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Abstract

Cross-validation (CV) methods are widely used to estimate out-of-sample predic-

tion error. In big data problems, analytical formulas are attractive alternatives since CV

methods are computationally expensive. If the parameter estimation time is T seconds

for a data set with N records, the leave-one-out CV estimation time is TN seconds.

Linhart and Volkers (1984: also see Linhart and Zucchini, 1986) showed a partic-

ular large sample analytic out-of-sample prediction error estimator was an unbiased

estimator of CV estimation error for a large class of smooth empirical risk functions

resulting in an estimation time of T rather than TN seconds. This theoretical result

is an extension of the Takeuchi Information (Takeuchi, 1976) and Akaike Information

(Akaike, 1973) Criteria. We provide easily verifiable assumptions for this theoretical

result to hold. In addition, we report empirical results for logistic regression modeling

that show the mean relative deviation between a nonparametric bootstrap CV estimator

and the analytic out-of-sample prediction error estimator was less than 0.3% for three

different data sets with respective sample sizes of n = 583, n = 1728, and n = 4898

records.

KEY WORDS: model selection, cross-validation, GAIC, generalized Akaike Infor-

mation Criterion, AIC, Akaike Information Criterion, TIC, Takeuchi Information Cri-

terion, bootstrap, out-of-sample prediction error

1. Introduction

Let x1, . . . , xn be a collection of n data records. Dn ≡ [x1, . . . , xn] denote a data set where

x1, . . . , xn are d-dimensional vectors corresponding to the n data records in Dn. Assume,

in addition, that Dn is a particular realization of the random vector D̃n ≡ [x̃1, . . . , x̃n]
which is comprised of n independent and identically distributed observations with common

Radon-Nikodým probability density pe : Rd → [0,∞) with respect to some sigma-finite

measure ν. The researcher has M probability models M1, . . . ,MM where the kth proba-

bility model

Mk ≡ {pk(x; θk) : θk ∈ Θk}
is a set of Radon-Nikodým probability densities defined with respect to ν.

The model selection problem involves determining which of the models M1, . . . ,MM

is the most appropriate model of the data generating process which generated D̃n. To

achieve this goal, the performance of a model with respect to a particular statistical en-

vironment is often mapped into a number called a Model Selection Criterion (MSC). Once

the MSC for each of the M models is computed, then the set of models can be rank ordered

or the model with the smallest MSC can be chosen.
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The CVRC (Cross-Validation Risk Criterion) out-of-sample prediction error is designed

to characterize the generalization performance of a fitted probability model. Specifically,

given that the fitted probability model was trained on one data set D1
n, how will the average

prediction error change when the fitted model is tested on a second data set D2
n?

1.1 Cross Validation Risk Model Selection Criteria

Consider the problem of evaluating the prediction error of a model as a function of sample

size n. Let x̃1, x̃2, . . . be a stochastic sequence of independent and identically distributed

d-dimensional random vectors. Let the first n random vectors in the stochastic sequence be

denoted as D̃1
n, the second n random vectors in the stochastic sequence be denoted as D̃2

n,

and so on.

Let θ̂
1

n be a strict local minimizer of the empirical risk function

`n(D̃1
n, ·) = (1/n)

n
∑

i=1

c(x̃i, ·)

where c : Rd×n × Θ → R is the loss function. The random variable `n

(

D̃1
n, θ̂

1

n

)

is called

the training data model fit. The training data model fit is a measure of how well the model

fits the data sample D̃1
n. The training data model fit, `n

(

D̃1
n, θ̂

1

n

)

, is a biased estimator for

finite sample sizes due to an “overfitting phenomenon” which arises because the same data

set was used to estimate both the parameter estimates and the fit of the model to the data.

Now suppose that an additional random sample D̃2
n is available. The random variable

`n

(

D̃2
n, θ̂

1

n

)

is called the test data model fit because the model’s parameters are estimated

using D̃1
n yet the fit of the model is evaluated on the out-of-sample data sample D̃2

n. Fur-

thermore, the expected value of the test data model fit provides an unbiased estimate of

model fit. A natural extension of this methodology is to use K-fold cross-validation or

nonparametric bootstrap simulation estimation methods to estimate the expected value of

`n

(

D̃2
n, θ̂

1

n

)

.

Let θn : Rd×n → Θ be a function defined such that

θn(Dn) = argmin
θ∈Θ

`n (Dn, θ)

where Θ is some sufficiently small neighborhood of a strict local minimizer, θ∗, of the

expected risk

`(θ) =

∫

`n

(

D2
n, θ

)

pe

(

D2
n

)

dν
(

D2
n

)

.

Since D̃1
n and D̃2

n are statistically independent and using the notation θ̂
1

n = θn

(

D̃1
n

)

it

follows that:

E
{

`n

(

D̃2
n, θ̂

1

n

)}

=

∫

`n

(

D2
n, θn

(

D1
n

))

pe(D1
n)pe(D2

n)dν
(

D1
n,D2

n

)

=

∫
[
∫

`n

(

D2
n, θn

(

D1
n

))

pe

(

D2
n

)

dν
(

D2
n

)

]

pe

(

D1
n

)

dν
(

D1
n

)
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which can be rewritten as:

E
{

`n

(

D̃2
n, θ̂

1

n

)}

=

∫

`
(

θn

(

D1
n

))

pe

(

D1
n

)

dν
(

D1
n

)

= E
{

`
(

θ̂
1

n

)}

. (1)

Equation (1) provides an explicit expression for the expected novel test data fit,

E
{

`
(

θ̂
1

n

)}

= E
{

`n

(

D̃2
n, θ̂

1

n

)}

,

using the training data parameter estimates θ̂
1

n. The following theorem shows how to cal-

culate the expected novel test data fit from the expected training data fit E
{

ˆ̀
n

(

D̃1
n, θ̂

1

n

)}

.

The theorem was originally stated and proved in Linhart and Volkers (1984; also see Linhart

and Zucchini, 1986). The estimated generalization/overfitting bias obtained from theoreti-

cal analyses of the Akaike Information Criterion (Akaike 1973) and the Generalized Akaike

Information Criterion (Takeuchi 1976) are special cases of this theorem as well.

Theorem 1.1 (Empirical Risk Overfitting Bias (Linhart and Volkers 1984; Linhart and Zuc-

chini 1986)). Assume the Empirical Risk Regularity Conditions (see Section 3.1) hold with

respect to a DGP Radon-Nikodým density pe : Rd → [0,∞), loss function c : Rd ×Rq →
R, and risk function ` : Rq → R defined such that for all θ ∈ Rq:

`(θ) ≡
∫

c(x, θ)pe(x)dν(x).

In addition, let Θ be a closed, bounded, and convex subset of Rq containing a strict local

minimizer, θ∗, of `. Assume θ∗ is the only critical point of ` in Θ.

Assume θ̂n ≡ argmin ˆ̀
n(θ) on Θ with probability one for all n ∈ N where

ˆ̀
n(θ) = (1/n)

n
∑

i=1

c(x̃i, θ).

Let Ân and B̂n be defined as in (5) and (6) respectively.

Then, as n → ∞,

E{`(θ̂n)} = E{ˆ̀
n(θ̂n)}+ (1/n) tr

(

[Ân]−1B̂n

)

+ op(1/n).

Definition 1.1 (Cross-Validation Risk Criterion (CVRC)). Let ˆ̀
n, θ̂n, Ân, and B̂n be

defined as in the Empirical Risk Overfitting Bias Theorem (Theorem 1.1). The Cross-

Validation Risk Criterion (CVRC) is defined as:

CVRC = ˆ̀
n(θ̂n) + (1/n) tr

(

[Ân]−1B̂n

)

. (2)

The CVRC is a consistent estimator of the expected value of `(θ̂n). That is, it estimates

how effectively a model fitted to training data sample x1, . . . , xn will perform on a test

data sample under the assumption that the observations from both samples are independent

and identically distributed with common density pe. The more familiar GAIC (Generalized

Akaike Information Criterion) also known as the TIC (Takeuchi Information Criterion) is

equal to the CVRC multiplied by twice the sample size when the empirical risk function

is a negative normalized log-likelihood function. Thus, the GAIC/TIC is a special case

of CVRC and AIC is a special case of GAIC/TIC. Reviews of the Takeuchi Information

Criterion (Takeuchi 1976) may be found in Bozdogan (2000), Claeskens and Hjort (2008),

and Konishi and Kitagawa (2008).
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Definition 1.2 (Generalized Akaike Information Criterion (GAIC)). Let ˆ̀
n, θ̂n, Ân, and

B̂n be defined as in the Empirical Risk Overfitting Bias Theorem. In addition, assume that
ˆ̀
n is a negative normalized log-likelihood function defined with respect to some probability

model M and data generating density pe. The Generalized Akaike Information Criterion

(GAIC) is defined as:

GAIC = 2nˆ̀
n(θ̂n) + 2 tr

(

[Ân]−1B̂n

)

. (3)

In the special case where the probability model M is correctly specified with respect to

the data generating density pe (i.e., pe ∈ M), then the GAIC reduces as a special case to the

popular Akaike Information Criterion (AIC) (Akaike 1973, 1974; Stone 1977; Bozdogan

2000; Claeskens and Hjort 2008; Konishi and Kitagawa 2008).

Definition 1.3 (Akaike Information Criterion (AIC)). Let ˆ̀
n, θ̂n, and q be defined as in

the Empirical Risk Overfitting Bias Theorem. In addition, assume that ˆ̀
n is a negative

normalized log-likelihood function defined with respect to some probability model M and

data generating density pe. Assume, in addition, that M is correctly specified with respect

to pe. Then, the Akaike Information Criterion (AIC) is defined as:

AIC = 2nˆ̀
n(θ̂n) + 2q. (4)

2. Simulation Studies

The purpose of these data analyses was to empirically investigate whether the estimated

CVRC out-of-sample prediction error bias obtained using the CVRC formula was compa-

rable in magnitude to the estimated out-of-sample prediction error bias obtained using a

nonparametric bootstrap sampling methodology.

2.1 Data Sets

Three data sets ( “car”, n=1728; “liver”, n= 583; “white wine”, n=4898) were downloaded

from the UCI machine learning data repository (archive.ics.uci.edu/ml/) and prepared for

logistic regression modeling by rescaling numerical predictors and removing redundant pre-

dictors.

2.2 Methods

The following nonparametric bootstrap sampling methodology was used to evaluate the

performance of the CVRC out-of-sample prediction error for each of the three data sets.

• Step 1. Select one of the three training data sets. Assume that training set consists of

n records.

• Step 2. Compute the in-sample prediction error using training data.

• Step 3. Use CVRC formula to estimate out-of-sample prediction error using training

data.

• Step 4. Let K = 1.
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• Step 5. Sample with replacement n times from original training data set to create

bootstrap training data set of n records.

• Step 6. Estimate the bootstrap in-sample prediction error on the bootstrap training

data set.

• Step 7. Estimate the bootstrap out-of-sample prediction error on a new bootstrap test

data set using bootstrap training data set parameters.

• Step 8. Let K = K + 1. Stop if K > Kmax; otherwise Go To Step 5.

2.3 Data Analyses

The number of pairs of bootstrap data sets generated for each of the three data sets was

approximately Kmax = 550 where the first member of the pair was designated as a “boot-

strap” training data set and the second member of the pair was designated as a “bootstrap”

test data set. The bootstrap prediction error bias was then estimated for each bootstrap

sample pair by subtracting the bootstrap in-sample prediction error in Methods Step 6 from

the bootstrap out-of-sample prediction error in Methods Step 7. Next, the first K bootstrap

prediction error biases were then averaged to obtain the bootstrap prediction error bias after

parameter estimation was completed using training data from the first K bootstrap data sets.

The bootstrap out-of-sample prediction error was then computed by adding the in-sample

prediction error (Methods Step 2) to the bootstrap prediction error bias.

This procedure was repeated five times using five different random number seeds so that

the sampling with replacement algorithm would generate five different bootstrap sampling

outcomes for each of the three data sets. Thus, results from 15 distinct simulation runs were

obtained.

2.4 Results

Figures 1, 2, 3, 4, and 5 show for the CAR data set (n = 1728) the in-sample prediction

error (Training Data) computed in Methods Step 2 and CVRC out-of-sample prediction er-

ror computed in Methods Step 3 (Analytic Formula). These quantities are not functionally

dependent upon the number of bootstrap data sets. In addition, the average bootstrap out-

of-sample prediction error (Bootstrap Sampling) was computed by adding the in-sample

prediction error on the training data obtained in Methods Step 2 to the bootstrap estimator

of the out-of-sample prediction error bias. For the CAR data set, the mean relative deviation

between the CVRC out-of-sample prediction error and the bootstrap out-of-sample predic-

tion error was 0.2% across the five CAR simulation runs after all bootstrap data sets were

used.

Figures 6, 7, 8, 9, and 10 show for the Liver data set (n = 583) that the mean relative

deviation was 0.2% between the CVRC out-of-sample prediction error (Analytic Formula)

and the bootstrap out-of-sample prediction error (Bootstrap Sampling) when the bootstrap

out-of-sample prediction error incorporated all bootstrap data sets.

Figures 11, 12, 13, 14, and 15 show for the white wine data set (n = 4898) that the mean

relative deviation was 0.04% between the CVRC out-of-sample prediction error (Analytic

Formula) and the bootstrap out-of-sample prediction error (Bootstrap Sampling) when the

bootstrap out-of-sample prediction error incorporated all bootstrap data sets.
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Figure 1: Prediction error as a function of bootstrap data sets for CAR data set (n = 1728)
(1st Random Seed).
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Figure 2: Prediction error as a function of bootstrap data sets for CAR data set (n = 1728)
(2nd Random Seed).
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Figure 3: Prediction error as a function of bootstrap data sets for CAR data set (n = 1728)
(3rd Random Seed).
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Figure 4: Prediction error as a function of bootstrap data sets for CAR data set (n = 1728)
(4th Random Seed).
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Figure 5: Prediction error as a function of bootstrap data sets for CAR data set (n = 1728)
(5th Random Seed).
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Figure 6: Prediction error as a function of bootstrap data sets for LIVER data set (n = 583)
(1st Random Seed).
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Figure 7: Prediction error as a function of bootstrap data sets for LIVER data set (n = 583)
(2nd Random Seed).
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Figure 8: Prediction error as a function of bootstrap data sets for LIVER data set (n = 583)
(3rd Random Seed).
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Figure 9: Prediction error as a function of bootstrap data sets for LIVER data set (n = 583)
(4th Random Seed).
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Figure 10: Prediction error as a function of bootstrap data sets for LIVER data set (n =
583) (5th Random Seed).
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Figure 11: Prediction error as a function of bootstrap data sets for WHITE-WINE data set

(n = 4898) (1st Random Seed).
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Figure 12: Prediction error as a function of bootstrap data sets for WHITE-WINE data set

(n = 4898) (2nd Random Seed).
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Figure 13: Prediction error as a function of bootstrap data sets for WHITE-WINE data set

(n = 4898) (3rd Random Seed).
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Figure 14: Prediction error as a function of bootstrap data sets for WHITE-WINE data set

(n = 4898) (4th Random Seed).
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Figure 15: Prediction error as a function of bootstrap data sets for WHITE-WINE data set

(n = 4898) (5th Random Seed).
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2.5 Discussion

These simulation results support the consideration of the CVRC out-of-sample prediction

error formula in logistic regression modeling applications involving large data sets where

bootstrap simulation methods for estimating out-of-sample prediction error are not practi-

cal. Moreover, these simulation results also illustrate the applicability of the general theory.

Future research in this area should use similar simulation methodologies to empirically

evaluate the use of the CVRC out-of-sample prediction error formula for other applications

such as linear regression, multinomial logistic regression, Gaussian mixture models, and

structural equation modeling applications.

3. Technical Details of Theorems and Proofs

As previously noted, the theorems and proofs presented here are due to Linhart and Volkers

(1984) and Linhart and Zucchini (1986) (also see analyses by Akaike 1973 and Takeuchi

1976). However, the statements of these theorems and the choices of specific methods for

presenting the regularity assumptions have been modified to encourage more wide-spread

use in engineering practice. In addition, details of supporting mathematical arguments are

provided here.

3.1 Regularity Assumptions

Let Ω ⊆ Rd. Let Θ ⊆ Rq. The function c : Ω × Θ → R is called a continuously

differentiable random function on Θ if c(x, )̇ is continuously differentiable on Θ for each

x ∈ Ω and c(·, θ) is Borel measurable for each θ ∈ Θ. Note that if f is a continuous

function, then f is a Borel measurable function.

A random function c : Ω × Θ → R is dominated by an integrable function on Θ with

respect to a Radon-Nikodým density p : Ω → [0,∞) with sigma-finite measure ν if (i)

there exists a function D : Ω → R such that |c(x, θ)| ≤ D(x) for all θ ∈ Θ and for all x

in the support of pe, and (ii)
∫

D(x)p(x)dν(x) is finite.

For example, if c is continuous in both arguments and p : Ω → [0, 1] is a probability

mass function on a finite sample space Ω then these conditions are sufficient to ensure c is

dominated by an integrable function on Θ with respect to p.

• A1 : I.I.D. Data Generating Process. Let the data sample D̃n ≡ [x̃1, . . . , x̃n] be

a sequence of independent and identically distributed d-dimensional random vectors

with common Radon-Nikodým density pe : Rd → [0,∞) defined with respect to

sigma-finite measure ν.

• A2: Smooth Loss Function. Assume the function c : Rd × Rq → R is a twice

continuously differentiable random function on Rq.

• A3: Expectations are Finite. Let g(x, θ) = [dc(x, θ)/dθ]T . Assume the functions

c, ggT , and d2c/dθ2 are dominated by integrable functions on Rq with respect to pe.

• A4: Construct a Restricted Parameter Space Θ containing a Local Minimizer.

Let θ∗ be a strict local minimizer of

`(θ) =

∫

c(x, θ)pe(x)dν(x)
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on Rq. Assume Θ is a closed, bounded, and convex subset of Rq defined such that

θ∗ is in the interior of Θ. In addition, assume θ∗ is the only critical point of ` in Θ.

• A5: Parameter Estimation Procedure. Assume θ̂n ≡ arg min ˆ̀
n(θ) on Θ with

probability one for all n ∈ N where

ˆ̀
n(θ) = (1/n)

n
∑

i=1

c(x̃i, θ).

• A6: Hessian Positive Definite at Minimizer. Let A be the Hessian of `. Assume

A∗ ≡ A(θ∗) is positive definite.

• A7: Outer Product Gradient Positive Definite at Minimizer. Let the matrix-valued

function B : Rq → Rq×q be defined such that for all θ ∈ Rq:

B(θ) =

∫

g(x, θ)g(x, θ)Tpe(x)dν(x).

Assume B∗ ≡ B(θ∗) is positive definite.

Let g̃T
i ≡ g(x̃i, θ̂n). Let the notation

Ân ≡ (1/n)

n
∑

i=1

∇2c̃i(θ̂n), (5)

B̂n ≡ (1/n)

n
∑

i=1

g̃ig̃
T
i , (6)

and

Ĉn ≡ Â−1
n B̂nÂ

−1
n . (7)

3.2 Proofs of Key Theorems

Lemma 3.1 (GAIC Lemma). Let Θ ⊆ Rq. Assume the Regularity Conditions of the pre-

vious section hold with respect to a DGP Radon-Nikodym density pe : Rd → [0,∞), loss

function c : Rd × Θ → R, and empirical risk function ˆ̀
n : Rdn × Θ → R defined such

that for all θ ∈ Θ:

ˆ̀
n(θ) = (1/n)

n
∑

i=1

c(x̃i, θ).

Let θ̂n be the unique strict global minimizer of the restriction of ˆ̀
n to Θ. Then,

E{(θ̂n − θ∗)TA∗(θ̂n − θ∗)} =
tr

(

[A∗]−1B∗
)

n
. (8)

Proof of GAIC Lemma.

E{(θ̂n − θ∗)TA∗(θ̂n − θ∗)} = tr(E

{

[A∗]1/2(θ̂n − θ∗)
(

[A∗]1/2(θ̂n − θ∗)
)T

}

= tr([A∗]1/2E
{

(θ̂n − θ∗)(θ̂n − θ∗)T
}

[A∗]1/2). (9)
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Using the assumed regularity assumptions and the asymptotic properties of M-estimators:

E
{

(θ̂n − θ∗)(θ̂n − θ∗)T
}

= (1/n)[A∗]−1B∗[A∗]−1

and substitute this relation into (9) to obtain:

E{(θ̂n − θ∗)TA∗(θ̂n − θ∗)} = (1/n)[A∗]1/2[A∗]−1B∗[A∗]−1[A∗]1/2. (10)

Now use the result that the trace operator is invariant under cyclic permutations to obtain

the relation:

tr
(

[A∗]1/2[A∗]−1B∗[A∗]−1[A∗]1/2

)

= tr
(

[A∗]−1B∗
)

. (11)

Substitute (11) into the right-hand size of (10) to complete the proof.

Proof of Main Theorem. The proof follows the approach of Konishi and Kitagawa (2008;

pp. 55-58) and Linhart and Zucchini (1986, Appendix A).

`(θ̂n) = ˆ̀
n(θ̂n) +

(

`(θ̂n)− `(θ∗)
)

+
(

`(θ∗) − ˆ̀
n(θ∗)

)

+
(

ˆ̀
n(θ∗) − ˆ̀

n(θ̂n)
)

. (12)

Step 1: Parameter Estimation Error with True Risk

Let δA(λn) ≡ A(θ̈n(λn)) − A(θ∗). The second term, `(θ̂n) − `(θ∗) on the right-

hand side of (12) corresponds to the effects of parameter estimation error using the true risk

function. To estimate the value of `(θ̂n) − `(θ∗), expand ` about θ∗ and evaluate at θ̂n to

obtain:

`(θ̂n) = `(θ∗) + ∇`(θ∗) + (1/2)(θ̂n − θ∗)A∗(θ̂n − θ∗) + R̃n (13)

where

R̃n ≡ (1/2)(θ̂n − θ∗)δA(λn)(θ̂n − θ∗),

and θ̈n(λn) ≡ θ∗ + λn(θ̂n − θ∗) with λn ∈ [0, 1]. Using the standard M-estimation result

that
√

n(θ̂n − θ∗) converges in distribution to a random vector it follows that
√

n(θ̂n −
θ∗) = Op(1). And since A is continuous and θ̂n → θ∗ with probability one implies that

A(θ̂n) → A∗ with probability one as n → ∞, it follows that δA(λ̃n) = op(1) for n

sufficiently large. Thus,

R̃n = Op(n
−1/2)op(1)Op(n

−1/2) = op(1/n).

Now take the expectation of (13), using the GAIC Lemma Equation (8), and noting that

∇`(θ∗) vanishes one obtains:

E{`(θ̂n)} = `(θ∗) + (1/2)(1/n) tr
(

[A∗]−1B∗
)

+ op(1/n). (14)

Step 2: Empirical Risk Approximation Error

The third term on the right-hand side of (12), `(θ∗) − ˆ̀
n(θ∗), estimates the effects of

estimating the true risk function ` using the empirical risk function ˆ̀
n and evaluating at a

true local risk minimizer θ∗. Since ˆ̀
n is dominated by an integrable function

E{ˆ̀
n(θ∗)} = `(θ∗). (15)

Step 3: Combined Parameter and Risk Function Error
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The fourth term on the right-hand side of (12), ˆ̀
n(θ∗) − ˆ̀

n(θ̂n), corresponds to the

effects of parameter estimation error with respect to the empirical risk function. To estimate

the value of ˆ̀
n(θ∗) − ˆ̀

n(θ̂n), expand ˆ̀
n in a second order Taylor expansion about θ∗ to

obtain:

ˆ̀
n(θ̂n) = ˆ̀

n(θ∗) + (θ̂n − θ∗)T∇l̂n(θ∗) +
(θ̂n − θ∗)T∇2 ˆ̀

n(θ̈n(λ))(θ̂n − θ∗)

2
(16)

where for some λ ∈ [0, 1]:

θ̈n(λ) ≡ θ̂n + λ(θ̂n − θ̂n).

Now expand ∇ˆ̀
n in a first order Taylor expansion about θ∗ to obtain:

∇ˆ̀
n(θ̂n) = ∇ˆ̀

n(θ∗) + ∇2 ˆ̀
n(θ̈n(η)(θ̂n − θ∗) (17)

where θ̈n(η) is a vector defined such that its kth element

θ̈n,k (ηk) ≡ θ̂n,k + ηk(θ
∗

k − θ̂n,k)

where ηk ∈ [0, 1], θ∗k is the kth element of θ∗, and θ̂n,k is the kth element of θ̂n.

Since, by definition, ∇ˆ̀
n(θ̂n) is a vector of zeros, (17) becomes:

∇ˆ̀
n(θ∗) = −∇2 ˆ̀

n

(

θ̈
η

n

)

(θ̂n − θ∗). (18)

Substitute (18) into (16) to obtain:

ˆ̀
n(θ̂n) = ˆ̀

n(θ∗)−(θ̂n−θ∗)T∇2 l̂n

(

θ̈
η

n

)

(θ̂n−θ∗)+(1/2)(θ̂n−θ∗)T∇2 ˆ̀
n

(

θ̈
λ

n

)

(θ̂n−θ∗).

(19)

Since
√

n(θ̂n − θ∗) = Op(1) and since ∇2 ˆ̀
n

(

θ̈
λ

n

)

= Ân + oa.s.(1), these relations

can be used in (19) to obtain:

ˆ̀
n(θ∗) − ˆ̀

n(θ̂n) =
1

n
(θ̂n − θ∗)TA∗(θ̂n − θ∗) + op(1/n). (20)

Now take the expectation of (20), using the GAIC Lemma Equation (8), to obtain:

E{ˆ̀
n(θ∗)} − E{ˆ̀

n(θ̂n)} +
1

2n
tr

(

[A∗]−1B∗
)

+ op(1/n). (21)

Equation (20) corresponds to the fourth term on the right-hand side of (12).

Step 4: Calculate Empirical Risk Bias

Now take the expectation of both sides of (12) to obtain:

E
{

`(θ̂n)
}

= E
{

ˆ̀
n(θ̂n)

}

+E
{(

`(θ̂n)
)

− `(θ∗)
}

+E
{(

`(θ∗)− ˆ̀
n(θ∗)

)}

+E
{(

ˆ̀
n(θ∗) − ˆ̀

n(θ̂n)
)}

.

(22)

Now substitute the results of (14), (15), and (21) into (22) to obtain:

E{`(θ̂n)} = E{ˆ̀
n(θ̂n)}+

1

2n
tr

(

[A∗]−1B∗
)

+ 0 +
1

2n
tr

(

[A∗]−1B∗
)

+ op(1/n). (23)

The conclusion of the theorem then follows by substituting A∗ = Ân + op(1) and

B∗ = B̂n + op(1) into (23).
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