-
ric tests. In particular, statistical methods used to establish external and internal validity
[59,60] are addressed as they pertain to model development when dealing with the chal-
lenge of model fit and specification. Section 3 describes transformations and interactions
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that may be applied for improving the representation of the DGP for subsequent multi-
variate analysis. Section 4 discusses automated model-building methods that include both
single and multimodel [58,61-63] paradigms. Section 5 contains computation validation
methods for establishing both internal and external model validity. Finally, sections 6 and
7 review prediction and classification measures for statistical modeling.

2. Model fit / model specification
2.1. Statement of challenge — model fit / model specification

Establishing model validity is challenging even when the researcher has a well-formed con-
ceptual model of the outcome of interest and its relevant variables. There are different types
of validity. Face validity addresses the issue of whether the model appears plausible. For
example, within a regression modeling context, a model that indicates that mortality rate
depends upon eye color might be considered to have low face validity even if the model
makes useful predictions. Criterion-based validity is applied by the researcher to determine
ifa model behaves as expected. Typically, this is accomplished by comparing predicted out-
comes of a model with established findings. External validity [64] addresses the robustness
of the model’s results [20,65,66] to determine if its inferences will generalize to related
populations [12,67-70]. Internal validity addresses the issue of whether a model makes
consistent predictions with respect to a particular data set which is presumed to be repre-
sentative of the general population. Internal validity may be evaluated in predictive models
by checking if the model is correctly specified, makes internally consistent predictions, and
exhibits good performance using cross-validation simulation methods [20,71].

2.2. Explanation

Effect sizes are interpretable with respect to a specific statistical (probability) model of the
data generating process. In some cases, these models may be encompass large classes of
models, while in other cases the set of models may be more restrictive. Valid modeling
results and their interpretation depends on both the researcher’s underlying assumptions
for posited probability model with the application of the appropriate statistical methods.
For example, using a Best Approximating Model (BAM) [72-76] approach to account
for moderating variables and model misspecification, Westover et al. [74,75,77] reana-
lyzed data from a randomized, double blind, placebo controlled, intent-to-treat study of
adults with Attention Deficit Hyperactivity Disorder (ADHD). This model development
approach [75,76], which utilizes robust model search and specification analysis methods
discussed in this article, allowed Westover et al. [74,77] to evidence significant changes in
smoking cessation following the use of a stimulant medication osmotic-release oral sys-
tem of methylphenidate, even though the original study indicated no treatment effect [78].
Further, simulation studies [79,80] have shown that there exist situations where models
that indicate fit to the data using typical summary measures (§ 2.2.1), but do not otherwise
represent the DGP may yield wrong conclusions.

Thus, to adequately assess the validity of the statistical (probability) model, researchers
should examine both model fit and model misspecification [79-81]. Model fit measures
the similarity of the ‘fitted model’ to actual outcome values generated by the DGP (§ 2.2.1).
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Model misspecification indicates whether the choice of variables and how those variables are
recoded or transformed are fit in a model that best approximates the DGP. A model that
represents the DGP is called a ‘correctly specified model’. A model that can not represent
the DGP is said to be misspecified. We test for failure to represent the DGP using model
misspecification tests that test the null hypothesis the model is correctly specified (§ 2.2.4).
In contrast to typically used summary level goodness-of-fit tests (GOF) [6,12], model
misspecification tests are designed to examine various aspects of model misspecification
[18,79-81].

Both the assessment of model fit and the possible presence of model misspecification
are critically important and, while related, often capture quite different aspects of model
validity. For example, suppose the researcher modeled risk factors that predict whether a
sample of patients with depressive symptoms will attempt self harm within 30 days follow-
ing a visit to a hospital’s psychiatric emergency department. Here, the limited dependent
variable is the probability that a patient will attempt self-harm and enters into the model as
a logit. In this situation the researcher may estimate parameter coeflicients using a logistic
regression that properly accounts for the binary outcome variable (attempt v. no attempt).
The use of a simple linear regression to predict a binary outcome would correspond to a
situation where the model was misspecified because linear regression assumes the outcome
variable is continuous.

2.2.1. Model fit measures
Essential to data interpretation [79,80], model fit is a measure of the discrepancy between
the observed empirical distribution of the observations in the data set and the ‘best-fitting’
probability distribution computed from the estimated probability model. Given the speci-
fication of a parameterized model and the data, model parameters may be estimated to fit
the model. For example, maximum likelihood estimation methods seek the parameters that
make the observed data most likely and may be interpreted as minimizing a cross-entropy
discrepancy measure between predicted probabilities and observed relative frequencies.
The problem of assessing model fit is challenging when researchers want to measure
fit that accounts for variability in model complexity, model misspecification, and small
sample size. Examples of global or summary model fit measures that often used to assess
overall model fit include sum of squared errors (SSE), log-likelihood (LL), as well model
selection criteria. Table 1 contains examples of widely used model fit measures including
information theoretic model selection criteria.

2.2.2. Model specification analysis

Model specification analysis [18,27,81,100-104] addresses the question of whether the
researcher’s probability model represents the theoretically correct model for the DGP.
Specifically, a correctly specified probability model has the property that it contains the
true probability distribution that generated the observed data [18,79-81]. Statistical meth-
ods are available to assess model fit and misspecification. For example, graphical residual
diagnostics [5-7,10,12,33,38,39,46-50,105] are useful for identifying the presence of model
misspecification for the class of GLMs [11,106] and the larger class of exponential family
nonlinear models [25]. Such diagnostics are also useful for identifying outliers that cor-
respond to situations where the probability model is not applicable or the data sampling
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Table 1. Examples of summary level model fit measures.

No. Model fit measures Description

1 Sum of Squared Errors (SSE) Sum of squared differences (residuals) between predicted and observed
values. Measures deviation from actual values [5,6,39].

2 R?, adjusted R?, Pseudo-R? Coefficient of determination (R2) compares the predictive performance of

Statistics the model to a constrained version of the model [5,6,10,12,33,36,82,83].

3 Log-Likelihood (LL) Kullback-Leibler based measure of model fit to observed data. Selects
the model that makes the in-sample data (training data) most likely
[12,38,84].

4 Akaike Information Criterion (AIC) AlCallows comparison between nested, overlapping, or nonnested models
having different numbers of parameters. Selects the model that makes
the out-of-sample data most likely. Assumes all models are correctly
specified [18,61,80,81,85-87].

5 Akaike Information Criterion with AlCc allows comparison between nested, overlapping, or nonnested

finite sample correction (AlCc) models having different numbers of parameters, with small sample size
correction. Selects the model that makes the out-of-sample data most
likely. Assumes all models are correctly specified [61,87-89].
6 Bayesian Information Criterion BIC/SIC allows comparison between nested, overlapping, or nonnested
(BIC), also know as the Schwarz models having different numbers of parameters. Selects the most
Criterion (SIC) probable model given the data. Applicable for both correctly specified
and misspecified models [61,86,87,90].
7 Bayesian predictive information Hierarchical modeling generalization of the AIC and BIC [91,92].
criterion (BPIC)
8 Generalized Akaike Information GAIC allows comparison between nested, overlapping, or nonnested
Criterion (GAIC) models having different numbers of parameters. Selects the model that
makes the out-of-sample data most likely. Applicable for both correctly
specified and misspecified models [61,86,87,93,94].
9 Generalized Bayesian Information GBIC allows comparison between nested, overlapping, or nonnested
Criterion (GBIC) models having different numbers of parameters, with small sample

correction superior to BIC. Selects the most probable model given the
data. Applicable for both correctly specified and misspecified models
[95-97].

KIC is an asymptotically unbiased estimator of Kullback's symmetric
divergence that allows comparison between nested, overlapping, or
nonnested models having different numbers of parameters [98,99].
Assumes all models are correctly specified.

10 Kullback Information Criterion (KIC)

process assumptions are severely violated. However, the determination of whether an out-
lier corresponds to a flaw in the probability model or an exception in the data sampling
process may not always be resolved through inspection of graphical residual diagnostics.
In such cases, the use of hypothesis testing approaches to outlier detection [107-109] and,
more generally, specification analysis [18,81,110] may be more helpful than measures of
fit that support model comparisons, but are not designed to detect misspecification in a
particular model. Several specification tests for statistical models with continuous and cat-
egorical outcomes including newer Information Matrix Tests (IMT) [18,79-81] are further
discussed with examples provided in Table 2.

Link specification tests [34,38] are applicable for testing the assumption of linearity
in the link function (e.g. logit), however they are not designed to detect other types of
model misspecification. Another widely used method is the encompassing model selec-
tion test, which is applicable when the researcher’s model is fully nested within a highly
flexible model capable of representing both the researcher’s model as well as virtually
any arbitrary probability distribution. An example is the Likelihood Ratio Test (LRT)
[111] that compares an encompassing model with the researcher’s model. The detection
of a difference in model fit between the encompassing model and the researcher’s model
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Table 2. Examples of specification tests for assessing a model’s representation of the DGP.

No. Specification tests Description

1 Box-Tidwell Test Detects misspecification of linearity assumptions in logistic regression models
[38].

2 Breush-Pagan Test Detects presence of heteroskedastic residual errors in the linear regression model
[138].

3 Durbin-Watson Test Detects presence of autocorrelation (i.e. correlated residual errors) for regression

models that assume uncorrelated residual errors [139,140].
4 Encompassing Model Selection  Detects model misspecification by using a correctly specified probability model
Test which is sufficiently flexible for representing both the DGP and the researcher’s
model [18,141].
6 Generalized Information Matrix ~ Detects model misspecification by comparing nonlinear combinations of two

Test(s) (GIMT) different covariance matrix estimators (Hessian, OPG) to test if the Fisher
Information Equality holds for large class of smooth probability models
[18,79-81].
7 Hosmer-Lemeshow Test Detects deviation of observed frequency distribution from a theoretical (expected)
probability distribution for logistic regression modeling [12,38,114,142].
8 Information Matrix Test(s) (IMT)  Detects model misspecification by comparing linear combinations of two

different inverse covariance matrix estimators (Hessian, OPG) to test if the
Fisher Information Equality holds for a large class of smooth probability models

[18,79-81].

9 Ljung-Box Test Detects presence of autocorrelation (i.e. correlated residual errors) for
auto-regressive moving average (ARMA) models [143,144].

10 Pearson-chi-square x2 Detects deviation of observed frequency distribution from theoretical (expected)
probability distribution [12,38].

11 Tukey-Preigibon Link Test Detects misspecification of linearity assumptions in logistic regression models
[38].

12 White Test (IMT) Detects presence of heteroskedastic residual errors or residual error dependence
on predictors or other types of misspecification in the linear regression model
[100].

indicates the possible presence of model misspecification stemming from potentially omit-
ted predictors. However, this strategy is limited because the resulting chi-squared statistic
often has high degrees of freedom and therefore poor statistical power. For linear regres-
sion modeling, several specialized tests have been developed including the White Test for
Heteroskedasticity [100], which is a special case of the IMT [81]. Additionally, special-
ized model misspecification tests have been developed to detect one or more aspects of
model misspecification. For example, specification tests for time-series analyses have been
developed [112].

Chi-square GOF tests [113,114] are utilized for probability models with categorical
response variables. For example, the classic Pearson chi-squared GOF test may be used,
which is asymptotically equivalent to an Encompassing MST using the LRT. In the case of
logistic regression, a variety of model misspecification tests have been developed based
upon the chi-squared GOF test [115,116]. A chi-squared GOF test [12,114,117] com-
pares the predicted probabilities of a model to the observed frequencies. In regression
modeling when the outcome variable is categorical, the conditional probability mass func-
tion of the outcome variable conditioned upon the predictors needs to be checked for
model misspecification for unique patterns of predictor variable values. However, in prac-
tice such tests require that observations (exemplars) with similar predictor patterns be
grouped together in order to avoid the problem of excessive degrees of freedom [12,118].
A drawback of this approach is that grouping methods are actually testing a ‘grouped
version’ of the researcher’s model rather than the researcher’s original logistic regression
model [114].
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Generalized Information Matrix Tests (GIMT) [79,80,119-125] are nonlinear exten-
sions of White’s IMT [18,81,126] that test for model misspecification and are applicable to
a wide range of statistical models including generalized linear models (GLM) [11,37,127]
and the family of nonlinear exponential models [25]. GIMTs are based on classical asymp-
totic statistical theory that assumes the probability model can adequately represent the
DGP, implying that the Fisher Information Matrix Equality holds [18,79-81,128]. So, if
the fitted probability model is correctly specified, then the inverse outer-product-gradient
(OPG) and inverse Hessian estimates of the variance-covariance matrix (hereafter covari-
ance matrix) of the maximum likelihood estimates (MLE) will be approximately equal
corresponding to the case where the Fisher Information Matrix Equality holds. Note that
OPG estimates of the covariance matrix are based on first derivatives of the likelihood
function, while Hessian estimates use second derivatives. In the situation when these two
covariance matrix estimators (CME) are not equivalent, the presence of model misspec-
ification is indicated [18,81]. If the model is misspecified, then both of these formulas
(Hessian, OPG) are incorrect for the covariance matrix of the MLEs and the robust sand-
wich CME [18,81] should be used instead. Different methods for comparing the Hessian
and OPG CMEs correspond to different types of tests for detecting model misspecification
in the GIMT framework [18,79-81].

An important advantage of GIMT methods over Encompassing MST methods is that
the number of degrees of freedom is often manageable, which provides statistical tests
with good level and power performance [79,80]. Another advantage is that the detec-
tion of model misspecification also involves identifying situations where the use of the
sandwich CME is required. GIMTs have been applied to detect the presence of misspecifi-
cation in regression models in both randomized controlled trials and observational studies.
GIMTs and other GOF tests [114,117,129-136] are provided in Table 2. Validation methods
[6,7,33,137] that also provide an opportunity for assessing both model fit and specification
are discussed in section 5.1.

2.2.3. Model selection tests

Researchers often fit two or more models to the same dataset, and then test which of the
estimated models has the best ‘fit’ to the dataset. A statistical test to determine the better
fitting model is called a ‘Model Selection Test’” (MST) [86,111,145-148]. To support model
development, such tests can be used for comparing the fit of competing models. These
tests, however, have limitations. The Likelihood Ratio Test (LRT) [111] is widely used to
determine whether a correctly specified ‘full model’ fits the DGP more effectively than
a ‘reduced’ or ‘nested’ model as a special case of the full model. It is commonly used to
compare the full model to the intercept only model as a test of overall model fit. A more
robust approach to the LRT is the Bootstrap Likelihood Ratio Test (BLRT) [149], which
uses an empirical estimate of the null hypothesis distribution. Generalizations of the LRT
such as the Vuong’s Model Selection Test and Golden’s Discrepancy Risk Model Selection
Test (DRMST) [145,147] may be used to compare models that are not nested or possibly
not correctly specified [146,148]. Further, MSTs may also be used to determine optimal
recoding or transformation strategies for a predictor that has been recoded or transformed
before being fit in a model. This is done by comparing two regression models comprising
the same variables, but where the model variables are recoded or transformed differently.
Table 3 contains examples of model selection tests.
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Table 3. Examples of model selection tests (MST) that compare competing model fits.

No. Specification test Description

1 Bootstrap Likelihood Ratio Test Robust statistical test for comparing fit of possibly misspecified or nonnested
(BLRT) statistical models [149-152].

2 Discrepancy Risk Model Selection  Robust statistical test for comparing possibly misspecified or nonnested
Test (DRMST) time-series models. Model selection criteria such as AIC, BIC, or GAIC may be

used to adjust models being compared. This is a generalization of Vuong's
Model Selection Test [80,145,147].

3 Likelihood Ratio Test (LRT) Statistical test for comparing fit of statistical models where the full model is
correctly specified and the reduced model is fully nested within the full
model [12,38,111].

4 Lo-Mendell-Rubin Likelihood Ratio  Statistical test that allows comparison between models that have different

Test (LMR) numbers of components in a normal mixture. This is a special case of

Vuong’s Model Selection Test [153].

5 Rivers & Vuong Nonlinear Dynamic  Statistical test for comparing possibly misspecified and essentially nonnested

Model Selection Test time-series models using a variety of MSC (e.g. AIC, BIC, GAIC). This is a
generalization of Vuong's Model Selection Test [148].
6 Vuong's Model Selection Test Robust statistical test for comparing possibly misspecified or nonnested

models. Model selection criteria such as AIC or BIC may be used to adjust
models being compared [146,148].

2.2.4. Nonparametric tests

Nonparametric tests may be used to check selected properties of the DGP without
postulating an explicit probability model. Nonparametric tests are often preferred to
parametric tests because the former relies on weaker assumptions regarding the under-
lying probability distribution [51,53,154-157]. Nonparametric test statistics are useful
when: (i) the data is continuous and the distribution is unknown, (ii) the data is ordi-
nal, ranked or categorical, (iif) sample size is very small, or (iv) reliable models of the
occurrence of outliers [108,109,158,159] are not available, and little is known about
the relationship among and between predictors and outcome variables. Nonparamet-
ric tests can facilitate better understanding of the variables that are used in subsequent
multivariate modeling. For a broader discussion of nonparametric statistics see Wasser-
man, Corder and Foreman, Hollander et al. [51-53]. Table 4 contains examples of some
nonparametric tests.

Table 4. Examples of nonparametric tests.

No. Statistical test Description

1 Anderson-Darling Test Detects if empirical distribution function estimated from the data sample differs
from null hypothesis distribution function [160].

2 Kolmogorov-Smirnov Test 1. Detectsifthe empirical distribution function estimated from the data sample

differs from null hypothesis distribution function.
2. Detects if two empirical distribution functions estimated from two data
samples are different [14,51,161-164].

3 Shapiro-Wilk Test Detects violation of assumption that observations are from a normally distributed
population [165].
4 Spearman’s rank correlation Detects if two random variables are correlated without assuming a specific joint
coefficient distribution for the two variables [14].
5 Tau Test based on Kendall rank  Detects if two random variables are correlated without assuming a specific joint
correlation coefficient distribution for two variables [14,166,167].
6 Wilcoxon signed-rank Test Detects if median difference between pairs of observations from two respective

data samples differ from zero. Does not assume a specific joint distribution for
pairs [14].
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2.3. Recommendations

The challenge in performing model fit and model specification analyses is to determine
and apply the appropriate statistical methods for the researcher’s statistical model. These
methods should be identified as part of the researcher’s data analysis plans [168] where
the type of model summary fit measures and significance of regression tests, as well as the
summary GOF tests and model misspecification tests available for data analyses, depend
on the particular statistical modeling approach being applied. When regression model-
ing paradigms (e.g. linear regression, nonlinear regression, categorical regression, etc.) are
employed, the following is recommended.

Recommendations: Model Fit and Model Specification Testing
1. Minimum Acceptable Statistical Modeling — A summary measure and model fit test (Table 1) as

well as a summary model specification (goodness-of-fit) test (Table 2) are performed on the
researcher’s final model. Results also include graphical diagnostic plot(s) [6,7,12,38,46,169].
Researcher specifies the fitness measure, fit and specification (goodness-of-fit) tests with the
graphical diagnostic plot(s) for the statistical model [6,7,12,38] in the data analysis plan
[168]. The model selection criteria for comparing or testing competing models (Table 3)
are included in the plan. The researcher must also justify why the proposed model fit and
model comparison plans are appropriate for the planned model comparisons proposed in

the research plan.
2. Advanced Statistical Modeling - Summary tests for model fit (Table 1) and a battery of

specification tests (see Table 2) [6,7,12,38] are performed to check different aspects of possible
model misspecification for the researcher’s final model. This should be accompanied with
multiple graphical diagnostics for both predictive results and residual plots. Additionally,
computational specification analysis methods such as nonparametric bootstrapping or
split-sample methods are performed to evaluate model fit and specification and employed.
Researcher specifies the fitness measure, fit and specification (goodness-of-fit) tests with the
graphical diagnostic plots for the statistical model [6,7,12,38] in the data analysis plan [168].
Further, the model selection criteria for comparing or testing competing models (Table 3)
and computational analysis methods are included in the plan.

3. Data representation strategies

3.1. Statement of challenge - choice of variables, transformations, and
interactions

To create a probability model of the response outcome, analysts must identify the rele-
vant variables in the dataset and then transform or recode [6,7,12,31] them into covariates
(predictors) to develop a model that can represent the true DGP [18].

3.2. Explanation

In classical asymptotic statistical theory, analysts usually assume that their probability
model adequately represents the DGP. As previously discussed, the Fisher Information
Matrix Equality holds in this situation [18,81,128]. When this equality is violated, in prac-
tice this indicates: (i) a data field, containing a variable, was not considered or is not in the
dataset, (ii) the data variable was considered, but not properly recoded (discrete, ordinal)
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or transformed (continuous, ordinal) into a covariate, (iii) an important interaction among
two or more covariates was not included, and/or (iv) the particular form of the response
variable distribution assumed by the statistical analysis has major (or minor) discrepancies.

3.2.1. Plausible variables

Analysts often begin with a dataset containing raw fields that must be scored, indexed, and
missing data recoded into research-ready variables appropriate for data analyses [170,171].
Plausible variables are those available research-ready variables that the analyst consid-
ers relevant for: (i) the specific study purpose, such as estimating effect sizes, testing
hypotheses, confirming theory, or estimating risks of an occurrence or outcome event,
(ii) study design, (iii) prior experience including literature reviews of prior studies, and
most importantly, (iv) theory, including all variables derived from competing theories.
Plausible variables may also be assessed empirically using univariate regressions [1,7,12]
to determine separately if each variable is associated with responses.

3.2.2. Covariates: recoding and transformation

To determine whether a plausible variable from the dataset should be transformed or
recoded before entering into the model, the analyst may fit the response variable in sep-
arate univariate regressions on each variable with the intercept term, and then test the
estimated single variable model for both model fit (Table 3) and model misspecification
using tests identified in Table 2. A single predictor model with poor model fit indicates
the model’s predictor may be less important in generating predictive model responses.
Further, the presence of model misspecification in a single predictor model indicates the
probabilistic relationship between the response variable and predictor variable is misspec-
ified and suggests alternative representations or transformations of the predictor should
be considered. Plausible variables may be transformed or recoded to candidate covariates
for subsequent multivariate modeling as follows. Categorical (nominal) and ordinal vari-
ables may be recoded by collapsing (pooling) or disaggregating categories using reference
cell coding [12]. Continuous variables may be transformed using: (i) power transforma-
tions [172], (ii) fractional polynomial methods [9], (iii) spline methods [6,7], (iv) kernel
smoother methods [7], or (v) splitting the ordinal / continuous plausible variable into con-
secutive ranges where each is represented by a binary design variable. Thus, age could be
partitioned into ranges: < 18 years, 19-30, 31-45, 46-64, and 65+, with respective binary
design variables that assume a value of one if the subject is within the age interval, and
zero otherwise [7,12]. As previously discussed, robust model selection tests (e.g. Vuong’s
MST [146], Golden’s DRMST [145]) which allow comparing non-nested models may also
be used to determine an optimal recoding or transformation for a variable by compar-
ing models fitted with its alternate recodings or transformations. All variable recodings
/ transformations are thus performed before being entered into the candidate covariate
pool.

3.2.3. Interactions

Interaction terms are computed by multiplying two or more covariates together. Interac-
tions are used to address specification issues (i.e. GOF), improve model fit [175], model
relationships between covariates during model development [6,176-180], and to assess
how the effect of one covariate on the outcome variable varies with another covariate
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[6,9,38,175,181]. An interaction may describe either a causal on non-causal relationship.
In this situation interactions may be specified or may be driven by model selection. Each
interaction is then treated as an additional predictor, which is included in the candidate
list of variables for the modeling procedure. The issue goes beyond merely attempting to
measure the independent effect of two interacting factors on outcome. For example, in the
DGP that explains the onset of a given disorder, an ‘older female’ patient may not necessar-
ily be only the product of an age and gender factors, but rather the characteristic of being
an older-female and other predictors such as family history of disorder. Interactions may
also be used investigate hypothesized moderated effects [74,182] and to perform before
and after studies [174].

3.3. Recommendations

The challenge is in determining variable transformations and specifying interactions for
the researcher’s statistical model. These approaches should be identified as part of the
researcher’s data analysis plan, with the type of transformations and interactions of inter-
est for data analyses dependent on the particular statistical modeling being utilized. The
following is recommended.

Recommendations: Transformation / Interactions
1. Minimum Acceptable Statistical Modeling — Analysis should be performed on a single variable

model which predicts the response variable for each variable to determine fit, specification,
and predictive performance. Transformations that improve fit (e.g. power transformations
[172], fractional polynomial methods [9], spline methods [6,7], kernel smoother
methods [7]) and interpretability (e.g. median dichotomization) are applied as required.
Interactions are specified as combinations of variables from the pool of potential covariates.
Researcher specifies the relevant types of variable transformations and interactions

for the statistical model in the data analyses plan and explains why they are relevant.

Multicollinearity diagnostics [6,12] are identified.
2. Advanced Statistical Modeling - Transformation analyses (when applicable) that

include supervised transformations (e.g. fractional polynomials, cubic splines with
free knots) and multiple predictive measures (e.g. AIC, GAIC) in conjunction

with specification testing and model validation methods (e.g. KCV, bootstrapping)
should be performed to identify opportunities to improve variable fit and pre-
dictive performance for each variable. Interactions may specified or data-driven.
Researcher specifies all relevant model prediction measures, transformations, interac-
tions, and validation methods in data analyses plan and explains why they are relevant.
Multicollinearity diagnostics are identified.

4. Model search strategies
4.1. Statement of challenge - model search

Researchers often analyze datasets without having clear theoretical or empirical guidance
from prior studies as a basis for selecting one model. Compounding this source of uncer-
tainty [183-185] are issues associated with theoretically related variables that are highly
collinear [186], thus leaving the researcher to select among competing models. Further,
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there are no assurances that a single model exists that [187] adequately represents the DGP
[96]. In such situations utilizing automated model-building strategies can be supportive in
this regard when a plausible set of covariates consisting of recoded or transformed variables
as well as interaction terms that have been identified by the researcher(s) to be within the
design framework. However, model(s) resulting from automated model-building methods
also require validation and specification testing as well as critical scientific review. The fol-
lowing automated model-building discussion assumes that the number of observations is
larger than the number of variables. Thus, statistical methods [32,182-188] for developing
models from datasets with small numbers of observations that have thousands to hundreds
of thousands of available variables are not addressed [32,188-194].

4.2. Explanation

Typically, a regression model [6] may be specified by a subset of predictors (covari-
ates) from the original sample where each predictor subset corresponds to a particular
regression model. Using a data-driven approach, the model building problem may then be
reformulated as a search for the model that provides the best possible fit to the observed
data. Such model(s) may exhibit improved predictive accuracy and interpretability. There
are multiple approaches to model search for a single best model [195]. More advanced
approaches that address the uncertainty inherent in the single model (SM) paradigm use
multimodel (MM) methods that search for a collection of models [58,61,63]. Table 5 shows
a comparison of SM and MM model search methods, which are discussed in the following
sections.

4.2.1. Single model (SM) methods

Stepwise Regression. There are a variety of stepwise regression methods [197] that are
used to find a best model from among a set of candidate predictor variables. The guiding
principle of stepwise regression models is that the search algorithm is constantly com-
paring one model that is nested within another model. This places a special collection of
‘nesting constraints’ on the search algorithm procedure that severely limits the space of
possible models that the analysis will consider as a final model. Such nesting constraints
on the model space restrict the stepwise procedure’s capacity to yield a final model that
approximates the DGP. Although these methods are widely used even when the number
of predictors is small, SM stepwise regression methods are inferior to exhaustive search
(all subsets) methods, especially in the presence of multicollinearity among covariates
and in higher-dimensional spaces when stepwise methods may become trapped in local
maxima [206]. Further, as complex patterns of features increase in the presence of mul-
ticollinearity, stepwise methods may not provide adequate representations of the model
space.

Forward stepwise regression begins by regressing the outcome variable separately on
each variable in the predictor pool, and comparing its fit to that of the intercept-only
regression model using the Likelihood Ratio Test (LRT) or the Wald Test (with the Hes-
sian CME). The predictor corresponding to the model with the largest likelihood relative
to the intercept-only model is then selected and added into the final model. This process is
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Table 5. Comparisons of model search methods.

Robust for
comparing Controls for
Seeks optimal misspecified® Accounts for model
Model search methods® model(s) models multicollinearity® uncertainty
Single Model (SM) approach®
Stepwise Regression using No, solution set No, LRT assumes No, typically does No
Likelihood Ratio Test (LRT) is algorithm correct not check for
[196,197] dependent specification multicollinearity.
Exhaustive Search (all subsets) with  YES, solution set YES, provided robust  Yes, if multicollinearity No
MSC [197] is algorithm MSC used is checked.
independent
Implicit (e.g. B&B) Exhaustive YES, solution set YES, provided robust  Yes, if multicollinearity No
Search [198-201] is algorithm MSC used is checked.
independent under
certain conditions
Stochastic Search with MSC YES YES, provided robust  Yes, if multicollinearity No
[202-205] MSC used is checked.
Multimodel (MM) approach
Frequentist Model Averaging YES, solution set YES Yes, if multicollinearity YES
(FMA) [61-63,244-247] is algorithm is checked.
independent
Bayesian Model Averaging (BMA) YES, solution set na Yes, if multicollinearity YES
[58,183,226,230,236,242,243] is algorithm of models that
independent are averaged is

checked.

3The use of stepwise regression methods is not recommended for final model determination. Exhaustive search, branch and
bound search of the entire model space, or stochastic search of the model space in conjunction with model validation and
specification testing are preferred.

bModel selection criteria [61,93,94,96] (e.g. GAIC, GBIC) designed to assess out-of-sample performance that are robust to
model misspecification [18,81] may be utilized by search algorithm.

“Models may be filtered for multicollinearity based on a specified threshold for large variance-covariance matrix condition
numbers. Ridge regression methods [197] may also be used to control for multicollinearity.

repeated for each of the remaining p-1I predictors in the predictor pool until the additional
predictor produces no significant increase in likelihood of the final model.

Backward elimination stepwise regression begins with a regression model consisting
of all p predictors and an intercept is compared to a nested regression model consisting
of p-1 predictors using either the LRT or Wald test. The predictor that is least signifi-
cant is dropped from the model and the process is repeated until dropping a predictor
from the model significantly reduces the likelihood. Backward stepwise regression meth-
ods are intended to circumvent the problem of omitting crucial predictors from the
model yet still suffer from all of the problems of forward stepwise regression as well
as the additional problem of multicollinearity (i.e. making statistical inferences from a
model containing highly correlated predictors), which may result in unreliable statistical
inferences.

Forward-backward stepwise regression is an important variant of stepwise regression
[197]. As described in Efroymson [196], forward-backward stepwise begins as forward
stepwise regression. However, in subsequent steps, after a new predictor is added to the
model the statistical significance of all predictors currently in the model is checked and
predictors that are not contributing in a statistically significant manner to the predictive
performance of the model are dropped.
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Stepwise approaches may be used for exploratory purposes, but are not recommended
to create final models for subsequent analysis. First, forward stepwise regression meth-
ods may omit the inclusion of important predictors since the ordering in which predictors
are considered for model inclusion can substantially influence the final form of the model
discovered by such methods. Second, in order for the Likelihood Ratio Test (LRT) or
the Wald Test (with Hessian CME) to be applicable, it is assumed that the ‘full’ model
is correctly specified. This assumption is often violated during the course of stepwise
model building. Third, the experiment-wise Type 1 error rate in a forward stepwise regres-
sion problem is essentially meaningless, which means that some model comparisons will
inevitably be rejected by chance. A fourth problem in stepwise approaches is the limi-
tations of LRT and Wald test methods. Under the null hypothesis, the test statistic for
the LRT is assumed to have an asymptotic chi-square distribution, but only if the model
is correctly specified. This becomes a problem for the researcher as possibly misspeci-
fied models are frequently compared during the stepwise model building process. In fact,
this is a pitfall of many automated model building approaches. Further, the LRT com-
pares only nested models and requires the full model to always be correctly specified,
thus making the use of LRT inappropriate for ‘exhaustive searches’ where all possible
pairs of models are compared since situations where at least one model is misspecified
are common.

Exhaustive Search. The exhaustive model search method (i.e. all subsets) is a straight-
forward model search approach for finding a single best fitting model that is appropriate
when the number of models to be searched is computationally tractable [197,198,207,208].
In this method, the likelihood of every possible model (i.e. all subsets of predictors)
given the observed data is estimated and the model with the best fit is selected. The
exhaustive model search is a powerful approach when employed with a model selec-
tion criterion (e.g. AIC, GAIC, BIC) and validation methods, but depending on the
number of predictors may be computationally limited. If there are p plausible predic-
tors to explain an outcome variable based on accepted theory (including all covariates
obtained after appropriate transformations have been applied), then there are 27 sub-
sets of predictors (including intercept-only model) that must be considered in searching
for the best fitting model. There are computational algorithms that search exhaustively
over as many as p = 30 predictors (23° models), however specialized algorithms that
perform implicit exhaustive searches are required for larger model spaces (e.g. p = 60)
[196-199,206-210] and the topic continues to be a subject of research [209,210]. Exhaus-
tive search methods can also be applied to rapidly find groups of ‘best’ models that support
multimodeling.

Exhaustive Search (Implicit). When the number of predictors is large, then an exhaus-
tive search of all possible subsets of predictors may not be computationally feasible. In
this situation, Branch and Bound (B&B) search algorithms may be used to find sub-
sets of predictors that best fit the observed data while avoiding an exhaustive search
[197,199,200,211-218]. The approach that B&B methods use is to construct a search tree
and then identify branches of the tree that can be ‘pruned’ in order to significantly reduce
the size of the search space. Such methods have been shown to find the best model as
effectively as an exhaustive search approach [200]. In many cases, dramatic gains in com-
putational efficiency may be realized using these methods [200,212]. Implicit exhaustive
search methods such as B&B can also be applied to rapidly find groups of ‘best’ models
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that support multimodeling. However, as with other search methods, there is no assurance
that the final model found using B&B is correctly specified.

Stochastic Search. Stochastic search methods such as Markov chain Monte Carlo
(MCMC) [219-223] can often rapidly find ‘good’ models. However, such algo-
rithms designed to explore model spaces rely on Gibbs sampling [224] or on the
Metropolis-Hastings algorithm [204,225] and may be ineffective in very high dimensions
with hundreds or thousands of predictors due to slow convergence. New model search
methods that draw from MCMC but exploit simultaneous model search using parallel
methods [202] have been shown to be effective when searching over larger model spaces.
Stochastic search methods such as MCMC can be applied to rapidly find groups of ‘best’
models that support model averaging methods [58].

4.2.2. Multimodel (MM) search and averaging methods

A search for the best model to approximate the DGP assumes that a ‘best’ model
exists, is discoverable, and is distinguishable from second best alternative models. While
single model estimation and inference is widely used in health-related studies, such
approaches neglect model uncertainty that arises when the researcher’s model deviates
from other observationally equivalent models that approximate the DGP. Accounting
for model uncertainty allows researchers to: (i) detect additional statistical regularities
(e.g. treatment effects, risk factors) among groups of observationally equivalent mod-
els, (ii) improve the precision of statistical inferences for estimation and prediction /
classification, (iif) control for overfitting and model selection biases, and (iv) include
a much larger set of highly correlated, multicollinear risk factors in the data analy-
sis plan that would impose estimation obstacles if they were all to appear in a single
model.

MM search methods involve several steps. First, a model space is specified based a set
of candidate predictors as selected by the researcher based on prior knowledge of what
variables should be included in the model. In many applications, this model space can
be large. In such cases, combinations of deterministic and stochastic single model search
methods may be employed to reduce the number of models in the original model space
to a model space with a small number of models which exhibit good predictive perfor-
mance. And second, MM effect sizes and predictions across all fitted models in the model
space are averaged through a weighted averaging scheme. Such model averaging meth-
ods have been shown to be both theoretically [58,226,227] and empirically [228-241]
superior to SM inference methods applied to health-related data analyses [228-233,
235,239-241].

MM Search Methods. Exhaustive model search is a straightforward model search
approach for finding a subset of best approximating models, which can be utilized when
the number of models to be searched is computationally tractable [197,198,207,208]. An
exhaustive search is appropriate when the researcher has identified approximately 30 or
fewer predictors based upon theory-driven considerations. In this situation the likelihood
of every possible model given the observed data is estimated and either all the models or
the models within a specified neighborhood of the ‘best’ model are used for multimodeling.
When used in this manner, exhaustive search can be powerful tool for quantifying model
uncertainty. If the number of predictors is large, then an exhaustive search of all possible
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subsets of predictors to support a multimodeling approach may not be computationally
feasible. In this situation, B&B search algorithms, which implicitly search all models, may
be used to find best subsets of predictors that fit the observed data, thus avoiding an exhaus-
tive search [197,199,200,211-215]. As discussed B&B [200] algorithms construct a search
tree and then identify branches of the tree that can be ‘pruned’ in order to reduce the
size of the search space. The models obtained from B&B are then used for multimodel-
ing. Previously discussed stochastic search methods such as Markov chain Monte Carlo
(MCMC) [202,219-223] can also be applied to rapidly find groups of ‘best’ models that
support model averaging methods [58].

Bayesian Model Averaging (BMA). BMA is a multimodeling method for estimation and
inference that deals with model uncertainty [58,183,226,230,236,242,243]. It is appropriate
when the researcher has good prior knowledge of both model and parameter specifica-
tion. Given a large collection of models which defines a ‘model space’, methods such as
exhaustive model search seek a single best model in the model space. In contrast to this
approach, BMA approaches generally focus upon using the ‘most probable’ models within
a constrained model space by applying Occam’s Window [58] to identify a group of best
models, rather than searching through, evaluating each, and finally selecting the best mod-
els from among all possible models in what otherwise may be a computationally intractable
model space. The essential idea of BMA is that one uses the fit of each model to the data
to estimate the expected response given all of the models and the data. This is achieved
by defining the predicted response as a weighted sum of the responses of all of the mod-
els in the model space where the weight of each model is the estimated probability of
that model given the data and specified prior knowledge. Thus, a prediction is generated
by a weighted consensus of multiple models rather than attempting to select one out of
many models.

Frequentist Model Averaging (FMA). FMA [61,63,244-247] is a relatively new multi-
modeling approach for dealing with model uncertainty that addresses several issues asso-
ciated with Bayesian methods [58,183,226,230,236,242,243]. In particular, FMA doesn’t
require prior distributions be specified for either predictors or models and permits flexi-
bility in weight choice for FMA estimators [246]. Both BMA and FMA approaches often
use a constrained model space by applying Occam’s Window [58] to identify a group
of best models. However, in computationally tractable model spaces the FMA method
may use all possible models. The essential idea of FMA is that a predicted response, as
in BMA, is defined as a weighted sum of the responses of all of the models in the model
space, but arbitrary weighting functions can be used to specify the relative importance
of each model.

4.3. Recommendations

The challenge in determining model search methods for the researcher’s statistical mod-
eling depends on multiple factors including: (i) posited probability model (e.g. linear
regression, logistic regression), (ii) number of covariates, and (ii) sample size. The model
search approach should be identified as part of the researcher’s data analysis plan, with
the type of transformations and interactions of interest for data analysis dependent on the
particular statistical modeling being utilized. The following is recommended.
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Recommendations: Model Search
1. Minimum Acceptable Statistical Modeling — Single Model search methods (when

applicable) that include model validation (ref § 5) are included in the researcher’s data
to determine the best model that meets the stated fitness criteria. Note that stepwise
regression methods are not recommended for final model development, although
they can offer computationally tractable approaches for initial predictor screening
and exploratory modeling. Further, many automatic search methods typically do not
control for multicollinearity and may also find final models that are misspecified.
Researcher specifies the candidate variables, transformations, and model search method
and validation method in the data analysis plan. Final model(s) are tested for model

misspecification.
2. Advanced Statistical Modeling — Multimodel search methods that include model

validation are performed on the researcher’s data to determine the best model that meets
the stated fitness criteria. Both BMA and FMA methods handle model uncertainty.
However, FMA provides the hypothesis testing framework for a final multimodel that

is widely used in health-related research. Additionally, as opposed to BMA, the FMA
approach does not require prior knowledge (parameter prior, model prior) be specified.
Researcher specifies the candidate variables and model search method and validation
method in the data analysis plan.

5. Model validation strategies
5.1. Statement of challenge - model validation

Model validation methods [7,137,248] include three components to evaluate model
performance and assess biases: (i) model fit, (ii) model specification [18,80,81], and
(#ii) predictive / classification performance [6,7]. The purpose is to determine whether
a model, fitted using one dataset, will perform well when applied to new data.
Model validation [7,137,248] is thus an essential component of the model development
process.

5.2. Explanation

There are a variety of possible model validation methods. First, a well-known approach
often applied with large datasets is split sample methods [6,7]. Here, the sample is ran-
domly divided into a training dataset that is used to develop the model, and a test data set
that is used to validate the fitted model. When a sufficiently large number of observations
are present in the dataset then a 3-way split may be used to generate training, valida-
tion, and testing samples. This approach develops the statistical model on the training
sample, evaluates it on the validation sample allowing possible changes, and then gener-
ates the final model once on the test sample [7,33]. The major limitation of split sample
methods is that sufficient data may not be available. Second, the cross-validation (CV)
methodology [250,251] known as k-fold CV [6,7] is an alternative to the classical split
sample method when sample size is limited. Often applied when the researcher believes
the observations (exemplars) in the dataset are independent and identically distributed
(i.i.d.), the k-fold cross validation randomly divides the n total observations (exemplars)
into k groups (folds) (e.g. k = 10) of observations, and the model is fit using k-1 groups
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of observations to estimate model parameters and then evaluated on the remaining ‘out-
of-sample’ group of observations. This process is repeated an additional k-1 times so that
all k groups participate as ‘out-of-sample’ groups. The estimated performance statistics
averaged across all k groups measures the precision of the predictions in a realistic data
sample. Third, an approach called leave-one-out cross-validation (LOOCV) [6,7] can also
be used to evaluate statistical models. It leaves out one observation from n observations
and then fits a model on the remaining #n-1 observations, which is then used to predict
the holdout observation response. The observations is replaced and a subsequent obser-
vation is removed to repeat the estimation and prediction. This is performed until all n
observations have been processed as holdouts. The predicted results are then averaged
to compute performance measures. Fourth, bootstrapping or resampling [6,7,252] meth-
ods involve sampling observations with replacement m times from the original dataset of
n observations, to create m new datasets where each new dataset consists of n observa-
tions. These m new datasets are called bootstrap samples. For each bootstrap sample, the
model is fitted and the mean and standard error (sample standard deviation) across all m
bootstrap samples are computed. Ideally, the number of bootstrap samples m should be
chosen sufficiently large so that the computed error of the mean standard error converges
to zero.

5.3. Recommendations

The challenge in performing model validation is to determine and apply the appropri-
ate validation methods for the researcher’s statistical model. These method(s) should be
identified as part of the researcher’s data analysis plan, with the type of validation for data
analysis based on the particular statistical modeling being utilized. When regression mod-
eling methods (e.g. linear regression, nonlinear regression, categorical regression, etc.) are
employed, the following is recommended.

Recommendations: Model Validation
1. Minimum Acceptable Statistical Modeling - Model validation is performed on the researcher’s

final model to determine whether it will generalize to new data. Computational methods
(e.g. k-fold CV, bootstrapping, LOOCYV, split-sample) are generally the preferred methods
for model validation. Alternatively, in some situations that may depend on sample size,
model complexity, and data quality, a model selection criteria (e.g. AIC, AICc, GAIC)
that estimates out-of-sample performance can be utilized to select the best model [61].
Researcher specifies the model validation method (e.g. k-fold CV, bootstrapping, LOOCYV,
split-sample) for the statistical model in the data analysis plan. Model validation measures

(e.g. predictive performance, model fit) are included in the plan.
2. Advanced Statistical Modeling — Multiple model validation methods [6,7] are

performed to evaluate different aspects of final model fit, predictive perfor-

mance, and generalization to new data. k-fold or split-sample CV methods are
repeated at least 10 times on sample randomizations and results are then averaged.
Researcher specifies the model validation methods (e.g. k-fold CV, bootstrapping, LOOCY,
split-sample) for the statistical model in the data analysis plan. All model validation
measures (e.g. predictive performance, model fit) are included in the plan.
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6. Prediction
6.1. Statement of challenge - prediction

A common problem faced by epidemiological and health care researchers is making
effective predictions from their models [6,7]. A widely used approach for making pre-
dictions is performed using a fitted statistical model to predict out of sample values
[8,12,26,33,253-256]. The use of correctly specified probability models [18,80,81] supports
robust predictions.

6.2. Explanation

Predictive performance for statistical models are computed using a variety of measures
[6,7,33]. Table 6 shows examples of predictive measures for linear and nonlinear regression
models with continuous dependent variables.

6.3. Recommendations

The challenge in reporting predictive performance is to determine and apply the appro-
priate measure for the researcher’s statistical model. These measures should be identified
as part of the researcher’s data analysis plans where the type of predictive measure for data
analyses depends on the particular statistical modeling being utilized. When regression
modeling analysis methods (e.g. linear regression, nonlinear regression) are employed, the
following is recommended.

Recommendations: Predictive Performance
1. Minimum Acceptable Statistical Modeling — Predictive analyses specifies error mea-

sures and model validation methods that are performed on the researcher’s final
model to determine whether the model is likely to accurately predict responses.
Researcher specifies and justifies the model prediction measures and validation method for

the statistical model in the data analysis plan.
2. Advanced Statistical Modeling - Predictive analyses include multiple predictive measures with

model validation are performed to evaluate different aspects of final model fit and predictive
performance. Multiple models are averaged to obtain better predictive performance.
Researcher specifies and justifies multiple model prediction measures and validation methods
in data analysis plan.

7. Classification
7.1. Statement of challenge - classification

Categorical regression models [1,3,6,12] predict probabilities that may be used to make
classification decisions. Epidemiological and health care researchers often apply decision
or allocation rules [256] to probabilistic modeling results in order to make classifications.
The researcher first estimates the parameters of a probability model, which may then be
used to estimate the predicted probability that an event of interest occurs, such as a disor-
der onset, side effect symptoms, or readmission. A classification rule is applied to allow the
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Table 6. Examples of predictive measures.

No. Predictive measures Description
1 Mean Absolute Deviation (MAD) Average of absolute deviations from a measure of central
tendency (e.g. mean, median, mode) [257].
2 Mean Absolute Percentage Error Measure of predictive accuracy expressed as a percentage of
(MAPE) the average absolute error between predicted and observed
values [258].
3 Mean Squared Predicted Error The mean squared differences between predicted and
(MSPE) out-of-sample observed values [5,7,33].
4 Predicted Residual Sums of Squares Summary measure of the predicted residual errors between
(PRESS) the predicted and out-of-sample values [259,260].
5 Residual Sum of Squares (RSS) Sum of the squares of residuals, also known as SSE [5-7,33].
6 Root Mean Squared Error (RMSE) Square root of the average of the squares of residuals [5,33].
7 R-squared (R?) R-squared (coefficient of determination) is the proportion of

the variance of the dependent variable explained by the
regression model [5-7,33].

8 Sum of Squared Errors (SSE) Sum of squared differences between predicted and observed
values [7,33].

decision maker to interpret the estimated probability as an outcome. One possible classi-
fication rule or strategy, known as the minimum probability of error (MPE), is to simply
decide the patient has the disorder if the estimated probability the patient has the disorder
is greater than the estimated probability that the patient does not have the disorder. How-
ever, in many health-related decision scenarios selecting the ‘most probable’ outcome may
be inappropriate: when the cost of wrongly declaring the patient has a disorder is high (false
positives), such as with expensive and potentially harmful treatments; or when the cost of
wrongly declaring the patient healthy is high (false negatives), such as with many cancer
diagnoses where efficacious treatments often require early detection and treatment dur-
ing early stages of the disease; or when the researcher desires to maximizes both sensitivity
and specificity [261]. Further, such classification decisions require incorporating additional
information to select an optimal outcome, which differs from applying the MPE rule. In
this situation a classification [12,253-256,262] threshold may be utilized to predict a prob-
ability that an event will occur. In this approach, a specified value ranging from 0 to 1 (‘cut
value’) is compared with estimated posterior outcome probabilities from the fitted model
to classify the individual into a response category. The model’s predicted probability of
the event is assigned to a positive response category (1) if it is above the decision threshold
value, or to a negative response category (0) if it is at or below the threshold value. Thus, the
researcher translates a predicted probability that an event will occur into the binary value
that the event occurred or did not occur (e.g. inferring from the predicted probability the
patient has a given disorder into whether the patient is considered to meet or not meet
criteria to have the disorder). These results are commonly summarized via a classification
table that displays the results of cross-classifying the actual binary outcome variable with
the dichotomized response variable whose values are derived from the estimated logistic
probabilities [12,33,261] shown in Table 7.

In some situations small improvements in the estimation of outcome probabilities
can have significant consequences in terms of medical decision making and health care
resource allocation. For example, classification decisions regarding the likelihood of rare
events such as heart trauma or suicide must be as optimal as possible. Further, MPE deci-
sions as well as more sophisticated decision-making strategies that attempt to improve
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Table 7. A classification table for a binary logistic regression model depicts results
for actual (observed) versus dichotomized predicted responses for diabetes?™9.

Observed
Predicted Present Absent Total
Present 183 60 243
Absent 85 440 525
Total 268 500 768

a0utcome (diabetes/none).

bAccuracy = 81.1%,  Sensitivity = 68.28%,  Specificity = 88.00%.  Positive  Predictive
Value = 75.31%, Negative Predictive Value = 83.81%.

CAUROC = .8726, 95%CI [0.8437,0.9016].

dPima Indians dataset (768 subjects), UCI Machine Learning Repository [263].

Sensitivity

AUROG = 0.8726
oar 95% CI [0.8437, 0.9016]

1 1 1 1 1 1 1 1 | 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 - Specificity

Figure 1. Receiver Operating Characteristic (ROC) curve for a binary logistic regression model depicts
classifier performance for diabetes [263] prediction.

sensitivity and/or specificity [12,33,261] are dependent upon the calculation of decision
threshold (cut value), which in turn are dependent upon the accuracy of outcome prob-
ability estimation. This necessitates that the statistical model which is generating the
probabilities be correctly specified [18,79-81] (i.e. well-calibrated) in order to support
optimal decision making that may also incorporate other factors. The receiver operat-
ing characteristic (ROC) curve [12,33,261,264-268] depicts the measure of a classifier’s
(model) predictive performance across values of its discrimination threshold. It shows the
true positive rate against the false positive rate across all threshold values. Figure 1 depicts
a ROC curve with the area under the ROC curve (AUROC) [261,268,269] computed for
the statistical model classification results shown in Table 7.

7.1.1. Bayesian classification
When a researcher is faced with situations where multiple mechanisms are required to
represent the DGP [58,183,184,226,230], or involving rare events and small sample sizes
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[270], then an approach to outcome probability estimation called the ‘Bayesian predic-
tive density’, should be considered. Given a collection of fitted models the Bayesian
[271] predictive density method estimates a conditional outcome probability for each
model given a particular observation. Next, the set of estimated conditional outcome
probabilities are combined using a weighted average where the weight associated with
a particular conditional outcome probability corresponds to an estimate of the prob-
ability (or ‘preference’) for that model given the observed data. This model averaging
algorithm not only has the potential of improving outcome probability estimates for rare
events and small samples by looking for consensus among a large group of fitted models,
it also has the potential to handle situations where outcome probabilities for two dif-
ferent subsets of observations are best estimated by using two disjoint subsets of fitted
models.

Theoretical analyses [272-275] and empirical studies [270,272-275] have shown that
when using the Kullback-Leibler Information Criterion (KLIC) cross-entropy measure as
the measure of predictive performance, the Bayesian predictive density outcome proba-
bility estimator is superior in the estimation of outcome probabilities to the maximum
likelihood outcome probability estimator methodology in situations involving rare events
and insufficiently large sample sizes. Because averaging the outcome probabilities given
the predictors over all possible parameter values in the parameter space is typically
computationally intractable, simulation methods and analytic approximations have been
explored to obtain workable approximations.

7.2. Explanation

A variety of statistical modeling paradigms [6,7,27,33,254,276-278] exist to perform clas-
sification that include discriminative classifiers, which model the conditional probability
of the outcome given the observation (e.g. categorical regression), and generative clas-
sifiers that learn the model of the joint probability for the predictors and outcome (e.g.
naive Bayes classifier). Both paradigms are utilized when the objective is classification.
Classification results for statistical models with binary outcomes are often presented in
2 x 2 contingency tables with associated statistics (e.g. accuracy, sensitivity, specificity,
etc.) as shown in Table 7. Results for categorical regression models having more than two
outcomes are represented similarly, in an extended format. Additional measures of perfor-
mance include receiver operating characteristic (ROC) curves [261,266] and Youden Index
(J) [262,279-281]. Examples of classification performance measures [262] are presented
in Table 8.

7.3. Recommendations

The challenge for performing classification is to determine and apply the appropriate mea-
sure for the researcher’s statistical model. These measures should be identified as part of the
researcher’s data analysis plan, with the type of classification for data analysis dependent
on the particular statistical modeling being utilized. The following modeling guidelines are
recommended.
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Table 8. Examples of classification measures.

No. Classification measures Description

1 Accuracy (% correct) Proportion of total correct positive and negative classifications [7,254].

2 Error Rate (% incorrect) Proportion of total incorrect classifications [7].

3 Balanced Error Rate (BER) Average of Sensitivity and Specificity.

4 Sensitivity Proportion of positive classifications that are predicted positive [12,261]. Also
referred to true positive rate or recall.

5 Specificity Proportion of negative classifications that are predicted negative [12,261]. Also
referred to as true negative rate.

6 Positive Predictive Value (PPV) Proportion of predicted positives that are actual positives [261,282]. Also referred
to as precision.

7 Negative Predictive Value (NPV)  Proportion of predicted negative that are actual negatives [261,282].

8 ROC Receiver Operator Characteristic (ROC) curve graphs true positive rates against
false positive rates [12,261,265,266].

9  AUROC (or AUC) Area under the Receiver Operating Characteristic curve where Receiver Operator
Characteristic (ROC) curves plots true positive rates against false positive rates
[12,261,265,266).

10  Youden Index (J) Computes performance for a binary classifier as Sensitivity + Specificity — 1
[279,280].

11 Cohen’s Kappa coefficient (k) Measure of inter-rater agreement for categorical items that corrects for chance
agreement [283].

12 Matthews correlation coefficient  Balanced measure that accounts for true positives, true negatives, false positives,

(MCQ) and false negatives [284].

13 Phi(p) Coefficient Symmetric statistic that measures the association between two binary variables
[285].

14 F1Score Measure of accuracy that is the harmonic average of precision and recall [286,287].

Recommendations: Classification Performance

1.

Minimum Acceptable Statistical Modeling — Classification analyses that include model vali-
dation methods (e.g. k-fold, LOOCYV, bootstrapping, etc.) are performed on the researcher’s
final model to determine whether the model is likely to accurately classify responses.
Researcher specifies the appropriate model classification measures (e.g. accuracy, Kappa
[283], AUROC [12,261,265,266], Youden Index (J) [279,280]) and a validation method for

checking the classifier reliability in the data analysis plan.
. Advanced Statistical Modeling - Classification analyses that also include model

validation methods with estimation of decision thresholds [288] are performed

to evaluate different aspects of final model fit and classification performance.
Researcher specifies all appropriate model classification measures, decision thresholds
requiring optimization, and validation methods in data analysis plan.

8. Summary

In this article, recommendations were provided for supporting the development and eval-
uation of statistical models with an emphasis on regression modeling. Such methods are
widely used in clinical science, epidemiology, and health services research to analyze and
interpret data collected in interventional and observational studies, and thus have consid-
erable bearing on critical decision making. In particular, methods were reviewed to support
strategies for: (1) assessing model fit, (2) representing data, (3) identifying a single model or
collection of models from a pool of covariates, (4) model validation, (5) evaluating model
prediction, and (6) evaluating model classification. In addition to dealing with the prob-
lem of developing models with good model fit, special attention was also provided for the
purpose of addressing problems of model misspecification and multicollinearity.
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These recommendations and methods are applicable to GLMs and extensions such
GAMs, as well as the exponential family of nonlinear models. Further, nonparametric
methods were presented that are also supportive of model development. A major focus
of this article was devoted to the critical nature of developing correctly specified models
by utilizing more advanced statistical approaches. We presented commonly used methods
with additional recommendations for more advanced modeling strategies to support prac-
tical development of improved statistical models. Such models lead to better diagnostic
and prognostic inferences that inform researchers as well as practitioners, administrators,
and policy makers, who use research findings to make decisions that impact patients, their
quality of life, and health care costs.
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