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Abstract Model specification tests are essential tools for evaluating the appropriate-
ness of probability models for estimation and inference. White (Econometrica, 50:
1–25, 1982) proposed that model misspecification could be detected by testing the
null hypothesis that the Fisher information matrix (IM) Equality holds by comparing
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linear functions of the Hessian to outer product gradient (OPG) inverse covariance
matrix estimators. Unfortunately, a number of researchers have reported difficulties
in obtaining reliable inferences using White’s (Econometrica, 50: 1–25, 1982) orig-
inal information matrix test (IMT). In this chapter, we extend White (Econometrica,
50: 1–25, 1982) to present a new generalized information matrix test (GIMT) theory
and develop a new Adjusted Classical GIMT and five new Eigenspectrum GIMTs that
compare nonlinear functions of the Hessian and OPG covariance matrix estimators.
We then evaluate the level and power of these new GIMTs using simulation studies
on realistic epidemiological data and find that they exhibit appealing performance
on sample sizes typically encountered in practice. Our results suggest that these new
GIMTs are important tools for detecting and assessing model misspecification, and
thus will have broad applications for model-based decision making in the social,
behavioral, engineering, financial, medical, and public health sciences.

Keywords Eigenspectrum · Goodness-of-fit · Information matrix test · Logistic
regression · Specification analysis

1 Introduction

A correctly specified probability model has the property that it contains the probabil-
ity distribution that generates the observed data. Model specification tests examine
the null hypothesis that a researcher’s probability model is correctly specified. If the
researcher’s model of the observed data is not correct (i.e., misspecified), then the
interpretation of parameter estimates and the validity of inferences obtained from
the resulting probability model may be suspect. Thus, to avoid misleading infer-
ences, the effects of model specification must be considered. For example, in the
social and medical sciences (e.g., Kashner et al. 2010), the incompleteness of behav-
ioral and medical theories mandates the need for principled specification analysis
methods that use empirical observations to assess quality of a particular theory. This
situation, all too common in statistical modeling, provides considerable impetus for
the development of improved model specification tests.

1.1 Model Misspecification

When viewed from a practical perspective, the problem of model misspecification
is essentially unavoidable. Although ideally a correctly specified model is always
preferable, in many fields of science such as econometrics, medicine, and psychology
some degree of model misspecification is inevitable. Indeed, all probability models
are abstractions of reality, so the issue of model misspecification is fundamentally an
empirical issue that is dependent upon how the model will be developed and applied
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in practice (e.g., Fisher 1922; White 1980, 1981, 1982, 1994; Begg and Lagakos
1990; Cox 1990; Lehmann 1990).

A variety of methods have been developed for the purpose of the assessment of
model misspecification. For example, graphical residual diagnostics are useful for
identifying the presence of model misspecification for the class of generalized lin-
ear models (e.g., Davison and Tsai 1992) and the larger class of exponential family
nonlinear models (e.g., Wei 1998, Chap. 6). However, these methods require more
subjective interpretations because results are expressed as measures of fit rather than
as hypothesis tests. Moreover, specification tests such as chi-square goodness-of-fit
tests (e.g., Hosmer et al. 1991, 1997) are not applicable in a straightforward manner
when the observations contain continuous random variables. Link specification tests
(Collett 2003; Hilbe 2009) are applicable for testing the assumption of linearity in
the link function (e.g., logit), but are not designed to detect other types of model mis-
specification. Further, the applicability of these methods to more complex probability
models such as hierarchical (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
(e.g., Verbeke and Lesaffre 1997), and latent variable (e.g., Gallini 1983; Arminger
and Sobel 1990) models may not always be obvious.

1.2 Specification Analysis for Logistic Regression

Logistic regression modeling (Christensen 1997; Hosmer and Lemeshow 2000;
Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) is an important and widely
used analysis tool in various fields; however, the number of available options for the
assessment of model misspecification is relatively limited (see Sarkar and Midi 2010
for a review). Typically, the detection of model misspecification in logistic regression
models is based upon direct comparison of the observed conditional frequencies of
the response variable with predicted conditional probabilities (Hosmer et al. 1997).
Unfortunately, the observed conditional frequencies of the response variable can only
be compared with predicted conditional probabilities for a particular pattern of pre-
dictor variable values in a given data record. In practice, patterns of predictor variable
values may rarely be repeated for more complex models involving either multiple
categorical predictor variables or continuous-valued predictor variables. Because the
number of distinct predictor patterns often increases as the number of records (i.e.,
sample size) increases, such applications of classical “fixed-cell asymptotic” results
are problematic (e.g., Osius and Rojek 1992). To address this problem, “grouping”
methods have been proposed that require artificially grouping similar, yet distinct
predictor patterns (Bertolini et al. 2000; Archer and Lemeshow 2006).

A variety of test statistics that explicitly compare predicted probabilities with
observed frequencies using grouping methods have been proposed, and include chi-
square test methods (e.g., Hosmer and Lemeshow 1980; Tsiatis 1980; Hosmer et al.
1988, 1997; Copas 1989; Qin and Zhang 1997; Zhang 1999; Archer and Lemeshow
2006; Deng et al. 2009), sum-squared comparison methods (Copas 1989; Kuss 2002),
and the closely related likelihood ratio test deviance-based comparison methods
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(e.g., Hosmer and Lemeshow 2000, pp. 145–146; Kuss 2002). Without employing
such grouping methods, the resulting test statistics associated with direct compari-
son of observed conditional frequencies and predicted conditional probabilities will
have excessive degrees of freedom and thus poor power. However, when such group-
ing methods are applied, they may actually have the unintended consequence of
redefining the probability model whose integrity is being evaluated (Hosmer et al.
1997).

One solution to dealing with the “grouping” problem is to introduce appropriate
regularity conditions intended to characterize the asymptotic behavior of the test
statistics while allowing the number of distinct predictor patterns to increase with
the sample size (e.g., Osius and Rojek 1992). Another important solution to the
“grouping” problem is to embed the probability model whose specification is being
scrutinized within a larger probability model and then compare the predicted proba-
bilities of both models (e.g., Stukel 1988). Other approaches have explored improved
approximations to Pearson’s goodness-of-fit statistic (McCullagh 1985; Farrington
1996). Yet, despite these approaches, the variety of methods available for assessing
the presence of model misspecification is surprisingly limited, and these limitations
are particularly striking in the context of logistic regression modeling (e.g., Sarkar
and Midi 2010).

1.3 Information Matrix Test

White (1982; also see 1987, 1994) proposed a particular model specification test
called the information matrix test (IMT). Unlike chi-square goodness-of-fit tests
and graphical diagnostics, IMTs are based upon the theoretical expectation that
the Hessian inverse covariance matrix estimator (derived from the Hessian of the
log-likelihood function) and the outer product gradient (OPG) inverse covariance
matrix estimator (derived from the first derivatives of the log-likelihood function)
are asymptotically equivalent whenever the researcher’s probability model is cor-
rectly specified. We define a full IMT as a statistical test that tests the null hypothesis
of asymptotic equivalence of the Hessian and OPG asymptotic covariance matrix
estimators.

An important virtue of the IMT method is that it is applicable in a straightforward
manner to a broad class of probability models. This includes not only linear and
nonlinear regression models, but also even more complex models such as: limited
dependent variables models (e.g., Maddala 1999; Greene 2003), exponential fam-
ily nonlinear models (e.g., Wei 1998), generalized linear models (e.g., McCullagh
and Nelder 1989), generalized additive models (e.g., Hastie and Tibshirani 1986,
1990), hierarchical models (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
models (e.g., Verbeke and Lesaffre 1997), latent variable models (e.g., Gallini 1983;
Arminger and Sobel 1990), conditional random fields (e.g., Winkler 1991), and time
series models (e.g., Hamilton 1994; White 1994; Box et al. 2008; Tsay 2010). How-
ever, despite the broad applicability of the IMT, the majority of the research in the
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development and evaluation of IMTs has focused on linear regression (Hall 1987;
Taylor 1987; Davidson and MacKinnon 1992, 1998), logistic regression (Aparicio
and Villanua 2001; Zhang 2001), probit (Davidson and MacKinnon 1992, 1998;
Stomberg and White 2000; Dhaene and Hoorelbeke 2004), and Tobit (Horowitz
1994, 2003) modeling.

1.4 Empirical Performance of the Information Matrix Test

Although theoretically attractive, the IMT has not been widely used to detect model
misspecification. In particular, some researchers have found the full IMT (White
1982) both analytically and computationally burdensome because its derivation and
computation require third derivatives of the log-likelihood. To address this prob-
lem, Chesher (1983) and Lancaster (1984) demonstrated how the calculation of the
third derivatives of the log-likelihood function could be avoided for the full IMT
by showing that when the OPG and Hessian inverse covariance matrix estimators
are asymptotically equivalent, the third derivatives of the log-likelihood may be
expressed in terms of the first and second derivatives of the log-likelihood. This
particular version of the White (1982) full IMT is commonly referred to as the
OPG IMT. Unfortunately, OPG full IMTs were subsequently found to exhibit poor
performance in various simulation studies for logistic regression (Aparicio and Vil-
lanua 2001) and linear regression (Taylor 1987; Davidson and MacKinnon 1992;
Dhaene and Hoorelbeke 2004). This prompted some researchers (Davidson and
MacKinnon 1992, 1998; Stomberg and White 2000; Dhaene and Hoorelbeke 2004)
to re-evaluate the original formulation by White (1982), which involves explicit
analytical computation of the third derivatives of the log-likelihood function.

In a series of simulation studies, researchers (e.g., Orme 1990; Stomberg and
White 2000) have demonstrated that both the original White (1982) formulation and
the OPG-IMT method exhibit relatively erratic performance and require excessively
large sample sizes to ensure that the test statistic behaves properly. This led a number
of researchers (e.g., Davidson and MacKinnon 1992; Stomberg and White 2000;
Aparicio and Villanua 2001; Dhaene and Hoorelbeke 2004) to suggest that the erratic
behavior of the full IMT for linear regression is due to excessive test statistic variance,
since the degrees of freedom of the full IMT increase as a quadratic function of the
number of free parameters of the probability model.

Further, researchers (Taylor 1987; Orme 1990; Horowitz 1994, 2003) have pro-
vided empirical evidence that the poor level performance of the OPG IMT is due to
failure to incorporate the third derivatives of the log-likelihood functions as originally
recommended by White (1982). Stomberg and White (2000) have shown demon-
strable improvements using a bootstrapped version of the full IMT, but this method
requires substantial computational resources.
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1.5 Nondirectional and Directional Tests

A “nondirectional IMT” examines the null hypothesis that the Hessian and OPG
covariance matrix estimators are asymptotically equivalent. White’s (1982) Clas-
sical Full IMT is an example of a nondirectional information matrix test. If the
null hypothesis of a nondirectional information test is false, it directly follows from
Fisher’s Information Matrix Equality that the probability model is misspecified.

A “directional IMT” compares functions of the OPG and Hessian covariance
matrix estimators for the purpose of identifying specific types of model misspecifi-
cation, rather than implementing a full covariance matrix estimator comparison. Two
potential advantages of directional tests are: (1) gaining important insights regarding
how to improve the quality of a misspecified model by identifying specific aspects
of a model that appear to be correctly or incorrectly specified, and (2) better level
performance and greater statistical power in the detection of model misspecification.
White (1982) explicitly emphasized that improved specification testing performance
and specific specification tests could be obtained through the use of directional infor-
mation matrix tests. Nonetheless, as previously described, the majority of research
has focused upon the full IMT rather than on particular directional versions of the
full IMT as recommended by White (1982).

Directional tests also may, in some cases, provide improved statistical power if
such tests are appropriately designed. However, despite the advantages of directional
specification testing, little theoretical or empirical research has been conducted to
more thoroughly explore directional IMTs as viable alternatives to White’s (1982)
nondirectional Classical Full IMT. Such insights may also be helpful for suggest-
ing specific modifications to a researcher’s model to improve its quality. Although,
nondirectional tests are useful for overall assessments of model misspecification, but
directional tests provide insights into which properties of a model are sensitive to the
effects of model misspecification.

Prior research on directional versions of the full IMT has focused upon the detec-
tion of skewness, kurtosis, and heteroskedasticity in linear regression models, with a
few notable exceptions (i.e., Henley et al. 2001, 2004; Alonso et al. 2008). For exam-
ple, Bera and Lee (1993; also see Hall 1987; Chesher and Spady 1991) have shown
how to derive directional information matrix tests for linear regression models using
White’s (1982) theoretical framework. These directional information matrix tests
were shown to be mathematically equivalent (see White 1982; Hall 1987; Chesher
and Spady 1991; Bera and Lee 1993 for relevant reviews) to commonly used statistical
tests for checking for the presence of autoregressive conditional heteroskedasticity
as well as checking for normality in the residual errors.

1.6 Logistic Regression Modeling IMTs

The IMT method is particularly attractive in the context of logistic regression mod-
eling because it does not require the use of grouping mechanisms, and the degrees
of freedom are solely dependent upon the number of free parameters in the model
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rather than the degree to which the predictor patterns in the data set are replicated.
However, the application of IMTs to the problem of the detection of misspecification
in categorical regression (Agresti 2002) and, in particular, logistic regression model-
ing (Hosmer and Lemeshow 2000; Hilbe 2009) is less common (but see Orme 1988;
Aparicio and Villanua 2001; Zhang 2001; Kuss 2002), despite the major role that
logistic regression plays in applied statistical analysis (Christensen 1997; Hosmer
and Lemeshow 2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009).

1.7 Generalized Information Matrix Test Theory

In this chapter, we introduce the essential ideas of our Generalized Information
Matrix Test (GIMT) theory (Henley et al. 2001, 2004, 2008). GIMT theory includes
the IMTs previously discussed in the literature, as well as a larger class of direc-
tional and nondirectional IMTs. We apply GIMT theory to develop six specific new
GIMTs. We begin with a new version of the original k(k + 1)/2 degrees of freedom
White (1982) Classical Full IMT, called the “Adjusted Classical GIMT”, which is
applicable to a k parameter model. In addition, we explore information matrix testing
by introducing and empirically evaluating five new Information Matrix Tests based
upon comparing specific nonlinear functions of the eigenspectra of the Hessian and
OPG covariance matrices (rather than their inverses) developed by Henley et al.
(2001, 2004, 2008). The first of these directional tests is the k-degree of freedom
“Log Eigenspectrum GIMT” based on the null hypothesis that the k eigenvalues of
the Hessian and OPG covariance matrices are the same. The one-degree of freedom
“Log Determinant GIMT” tests the null hypothesis that the products of the eigen-
values of the Hessian and OPG covariance matrices are identical. Log Determinant
GIMTs are exceptionally sensitive to small differences in the eigenstructures. The
“Log Trace GIMT” is a one-degree of freedom GIMT that tests the null hypothesis
that the sums of the eigenvalues of the Hessian and OPG covariance matrices are
identical. Log Trace GIMTs focus on differences in the major principal components
of the Hessian and OPG covariance matrices. The fourth eigenspectrum test is the
two-degree of freedom “Generalized Variance GIMT” that tests the composite null
hypothesis that the Log Determinant and Log Trace GIMTs’ null hypotheses hold.
In particular, the Generalized Variance GIMT exploits the complementary features
of the Log Trace and Log Determinant GIMTs, since the Log Determinant GIMT is
sensitive to small differences in the entire eigenspectrum of the Hessian and OPG
covariance matrices, while the Log Trace GIMT tends to focus on the larger eigen-
values. Finally, if the Hessian and OPG covariance matrices are identical, then the
Hessian covariance matrix multiplied by the inverse of the OPG covariance matrix
will be the identity matrix. This observation suggests a fifth type of GIMT called
the “Log Generalized Akaike Information Criterion (GAIC) GIMT” for examining
the average relative deviation between the eigenspectra of the Hessian and OPG
covariance matrices. The Log GAIC GIMT, like the Log Determinant and Log Trace
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GIMTs, is also a one-degree of freedom test sensitive to small differences in the
eigenstructures of the Hessian and OPG covariance matrices.

We then provide a series of simulation studies to investigate the level and power
properties of the new Eigenspectrum GIMTs and the Adjusted Classical GIMT. Our
simulation studies are intended to achieve three specific objectives. First, we evaluate
the reliability of the large sample approximations for estimating Type I error prob-
abilities (level) for the Adjusted Classical GIMT and our five new Eigenspectrum
GIMTs. Second, we evaluate the level-power performance of the new Eigenspectrum
GIMTs relative to the Adjusted Classical GIMT. Finally, we evaluate the applica-
bility of the new GIMTs to detect model misspecification in representative, realistic
epidemiological data.

2 Theory

2.1 Information Matrix Equality

In what follows, we do not give formal results. For the most part, the necessary
theory can already be found in White (1982, 1994). We use the following notation.
Let the d-dimensional real column vectors x1, . . . , xn be realizations of the i.i.d.
random variables X1, . . . , Xn having support Rd . Let the parameter space �⊆Rk

be a compact set with non-empty interior. Let f : X × � → [0,∞) be defined
such that f (· ; θ) is a Radon-Nikodým density for each θ ∈ �. Let f (xi ; θ) denote
the likelihood of an observation xi for parameter vector θ. Let B̄n = n−1∑n

i=1 Bi

where Bi = gi gT
i and gi ≡ −∇θ log f (Xi ; ·). Let Ān = n−1∑n

i=1 Ai where Ai ≡
−∇2

θ log f (Xi ; ·). Let A and B denote the respective expected values of Ān and B̄n

(when they exist). Suppose the maximum likelihood estimator θ̂n , which maximizes
the likelihood function

∏n
i=1 f (Xi ; θ), converges almost surely to θ

∗ ∈ int �. Let
A∗ ≡ A(θ

∗) and B∗ ≡ B(θ
∗). Let Ân ≡ Ān(θ̂n) and B̂n ≡ B̄n(θ̂n) . We say the model

is correctly specified if there exists θ0 such that f (·; θ0) is the true density of Xi . In
this case, it holds under general conditions that θ∗ = θ0. The GIMT is based upon the
critical observation that under correct specification, the Fisher Information Matrix
equality holds, that is, A∗ = B∗ (e.g., White 1982, 1994). This hypothesis may be
tested by comparing Ân and B̂n . Rejecting the null hypothesis that A∗ = B∗, thus
indicates the presence of model misspecification. In this situation, the classic Hessian
covariance matrix estimator Â−1

n and classic OPG covariance matrix estimator B̂−1
n

for
√

n
(
θ̂n − θ

∗) are inconsistent and the robust estimator Ĉn ≡ Â−1
n B̂nÂ−1

n (e.g.,
Huber 1967; White 1982, 1994; Golden 1996) is consistent and should be used
instead.
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2.2 The Null Hypothesis for a Generalized IMT

Let ϒk×k ⊆ Rk×k be a compact set that contains A∗ and B∗ in its interior. Let s :
ϒk×k × ϒk×k → Rr be continuously differentiable in both of its matrix arguments
where r is a positive integer less than or equal to k(k +1)/2. The function s is called a
Generalized Information Matrix Test (GIMT) Hypothesis Function when it satisfies
the condition that: For every A, B ∈ ϒk×k , if A = B, then s (A, B) = 0r . Throughout
this chapter, we assume that the GIMT Hypothesis function s : ϒk×k ×ϒk×k → Rr

is a continuously differentiable function of both its arguments and that ds(A(θ),B(θ))
dθ

evaluated at θ
∗ has full row rank r. It will also be convenient to let s∗ ≡ s (A∗, B∗).

A GIMT is defined as a test statistic ŝn ≡ s
(

Ân, B̂n

)
that tests the null hypothesis:

H0 : s∗ = 0r .

We distinguish between “nondirectional” and “directional” GIMT hypothesis func-
tions. A GIMT hypothesis function s is called nondirectional when s has the property
that: For every A, B ∈ ϒk×k , A = B, if and only if s (A, B) = 0r . Otherwise, the
GIMT hypothesis function s is called directional.

2.3 Asymptotic Behavior of the Generalized IMT Statistic

We now define the Generalized Information Matrix Test (GIMT) statistic:

Ŵn ≡ n
(
ŝn
)T ∑̂−1

n,s

(
ŝn
)
. (1)

where the estimator
∑̂−1

n,s is an estimator of the asymptotic covariance matrix of

n1/2ŝn,
∑−1

s (θ
∗).

Under standard regularity conditions, Ŵn has a chi-squared distribution with r
degrees of freedom when the null hypothesis H0 : s∗ = 0r holds. Let ĝi ≡ gi

(
θ̂n
)
,

di ≡
[

vec (Ai (θ))

vec (Bi (θ))

]

, and ∇d̄n (θ) ≡ n−1∑n
i=1 ∇di (θ). The covariance matrix

estimator
∑̂

n,s is given by:

∑̂

n,s
≡
[

∂s
∂A

(
Ân

) ∂s
∂B

(
B̂n

)]T

Q̂n

[
∂s
∂A

(
Ân

) ∂s
∂B

(
B̂n

)]

where Q̂n is computed from di , Ân, ∇d̄n, gi and θ̂n following the approach of White
(1982).
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When the r-dimensional matrix
∑

s (θ
∗) is singular and has rank g where 0

<g < r, it is often possible to replace the original GIMT hypothesis function
s : ϒk×k × ϒk×k → Rr with an alternative “adjusted” GIMT hypothesis func-
tion s̃ : ϒk×k ×ϒk×k → Rg that tests a similar null hypothesis yet has the property
that the resulting asymptotic covariance matrix of n1/2s̃n is nonsingular. Let the
adjusted hypothesis projection matrix T be a rectangular matrix with g rows and r
columns with full row rank. Then, a decision indicating the “adjusted” null hypoth-
esis H̃0 : Ts∗ = 0g should be rejected also implies that the original null hypothesis
H0 : s∗ = 0r should be rejected as well. Note that the adjusted null hypothe-
sis projects the original GIMT hypothesis function from the original r-dimensional
space into a g-dimensional subspace. Let s̃n ≡ Tŝn . Let

∑̃
n,s ≡ T

∑̂
n,sT

T . Then

W̃n ≡ n (s̃n)
T ∑̃−1

n,s (s̃n) is called an “adjusted” GIMT, having g degrees of freedom
(rather than r degrees of freedom) and testing the null hypothesis: H0 : Ts∗ = 0g .

Finally, although calculation of ∇di (θ) requires using the derivative of Ai , which
requires third derivatives of the log-likelihood, one can use the Lancaster-Chesher
formula for ∇di (θ), denoted ∇̈di (θ). This avoids third derivatives by expressing
∇di (θ) in terms of the first and second derivatives of the log-likelihood function
when the null hypothesis that the model is correctly specified holds (Lancaster 1984;
also see Chesher 1983).

Thus, this yields six distinct GIMT statistics that can be used to test a single null
hypothesis specified by a given GIMT Hypothesis function. When the GIMT null
hypothesis holds either B̂−1

n or Ĉn may be used instead of Â−1
n to calculate Q̂n .

Furthermore, the assumption that the GIMT null hypothesis holds permits the
use of the Lancaster-Chesher formula ∇̈di (θ) to avoid explicitly computing the
third derivatives of the log-likelihood function (i.e., ∇di (θ)). A Hessian-GIMT

statistic corresponds to the case denoted by

{(
Ân

)−1
,∇di (θ)

}

where
(

Ân

)−1

is estimated by the Hessian covariance matrix estimator. An OPG-GIMT statis-

tic corresponds to the case denoted by

{(
B̂n

)−1
, ∇̈di (θ)

}

where
(

B̂n

)−1
is esti-

mated by the OPG covariance matrix estimator (Lancaster 1984; also see Chesher
1983) and ∇di (θ) is calculated using the Lancaster-Chesher formula ∇̈di (θ).
To the best of our knowledge, the use of the remaining four GIMT statistics(

i.e.,

{(
Ân

)−1
, ∇̈di (θ)

}

,
{

Ĉn, ∇̈di (θ)
}

,

{(
B̂n

)−1
,∇di (θ)

}

,
{

Ĉn,∇di (θ)
})

associated with a single specific GIMT Hypothesis function for estimating the GIMT
covariance matrix have not been discussed in the literature. However, in preliminary
studies not reported here (Henley et al. 2001, 2004) we have found that these new
statistics exhibit promising size and power properties.

It can be shown that for all six distinct GIMT statistics, the asymptotic distribution
of Ŵn is chi-square with r degrees of freedom when H0 : s (A∗, B∗) = 0r holds,
under appropriate further regularity conditions and with a few minor modifications
to the analysis presented by White (1982; see Proof of Theorem 4.1). Further, it can
be shown that Ŵn → ∞ almost surely when H0 : s (A∗, B∗) = 0r is false. Thus,
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Ŵn (or similarly the adjusted version Ŵn) can be used as a test statistic for the
purpose of detecting the presence of model misspecification.

2.4 Classical IMT Family

White (1982) describes a family of IMTs that can be represented by a GIMT Hypoth-
esis Function s of the form s (A, B) = S vech (A − B), where the selection matrix
S ∈ Rr×k(k+1)/2 is some user-specified constant rectangular matrix of row rank r.
The Classical Full IMT that has been widely discussed in the literature corresponds to
the case where the selection matrix is a k(k+1)/2-dimensional identity matrix. White
(1982) proposed the Classical Full IMT null hypothesis H0 : A∗ = B∗ that can be rep-
resented by a nondirectional GIMT hypothesis function. White (1982) also proposed
a family of IMTs that could be represented as a set of directional GIMT hypothesis
functions of the form: s (A, B) ≡ S vech (A − B) where S ∈ Rr×k(k+1)/2 has row
rank r. Thus, the GIMT hypothesis function introduced in this chapter is a nonlinear
generalization of the original Information Matrix Test hypothesis function described
by White (1982), which is limited to the representation of linear combinations of
the elements of the A and B matrices. Note that White’s (1982) IMT theory may be
viewed as special case of the GIMT theory presented in this chapter.

2.4.1 Classical Full IMT

The Classical Full IMT as described in White (1982, 1994) corresponds to the case
where the Classical Full IMT Hypothesis Function s : ϒk×k × ϒk×k → Rr is
defined such that for every A, B ∈ ϒk×k :

s (A, B) = vech(A) − vech(B)

yielding the null hypothesis H0 : vech (A∗) = vech (B∗). The Classical Full IMT is
a nondirectional GIMT, but suffers from the disadvantage of an excessive number of
degrees of freedom, k(k + 1)/2. Thus, the associated excessive variance may yield
erratic test performance for typical values of k.

2.4.2 Adjusted Classical GIMT

In simulation studies, we found that the covariance matrix of the GIMT hypothesis
function estimator for White’s (1982) Classical IMT tended to be singular and so
we always used the “adjusted version” of the Classical Full IMT (see the discussion
in Sect. 2.3), called the Adjusted Classical GIMT. We emphasize that although the
performance of the Adjusted Classical GIMT has not been systematically investi-
gated in previous empirical studies, it is actually a particular member of the family
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of directional IMTs explicitly discussed in White’s (1982) original paper. We also
comment that the performance of the adjusted version of the Classical Full IMT
depends upon the researcher’s choice of the row dimension g of the adjusted hypoth-
esis projection matrix. Theoretically, the appropriate choice of g is straightforward,
but in practice, numerical definitions of the presence of excessive multicollinearity
are required. To examine the presence of excessive multicollinearity we compute
the ratio of the largest to the smallest eigenvalues as well as the magnitude of the
largest and smallest eigenvalues of the GIMT statistic covariance matrix estimator.
The performance of the Adjusted Classical GIMT in our simulation studies (and other
simulation studies not reported here) tended to vary depending upon how stringently
we defined a GIMT statistic covariance matrix estimator as singular or non-singular
(Henley et al. 2001, 2004). Our results suggest that care in this regard is a previously
unappreciated crucial element to obtaining good IMT statistic performance.

2.5 Eigenspectrum GIMT Family

The essential idea of the classical IMT family (White 1982) was to directly compare
linear combinations of the elements of and A∗ and B∗. In this section, we propose a
new approach that compares the eigenvalues of (A∗)−1 and (B∗)−1 to determine if
the Fisher Information Matrix Equality holds for a probability model.

Assume A∗ is real symmetric positive definite and that all eigenvalues of A∗ are
distinct. Let λ j,A∗ denote the jth eigenvalue associated with the jth unique orthonor-
mal eigenvector e j,A∗ of A∗. Then there exists a neighborhood of A∗,N A∗ ⊆ Rk×k ,
such that: Aε j,A∗ (A) = � j,A∗ (A) ε j,A∗ (A) for all A ∈ N A∗ where � j,A∗ :
N A∗ → R is an infinitely differentiable function such that � j,A∗ (A∗) = λ j,A∗ , and
ε j,A∗ : N A∗ → Rk is an infinitely differentiable function such that ε j,A∗ (A∗) =
e j,A∗ (Magnus (1985) Theorem 1; also see Magnus and Neudecker (1999) p. 180).

Furthermore,
d� j,A∗

dA (A∗) = e j,A∗
(
e j,A∗

)T . Let �A∗ : N A∗ → Rk be defined such
that for all N A∗ ⊆ Rk×k : �A∗ ≡ [

�1,A∗ , . . . , �k,A∗
]
. Similarly, when B∗ is real

symmetric positive definite with distinct eigenvalues, there exists a neighborhood of
B∗,N B∗ ⊆ Rk×k , such that: Bε j,B∗ (B) = � j,B∗ (B) ε j,B∗ (B) for all B ∈ N B∗ .

Let ψ : (0,∞)k × (0,∞)k → Rr be continuously differentiable in both of
its arguments. An Eigenspectrum IMT Family is a collection of GIMT selection
functions where each selection function s : N A∗ × N B∗ → Rr has the property
that: s (A, B) = ψ (�A∗ (A) ,�B∗ (B)) for all A ∈ N A∗ and for all B ∈ N B∗ .

2.5.1 Log Eigenspectrum GIMT

Let log�A∗ (A) ≡ [
log �1,A∗ (A) , . . . , log �q,A∗ (A)

]T . The Log Eigenspectrum
GIMT Hypothesis Function is defined such that for all A, B ∈ ϒk×k :
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s (A, B) =
[

log

(
�1,A∗

(
A−1

)

�1,B∗
(
B−1

)

)

, . . . , log

(
�k,A∗

(
A−1

)

�k,B∗
(
B−1

)

)]

= log�A∗
(

A−1
)

− log�B∗
(

B−1
)

.

Thus, the null hypothesis of the log eigenspectrum GIMT is given by:

H0 : s
(
A∗, B∗) = log�A∗

((
A∗)−1

)
− log�B∗

((
B∗)−1

)
= 0k .

The Log Eigenspectrum GIMT is a directional GIMT because cases exist where
A∗ 
= B∗, yet the eigenspectra of A∗ and B∗ are identical. For example,

A∗ ≡ (1)

[
0.7025
−0.7117

]
[

0.7025 −0.7117
]

+ (2)

[−0.7117
−0.7025

]
[−0.7117 −0.7025

] =
[

1.5065 0.5
0.5 1.4935

]

and

B∗ ≡ (1)

[−0.8206
0.5715

]
[−0.8206 0.5715

]

+ (2)

[
0.5715
0.8206

]
[

0.5715 0.8206
] =

[
1.3266 0.4690
0.4690 1.6734

]

both have the same eigenvalues (1 and 2), yet A∗ 
= B∗. On the other hand, such
situations are rarely expected to occur in practice, so the Log Eigenspectrum GIMT
essentially exhibits the behavioral properties of a nondirectional GIMT.

Note that the number of degrees of freedom for the Log Eigenspectrum GIMT is
equal to the number of free parameters k, which is a substantial reduction from the
k(k +1)/2 degrees of freedom of the Classical Full IMT statistic. Thus, it is expected
that the variance of the Log Eigenspectrum GIMT statistic will be less than that of
the Classical Full IMT statistic for even moderately small k.

2.5.2 Log Determinant GIMT

The Log Determinant GIMT Hypothesis Function is defined such that for every
A, B∈ϒk×k :

s (A, B) = log det
(

A−1B
)

.

Thus, the null hypothesis of the Log Determinant GIMT is given by:
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H0 : s
(
A∗, B∗) = log det

((
A∗)−1 B∗)

= log det
((

A∗)−1
)

− log det
((

B∗)−1
)

= 0.

The determinant of (A∗)−1 (i.e., the product of the eigenvalues of (A∗)−1) can be
interpreted as a measure of the magnitude of the Hessian covariance matrix (A∗)−1

and is sometimes referred to as the “generalized variance” (Cramér 1946, Sect. 22.7;
Serfling 1980, p. 139). Thus, the Log Determinant GIMT hypothesis function com-
pares the generalized variance of the Hessian covariance matrix (A∗)−1 to the gener-
alized variance of the OPG covariance matrix (B∗)−1. The Log Determinant GIMT
is expected to have good statistical power for two reasons: (1) it is a one degree of
freedom GIMT regardless of the complexity of the model or the complexity of the
data, and (2) it is equally sensitive to changes in the largest eigenvalues as well as
changes in the smallest eigenvalues.

2.5.3 Log Trace GIMT

The Log Trace GIMT is a one-degree of freedom test that compares the magnitude
of the Hessian covariance matrix (A∗)−1 to the magnitude of the OPG covariance
matrix (B∗)−1 by constructing the Log Trace GIMT hypothesis function. The Log
Trace GIMT hypothesis function is defined such that for every A, B ∈ ϒk×k :

s (A, B) = log tr
(

A−1
)

− log tr
(

B−1
)

.

The null hypothesis of the Log Trace GIMT is given by:

H0 : s
(
A∗, B∗) = log tr

((
A∗)−1

)
− log tr

((
B∗)−1

)
= 0.

Note that the Log Trace GIMT hypothesis function may be interpreted as com-
paring the log sum of the on-diagonal variances of the Hessian covariance matrix
(A∗)−1 to that of the OPG covariance matrix (B∗)−1 or equivalently, comparing the
log sum of the eigenvalues of (A∗)−1 with that of (B∗)−1.

The Log Trace GIMT compares the Hessian and OPG covariance matrix structures
based upon the larger eigenvalues while tending to ignore the smaller eigenvalues.
This is equivalent to comparing the sums of the largest on-diagonal variance elements
of both covariance matrices. Thus, the Log Trace GIMT is more sensitive to changes
in the larger eigenvalues of the covariance matrices and less sensitive to changes in
the smaller eigenvalues (i.e., focuses upon the major principal components of the
Hessian and OPG covariance matrices). It is thus expected to be a less sensitive
GIMT than the Log Determinant GIMT (i.e., it may have reduced statistical power).
Depending upon the situation, this latter property of the Log Trace GIMT may be
more or less desirable.
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2.5.4 Log Generalized Variance GIMT

The Log Generalized Variance GIMT Hypothesis Function is defined such that for
every A, B ∈ ϒk×k :

s (A, B) =
[

log det
(
A−1

)− log det
(
B−1

)

log tr
(
A−1

)− log tr
(
B−1

)
]

.

The null hypothesis of the Log Generalized Variance GIMT is given by:

H0 : s
(
A∗, B∗) =

⎡

⎣
log det

(
(A∗)−1

)
− log det

(
(B∗)−1

)

log tr
(
(A∗)−1

)
− log tr

(
(B∗)−1

)

⎤

⎦ =
[

0
0

]

.

The Log Generalized Variance GIMT is a two degree of freedom GIMT and
combines the Log Determinant GIMT, which focuses on both major and minor
principal components of the Hessian and OPG covariance matrices, with the Log
Trace GIMT, which focuses only upon the major principal components of the Hessian
and OPG covariance matrices.

2.5.5 Log GAIC GIMT

Takeuchi (1976; for relevant reviews see Konishi and Kitagawa 1996; Bozdogan
2000) showed that the GAIC defined by the formula:

G AI C ≡ −2 log
n∏

i=1

f
(
Xi ; θ̂n

)+ 2TRACE
(

Â−1
n B̂n

)

is an unbiased estimator of the expected value of −2 log
∏n

i=1 f
(
Xi ; θ̂n

)
in the pres-

ence of model misspecification. When the model is correctly specified, then almost
surely: Â−1

n B̂n → Ik where Ik is the k-dimensional identity matrix. Furthermore,

since 2TRACE
(

Â−1
n B̂n

)
→ 2k, GAIC reduces to Akaike’s (1973) Akaike Informa-

tion Criterion (AIC) defined as:

AI C ≡ −2 log
n∏

i=1

f
(
Xi ; θ̂n

)+ 2k.

Let (�A∗ (A))−1 ≡
[(

�1,A∗ (A)
)−1

, . . . ,
(
�k,A∗ (A)

)−1
]

and let � denote

the Hadamard product (i.e., element-wise vector multiplication) operator. If a

simultaneous diagonalization of A∗ and B∗ exists, TRACE
[
(A∗)−1 B∗

]
= (1k)

T

[
(�A∗ (A∗))−1 ��B∗ (B∗)

]
. This observation suggests a new GIMT called the Log
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GAIC IMT. The Log GAIC GIMT Hypothesis Function is defined such that for every
A, B ∈ ϒk×k :

s (A, B) = log

⎛

⎝1

k

k∑

j=1

(
λ̃ j,B∗ (B)

λ̃ j,A∗ (A)

)⎞

⎠

= log

(
1

k
TRACE

[(
λ̃A∗ (A)

)−1 � λ̃B∗ (B)

])

.

Thus, the null hypothesis of the Log GAIC IMT is given by:

H0 : s
(
A∗, B∗) = log

(
1

k
TRACE

[(
λ̃A∗

(
A∗))−1 � λ̃B∗

(
B∗)
])

= 0.

The Log GAIC GIMT is also a one-degree of freedom IMT, and is more similar
to the Log Determinant GIMT than to the Log Trace GIMT because the Log GAIC
GIMT is sensitive to all differences in the eigenspectra of (A∗)−1 and (B∗)−1. How-
ever, the Log GAIC GIMT differs from the Log Determinant GIMT because these
changes are combined additively instead of multiplicatively.

3 Simulation Studies

In this section we describe and report findings from simulation studies designed to
investigate the level and power properties of the five new Eigenspectrum GIMTs and
the Adjusted Classical GIMT. Our studies here investigate the reliability of the large
sample approximations for estimating Type I error probabilities (level) and evaluate
the performance of the new Eigenspectrum GIMTs relative to the new Adjusted
Classical GIMT. They also demonstrate the applicability of the new Eigenspectrum
GIMTs to detect and assess model misspecification using a realistic epidemiological
data analysis problem.

3.1 Epidemiological Data Sample

Our simulation studies were conducted using a random sample (n = 16,189) of dei-
dentified patient discharges from the Department of Veterans Affairs (VA) Patient
Treatment File between October 1, 1995 and September 30, 1996. The “deidenti-
fied Extraction Sample” of 16,189 patients included a single binary response variable
(ALC) indicating the presence or absence of a primary or secondary discharge diagno-
sis of either: (i) alcohol dependence (IDC9#303), or (ii) alcohol abuse (ICD9#305.0),
based on diagnostic codes from the International Classification of Diseases 9th
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Edition (ICD9) (DHHS 1980). The simulation data contains only adults, with the
ICD9 alcohol disorders occurring in approximately 20.3 % (3,283) of all patients,
where in the sample 4 % are female, 25.1 % are divorced, and 4.2 % are minorities.

3.2 Logistic Regression Models

In this chapter, we investigate the performance of our new GIMTs with respect to
binary logistic regression (logit) models (Christensen 1997; Hosmer and Lemeshow
2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) in which the probability
that a binary response random variable R takes on the values of zero or one is
functionally dependent upon d − 1 predictor variable values denoted by the d − 1-
dimensional vector u ∈ Rd−1. Define a logistic regression model using

log

[
p (R = 1|u; β)

p (R = 0|u; β)

]

= βT
[

u
1

]

where the last element of the k-dimensional parameter vector β corresponds to the
intercept parameter. In order to relate this logistic regression model to the discussion
in Sect. 2, let R ≡ x1 and u ≡ [x2, . . . , xd ] so that x ≡ [R, u] ∈ Rd and let
θ ≡ β ∈ � ⊆ Rk where d = k. Using this notation, we define

f (x; θ) ≡ [x1 p (R = 1|u; β) + (1 − x1) p (R = 0|u; β)] p (x2, . . . , xd)

where the joint predictor density p (x2, . . . , xd) is not functionally dependent upon
β ∈ Rd . Because of this latter property, the GIMT formulas are not functionally
dependent on p (x2, . . . , xd). Thus in the i.i.d. case the log-likelihood for a logistic
regression model with sample size n is

L (β) =
n∑

i=1

{Ri ln [p (Ri = 1|ui ; β)] + (1 − Ri ) ln [1 − p (Ri = 1|ui ; β)]}

where

p (R = 1|u; β) =
(

1 + exp
[
−
(

uT β
)])−1

.

3.2.1 Logistic Regression Model with Binary Predictors

We first fitted a logistic regression model to the n = 16,189 deidentified Extraction
Sample using maximum likelihood estimation to predict the presence or absence
of “alcohol-disorder” (ALC) from the binary predictors “female” (FEMALE),
“married” (MARRIED), recoded categorical predictor ethnicity containing “black”
(BLACK) and “white” (WHITE), and the recoded predictor “age” (AGE).
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The ethnicity variable was recoded into a three category design variable (white, black,
other) using reference cell coding (Hosmer and Lemeshow 2000) where “other” is
the reference variable. Also, the numerical AGE predictor was trichotomized into a
three category design variable by applying optimally estimated cut values γ1 = 55.4
and γ2 = 68.2 (Henley et al. 2000; Kashner et al. 2002, 2003, 2007, 2010) where
the first binary design variable AGE1(age ≤ 55.4) is the reference variable.

In addition to reporting our model fit results using a negative log-likelihood score,
we report fitness results in terms of a GAIC, also known as the Takeuchi Information
Criterion (TIC) (Takeuchi 1976; Konishi and Kitagawa 1996; Bozdogan 2000). GAIC
is a misspecification robust extension of the Akaike Information criterion (AIC)
(Akaike 1973; Burnham and Anderson 2002, pp. 65, 362–372). The resulting fitted
logistic regression model had a negative log-likelihood of 6,718.2 (GAIC/2n =
0.415420, p = 0.0000) with estimated parameter values

β̂0 = −0.7397, β̂1 = −1.3099, β̂2 = −2.2946, β̂3 = −1.4249,

β̂4 = −0.9784, β̂5 = 1.0000, β̂6 = 0.6822

respectively for the intercept, AGE2 (55.4 < age ≤ 68.2), AGE3 (68.2 < age ≤
85), FEMALE, MARRIED, BLACK, and WHITE predictors. Wald tests computed
using robust standard errors (e.g., Wald 1943; White 1982; Golden 1996) showed
each estimated parameter value was significantly different from zero (p < 0.001).
All six GIMTs applied to this model failed to reject the null hypothesis (Adjusted
Classical, p = 0.6113; Log Eigenspectrum, p = 0.3618; Log Determinant, p =
0.6138; Log Trace, p = 0.4063; Log Generalized Variance, p = 0.6890; Log GAIC,
p = 0.6004) indicating no evidence of model misspecification. Thus, simulated data
samples generated from this fitted model were expected to be more representative of
real world data.

3.2.2 Alternative Logistic Regression Model with Numerical
and Binary Predictors

We also fitted a different (alternative) logistic regression model that replaced the tri-
chotimized age predictor with the numerical predictor for “age” (AGE∗) and added
a “divorced” (DIVORCED∗) binary variable so each model had seven free parame-
ters. The model was otherwise identical to the first one. The resulting fitted logistic
regression model had a negative log-likelihood of 6,743 (GAIC/2n = 0.416965, p =
0.0000) with estimated parameter values

β̂0 = 1.8448, β̂1 = −0.0646, β̂2 = −1.6057, β̂3 = −0.7972,

β̂4 = 0.3353, β̂5 = 1.0082, β̂6 = 0.7065

respectively for the intercept, AGE∗, FEMALE, MARRIED, DIVORCED∗,
BLACK, and WHITE predictors. Wald tests computed using robust standard errors
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(e.g., Wald 1943; White 1982; Golden 1996) again showed each estimated parameter
value was significantly different from zero (p < 0.001). All six GIMTs applied to the
alternative logit model rejected the null hypothesis (Adjusted Classical, p = 0.0000;
Log Eigenspectrum, p = 0.0000; Log Determinant, p = 0.0028; Log Trace,
p = 0.0282; Log Generalized Variance, p = 0.0112; Log GAIC, p = 0.0026)
indicating the presence of model misspecification.

In practice, researchers may inadvertently use a misspecified model that never-
theless provides a good fit, as measured by log-likelihood or GAIC, to the observed
data. We selected an alternative logistic regression model, which provided a fit
(GAIC/2n = 0.416965, p = 0.0000) to the observed data that is comparable to
the fit (GAIC/2n = 0.415420, p = 0.0000) of the original logit model described in
Sect. 3.2.1. This difference in model fit was not statistically significant (p = 0.1960)
using the Discrepancy Risk Model Selection Test (DRMST) (Vuong 1989; Golden
2000, 2003; Henley et al. 2000, 2003, 2008) for comparing nonnested and possibly
misspecified models.

3.3 Simulation Study

3.3.1 GIMT Level and Power Estimation Procedures

The procedure for estimating the observed level of a GIMT is shown in Fig. 1. Four
simulated data samples of n∗ records (n∗ = 1,619, n∗ = 4,047, n∗ = 8,095, and
n∗ = 16,189) were generated by sampling with replacement from the original rep-
resentative sample (see Politis et al. 1999; Davison et al. 2003). This process was
repeated m times for each of four sample sizes. The conditional probability for the
binary ALC outcome variable was then computed and assigned the value one or zero,
based on the minimum probability of decision error rule, for each record using pre-
dictor values and the estimated coefficients of the seven-parameter logistic regression
model with binary predictors. Thus, all simulated data samples had predictor values
with synthetic ALC outcome values that had been generated from the specified logis-
tic regression model estimated on the original representative sample (n = 16,189).
To calculate level estimation results, we then fit the logistic regression model to each
of the m simulated data samples for the four sample sizes and computed 10,000
significance levels in the range of zero to one for all the GIMTs. The percentage of
times that a GIMT incorrectly rejects the null hypothesis of correct specification as
the “observed incorrect rejection rate” or “observed level” was calculated.

The procedure for estimating the observed power of a GIMT is shown in (Fig. 2).
In this experiment we created an alternative logistic regression model by changing
two of the six binary predictor variables in the logistic regression model from the
level estimation procedure (Fig. 1). As previously described, the numerical AGE
and binary DIVORCED predictor variables in the original representative data sam-
ple replaced the binary design variables AGE2 and AGE3. This predictor variable
change introduced a relatively subtle, but realistic misspecification into the alterna-
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Generate m
Simulated Data 
Samples of size 
n* from model 
fitted to original 
Data Sample of 
size n.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample 1
of size n*.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample 2
of size n*.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample m
of size n*.

Count % Incorrect
Rejections of H0.

Estimated 
Level

Fig. 1 Simulation procedure for estimation of level

tive model because the known (i.e., simulated) data generating process stems from
the original logistic regression model containing only binary predictors. Further, the
use of observationally equivalent original and alternative logit models (see discus-
sion in Sect. 3.2.2) for the simulation design minimizes the confounding issue of
model fit (GAIC) with specification, thus enabling the effects of model specification
(goodness-of-fit) on GIMT performance to be more effectively studied. To calculate
power estimation results, we then fit the alternative logistic regression model to each
of the simulated data samples from the level analysis for the four sample sizes and
computed 10,000 significance levels in the range of zero to one for all the GIMTs.
The percentage of times that a GIMT correctly rejects the null hypothesis of cor-
rect specification as the “observed correct rejection rate” or “observed power” was
calculated.

In our simulation studies, an MLE was defined as a set of parameter values such
that the sup norm of the gradient of the negative log-likelihood evaluated at the MLE
was less than 1e−8. Further, we avoided fitting models to degenerate simulated
data by omitting samples with condition numbers greater than 4.5e+14 to insure
numerical stability. The condition number is defined as the maximum eigenvalue
divided by the minimum eigenvalue of the inverse of the Hessian covariance matrix
estimator. Each simulation was run until m = 100,000 simulated data samples of
size n∗ was reached. The sample sizes n∗ for the simulated data represented 10 %,
25 %, 50 %, and 100 % of the original 16,189 record data set. In all simulations, we
utilized the Hessian-GIMT statistic as defined in Sect. 2.3.
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Use m Simulated 
Data Samples from 
Level Analysis.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample 1
of size n*.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample 2
of size n*.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample m
of size n*.

Count % Correct
Rejections of H0.

Estimated
Power

Fig. 2 Simulation procedure for estimation of power

3.3.2 Simulation Study Results

In this section we present level-discrepancy and level-power simulation results for
the proposed GIMTs.

Level-Discrepancy Analyses
We first examined the performance for the six GIMTs using a P-value plot analysis

(Davidson and MacKinnon 1998). This method plots the empirical level (observed
rejection rate of the null hypothesis, i.e., Type I error) of a GIMT against its nominal
level (specified rejection rate of the null hypothesis). To enable P-value plot com-
parisons, we also define a summary deviation measure for the level-discrepancy as
the root mean square error (RMSE) between empirical and nominal levels over the
specified range of interest (e.g., [0, 0.1] or [0, 1.0]). Thus, an ideal estimation of the
Type I error rate corresponds to a level-discrepancy of zero (i.e., RMSE = 0). In our
studies, the level-discrepancy for each GIMT was estimated on simulated data for
each sample size.

The Adjusted Classical GIMT is a member of the family of Classical IMTs
that includes White (1982) Full IMT. Figure 3 depicts the P-value plots with level-
discrepancies for the Adjusted Classical GIMT on 100,000 simulated data samples
for n ranging from 1,619 to 16,189 for level ranges on [0, 0.10]. These results show
that the level-discrepancy deviation decreases from 0.0261 to 0.0091 RMSE as sam-
ple size increases, thus approaching an ideal estimation Type I error rate at larger
sample sizes. Further, the exhibited Type I error rate convergence for the Adjusted
Classical GIMT indicated level-discrepancy performance that was much better than
the performance of the Classical Full IMT (not shown). We attribute this to the par-
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Fig. 3 P-value plots for the White’s (1982) Adjusted Classical GIMT show empirical level [0, 0.1]
versus nominal level [0, 0.1] by sample size. The displayed level-discrepancy is defined as the root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189

ticular care with which singularity or near-singularity of the test statistic covariance
matrix is handled.

Next, we present the simulation results for the new Log Eigenspectrum GIMT.
Figure 4 depicts the P-value plots with level-discrepancies for the Log Eigenspec-
trum GIMT on 100,000 simulated data samples for n ranging from 1,619 to 16,189,
which again shows RMSE decreasing as sample size increases. Notably, the level-
discrepancy (RMSE = 0.0030) for the Log Eigenspectrum GIMT at n = 16,189 is
less than the level-discrepancy (RMSE = 0.0091) for the Adjusted Classical GIMT
(Fig. 3).

The simulation results for the new Log GAIC GIMT, which is a directional GIMT,
are also presented for comparison. Figure 5 shows the P-value plots with level-
discrepancies for the Log GAIC GIMT on 100,000 simulated data samples for n
ranging from 1,689 to 16,189. Again, the empirical and nominal levels of interest
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Fig. 4 P-value plots for the Log Eigenspectrum GIMT show empirical level [0, 0.1] versus nominal
level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189. The level-discrepancy
(RMSE = 0.0030) at n = 16,189 for the Log Eigenspectrum GIMT with seven degrees of freedom
is less than the level-discrepancy (RMSE = 0.0091) reported for the Adjusted Classical GIMT
(Fig. 3), which has up to 28 degrees of freedom

range over [0, 0.10]. These simulation results show the level-discrepancy for the Log
GAIC GIMT is converging to zero as sample size increases. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT is greater
than the level-discrepancy (RMSE = 0.0030) reported for the Log Eigenspectrum
GIMT (Fig. 4), but less than the level-discrepancy (RMSE = 0.0091) reported for
the Adjusted Classical Full GIMT (Fig. 3). A similar pattern of results was observed
using the P-value plot analyses for the remaining three new directional Eigenspec-
trum GIMTs. All observed rejection rates were very close to the nominal levels.

The level-discrepancy performance of all GIMTs is depicted in Fig. 6, which
displays P-value plot results as a function of sample size. As shown, the new Eigen-
spectrum GIMTs exhibit excellent performance for large sample sizes. In addi-
tion, they exhibited better performance than the Adjusted Classical GIMT with
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Fig. 5 P-value plots for the directional Log GAIC GIMT show empirical level [0, 0.1] versus
nominal level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by
root mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation
of the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT with one-degree of freedom
is larger than the level-discrepancies obtained for the Log Eigenspectrum GIMT (RMSE = 0.0030),
though smaller than the Adjusted Classical GIMT (RMSE = 0.0091) shown respectively in Figs. 3
and 4

level-discrepancies approaching zero in all cases. The Log Eigenspectrum GIMT
exhibited the best (i.e., smallest) level-discrepancy performance of all GIMTs at
larger sample sizes.

The observed rejection rates (estimated Type I errors) for each of the six new
GIMTs are reported in Table 1 for the nominal significance levels of 0.001, 0.005,
0.01, 0.025, 0.05, and 0.10 for the full sample size of n = 16,189. The simulated
standard errors of the estimated Type I error rates are shown in parentheses. Note
that these standard errors will converge to zero as m → ∞ for a fixed sample
size n = 16,189. Our findings show that the estimated Type I error rates for all
six new GIMTs are, in general, very close to their specified error rates. The Log
Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at the
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Fig. 6 Level-discrepancy performance by sample size for the six GIMTs in the simulation study.
Each data point corresponds to 100,000 simulated data samples. The Adjusted Classical GIMT and
all the Eigenspectrum GIMTs exhibit level-discrepancy convergence towards zero as sample size
increases. The Log Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at
the larger sample sizes

larger sample sizes. We also performed additional simulation studies (Henley et al.
2001, 2004), and found that the performance of the six new GIMTs was always better
than White’s (1982) Classical Full IMT.

Level-Power Analyses
Next, we perform a level-power analysis to examine all six GIMTs by generating

a level-power curve (Davidson and MacKinnon 1998) for each GIMT. A level-power
curve plots the power (i.e., 1-Type II error) of a statistical test as a function of the
level (rejection rate or Type I error). Accordingly, we interpret a statistical test as
a binary classifier that divides the decision space into two regions: reject or fail to
reject (Wickens 2002; Pepe 2004, p. 152).

An important performance measure for the evaluation of binary classifiers is the
Area Under the Response Operating Characteristic Curve (AUROC; also known as
AUC) (Hanley and McNeil 1982; Bradley 1997; Wickens 2002; Pepe 2004; Fawcett
2006). In the context of a level-power analysis, this corresponds to the area under the
level-power curve. A level-power AUROC equal to one corresponds to perfect clas-
sification (i.e. test) performance. Figure 7 shows the level-power curves for the Log
Eigenspectrum GIMT for m = 100,000 simulated data samples with sample sizes
of n∗ = 1,619, n∗ = 4,047, n∗ = 8,095, and n∗ = 16,189. The Log Eigenspectrum
GIMT exhibited ideal level-power performance (AUROC = 1.00) at the two larger
samples sizes (not shown).

Level-power curves for all sample sizes (n∗ = 1,619, n∗ = 4,047, n∗ = 8,095,
and n∗ = 16,189) were also generated for the other GIMTs using 100,000 simulated
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Fig. 7 Level-power curves for Log Eigenspectrum GIMT exhibit convergence to ideal GIMT
decision performance as sample size increases using simulated epidemiological data. Each data point
on the graphs represents 100,000 simulated data samples under the null and alternative hypotheses
for the sample sizes n∗ = 1,619 and n∗ = 4,047 respectively. This two graph sequence depicts
convergence to an ideal level-power curve (i.e., AUROC = 1.00). The level-power performance for
the larger sample sizes n∗ = 8,095 and n∗ = 16,189 (not shown) achieved an ideal AUROC = 1.00

data samples per data point under the null and alternative hypotheses. Figure 8 depicts
the level-power performance of all GIMTs as a function of sample size. As shown, the
new Log Eigenspectrum GIMT and the Adjusted Classical GIMT have good power
for both small and large sample sizes, although all of the GIMTs exhibit useful power
for large sample sizes. A possible explanation for the increased power of the Log
Eigenspectrum and the Adjusted Classical GIMTs is that these GIMTs test more
comprehensive composite null hypotheses that result in increased opportunities to
detect the presence of model misspecification.

4 Summary and Conclusions

In this chapter, we have introduced a general approach to the development of Gener-
alized Information Matrix Tests that are intended to detect the presence of model mis-
specification. Such situations occur when the Hessian inverse covariance matrix A∗
and the OPG inverse covariance matrix B∗ are different. In particular, we introduced
the new Generalized Information Matrix Test (GIMT) that tests H0 : s (A∗, B∗) = 0r

and provided a Wald test version of the GIMT based on the asymptotic distribution of

n1/2ŝn ≡ n1/2s
(

Ân, B̂n

)
, along the lines of (White 1982, Theorem 4.2). For a given

GIMT Selection Hypothesis Function, we also provided six distinct formulas for
computing each GIMT test statistic and introduced the new concept of an “adjusted”
GIMT statistic for dealing with issues of multicollinearity and demonstrated its utility
by applying it to White’s (1982) Classical Full IMT.
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Fig. 8 AUROC (level-power) performance as a function of sample size for the six GIMTs in the
simulation study. Each data point corresponds to 100,000 simulated data samples under the null
and 100,000 simulated data samples under the alternative hypothesis. The Adjusted Classical and
Log Eigenspectrum GIMTs converged at a faster rate to ideal level-power (i.e., AUROC = 1.00)
as sample size increases, indicating more efficient level-power performance when compared to the
other GIMTs

Further, we introduced the idea of constructing GIMTs by comparing nonlinear
functions of the eigenspectra of the Hessian and OPG covariance matrices. Next, we
developed five new GIMTs based upon the Eigenspectrum GIMT Family. These are
the Log Eigenspectrum GIMT, Log Determinant GIMT, Log Trace GIMT, Gener-
alized Variance GIMT, and Log GAIC GIMT. Analytic formulas for these five new
Eigenspectrum GIMTs were derived and implemented in computer software.

We studied the performance of these five new Eigenspectrum GIMTs and an
adjusted version of White’s (1982) Classical Full IMT (i.e., Adjusted Classical
GIMT) in a series of simulation experiments using a realistic 16,189 record data
set typical of data encountered in epidemiological studies. By comparing a correctly
specified model and a misspecified model with approximately equivalent fits to the
observed data, our simulation studies focus specifically on the effects of model mis-
specification. Using P-value plots and level-power plots, we found that the Adjusted
Classical GIMT and the five new Eigenspectrum GIMTs exhibited reliable perfor-
mance, in the sense that their asymptotic behavior was correctly captured by the
large sample statistical theory under the null. In particular, the empirically observed
Type I error rates for all six new GIMTs were very close to their nominal error rates.
Additionally, they also exhibited useful power. This is in stark contrast to the familiar
poor performance of the unadjusted form of White (1982) Classical Full IMT (e.g.,
Davidson and MacKinnon 1992; Stomberg and White 2000; Aparicio and Villanua
2001).
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For the larger sample sizes, the level-discrepancy performance (i.e., Type I error
performance) of the high degree of freedom GIMT (i.e., Log Eigenspectrum) was
better than those of all the low degree of freedom GIMTs (i.e., Log Determinant,
Log Trace, Log Generalized Variance, Log GAIC), which in turn exceeded the per-
formance of the high degree of freedom Adjusted Classical GIMT. However, the
power performance (i.e., Type II error performance) of the Adjusted Classical and
Log Eigenspectrum GIMTs was always superior to that of the low degree of freedom
GIMTs over all sample sizes. We conjecture that the reduced variance of the low
degree of freedom GIMTs decreased the efficiency of the large sample approxima-
tion when compared to the Log Eigenspectrum GIMT. We further conjecture that
because the Eigenspectrum GIMTs have fewer degrees of freedom they were more
robust to sampling error when compared to the Adjusted Classical GIMT, which
adjusts its degrees of freedom to control for multicollinearity. The greater power of
the larger degree of freedom GIMTs is most likely explained by noting that these
GIMTs are simultaneously testing multiple hypotheses, thus providing additional
opportunities to detect model misspecification.

We used our Adjusted Classical GIMT instead of White’s (1982) Classical Full
IMT because in additional simulation studies not reported here, the asymptotic
covariance matrix for the Classical Full IMT was frequently observed to be sin-
gular and exhibited much worse performance in our investigations. However, in all
cases, the level-discrepancy and the level-power performance of the new Adjusted
Classical GIMT and the new Eigenspectrum GIMTs were superior to those of the
Classical Full IMT. Moreover, the reliable performance of the Adjusted Classical
GIMT as compared to the Classifical Full IMT is notable, and we emphasize that
this GIMT is a special case of the original IMT theory proposed by White (1982).

In conclusion, the generalized IMT theory (Henley et al. 2001, 2004, 2008)
presented here provides a novel framework for developing a wide range of model
specification tests for a broad range of probability models. In particular, the new
Eigenspectrum Family GIMTs have degrees of freedom less than or equal to k, in
contrast to the Classical Full IMT (White 1982), which has k(k + 1)/2 degrees of
freedom for a k-parameter model. Further, our five new Eigenspectrum GIMTs and
new Adjusted Classical GIMT for logistic regression models all have appealing level
and power properties, as seen in a series of simulation experiments involving a real-
istic epidemiologic modeling problem. These six new GIMTs are therefore expected
to provide useful new tools for detecting model misspecification across a broad class
of probability models (Hastie and Tibshirani 1986; McCullagh and Nelder 1989; Wei
1998; Harrell 2001; Hastie et al. 2009), thus decreasing the chance that a misspecified
model is inadvertently used to make inferences in practice. The reduction of incorrect
statistical inferences, in turn, has fundamentally important consequences for making
critical decisions in many areas, including the social, behavioral, and physical sci-
ences, as well as engineering, financial, medical, and public health research (Kashner
et al. 2002, 2003, 2007, 2010).
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