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Statistical Tests for Comparing Possibly
Misspecified and Nonnested Models
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Model selection criteria (MSC) involves selecting the model with the best
estimated goodness-of-fit to the data generating process. Following the
method of Vuong (1989), a large sample Model Selection Test (MST), is
introduced that can be used in conjunction with most existing MSC proce-
dures to decide if the estimated goodness-of-fit for one model is significantly
different from the estimated goodness-of-fit for another model. The MST
extends the classical generalized likelihood ratio test, is valid in the presence
of model misspecification, and is applicable to situations involving nonnested
probability models. Simulation studies designed to illustrate the concept of
the MST and its conservative decision rule (relative to the MSC method) are
also presented. � 2000 Academic Press

An important problem in model selection is concerned with identifying the best-
fitting model to some unobservable data generating process given only a data
sample from that process (for further discussion see Akaike, 1973; Cox, 1962;
Schwarz, 1978; Bozdogan, 1987; Linhart and Zucchini, 1986; Sin and White, 1996).
In such procedures, the fit of each model to the data generating distribution is
evaluated using some goodness-of-fit function. The model with the best goodness-
of-fit is then selected. Such procedures permit multiple models to be simultaneously
compared so that if there are K possible models, then there are K possible decisions:
select model 1, select model 2, ..., select model K. Such procedures will be referred
to as model selection criteria (MSC) procedures.

Model selection test methodology. In some situations, however, it might be
desirable to make the additional decision that there is not sufficient evidence for
selecting one model over another. A Model Selection Test (MST) procedure is a
statistical test specifically designed to test the null hypothesis that all probability
models fit the data generating process equally well. Thus, a MST results in K+1
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possible decisions for a comparison among K models at a chosen significance level:
select model 1, select model 2, ..., select model K, or conclude there is not sufficient
evidence for selecting one model over another.

Comparing large numbers of models simultaneously. The MST procedures
reviewed in this article are limited to comparing only two models at a time, whereas
MSC procedures are not limited in this way. Of course, a MST for comparing mul-
tiple models simultaneously can be developed using multiple pair-wise MSTs but
then the experiment-wise error rate will be inflated (see Golden, 1995, for further
discussion of this point). In such cases where large numbers of multiple probability
models must be simultaneously compared, a MSC methodology is usually
preferable to the pair-wise MST methodology discussed in this article.

MST procedures versus goodness-of-fit tests. The MST procedures reviewed in
this article are different in an important way from goodness-of-fit statistical tests.
A goodness-of-fit statistical test is concerned with testing the idealistic null
hypothesis that a given probability model fits the underlying data generating
process effectively. In contrast, the MST procedures reviewed here are concerned
with testing the more pragmatic null hypothesis that two given probability models
provide equally effective descriptions of the underlying data generating process even
in situations where neither probability model is truly appropriate.

Historical comments. An important early approach to the MST problem was
Wilk's (1938) Generalized Likelihood Ratio Test (GLRT) which tested the null
hypothesis that two fully nested models were equivalent. More recently, Efron
(1984) considered the problem of comparing two nonnested linear models. Linhart
(1988) proposed a large sample statistical test for comparing nonnested models.
Shimodaira (1997) emphasized the difficulty of applying Linhart's (1988) methodol-
ogy to more general situations where models could be nested or partially nested
and proposed a modification of Linhart's test statistic to solve this problem.

An alternative (but closely related) approach to the method of Shimodaira
(1997), was described earlier by Vuong (1989). Vuong's (1989) approach was
largely influenced by the work of White (1982) who was concerned with the
problem of making statistical inferences in the presence of model misspecification
(see Golden, 1995, and White, 1994, for relevant reviews). Vuong's (1989) theory
essentially combined the GLRT method and Linhart's (1988) method to obtain a
two-stage large sample MST. Vuong (1989) showed how his method could be
viewed as a natural generalization of the classical GLRT methodology. Golden
(2000) noted that a simple and straightforward modification of Vuong's (1989)
method called the DRMST (Discrepancy Risk Model Selection Test) is useful for
constructing MST procedures for a wide variety of smooth goodness-of-fit
functions.

Organization of this article. This article is organized in the following manner.
First, some fundamental concepts associated with MSC and MST procedures are
introduced and discussed. Second, the DRMST procedure is introduced and dis-
cussed. And third, simulation studies are provided to emphasize key similarities and
differences between various MSC and MST procedures.
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I. DEFINITIONS AND CONCEPTS FOR MSC AND MST

Data Generating Processes and Probability Models

The data generating process. The observed data will be represented by a set of
n vectors corresponding to n data points. The notation Xn=[x(1), ..., x(n)] will be
used to denote a data sample of size n. The observed data are assumed to be
generated by sampling from a population with a particular probability distribution.
This specific probability distribution is called the environmental distribution. The
mechanism for generating the independent and identically distributed (i.i.d.) data
from the environmental distribution is called the data generating process.1

Probability model. A set of probability distributions is called a probability
model.2 Let p% be a probability mass (or density) function whose identity is specified
by choosing a particular parameter vector %. For example, if p% is a probability mass
function, then p% (x(i )) is the probability mass assigned to observation x(i ).
A parameter space W for a probability model M is a set defined such that p% is in
M if and only if % is in W. It will be implicitly assumed throughout this paper that
p% is a sufficiently smooth function of %.

Correctly specified, misspecified, and nested models. If the environmental
distribution p* is a member of a given probability model M, then M is a correctly
specified model with respect to p*. If the environmental distribution p* is not a
member of a given probability model M, then M is a misspecified model with
respect to p*. Let probability models F and G be subsets of the probability model
M. If G is a subset of F, then the reduced model G is said to be fully nested in the
full model F. Alternatively, suppose that F & G=<, then F and G are said to be
strictly nonnested.

Discrepancy Function Concepts

A discrepancy function measures the similarity between two probability distribu-
tions (Linhart and Zucchini, 1986; Zucchini, 2000). Let M be a probability model.
Let 2 be a function that maps two probability distributions in M into a real num-
ber. Let p* be the environmental distribution which is an element of M. Define
another probability model F, which is a subset of M, which corresponds to the set
of proposed approximations to the environmental distribution. A probability dis-
tribution p%* that minimizes the quantity 2( p*, p%*) subject to the constraint that
p%* # F is called the best approximating distribution to p* for F. The quantity
2( p*, p%*) is called the true model discrepancy or discrepancy due to approximation
(Linhart 6 Zucchini, 1986) for F with respect to p*. The parameter vector %* is
called an optimal parameter vector. It is implicitly assumed throughout this paper
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that the probability model F is chosen so that the optimal parameter vector for a
given probability model F is always unique. Furthermore, it is assumed that 2 is
a sufficiently smooth function of its arguments.

Model Selection Criterion Concepts

In general, the true model discrepancy 2( p*, p%*) is not observable and must be
estimated. One approach to estimating the true model discrepancy involves first
estimating the environmental distribution p* which is not known by the empirical
distribution p̂n*. The empirical distribution is a probability mass function (directly
derived from a sample of size n) which assigns a probability to an observation that
is equal to the relative frequency of that observation in the sample.

Definition of a model selection criterion. Now, using the empirical distribution
function p̂n*, choose a minimum discrepancy parameter estimate %� n corresponding to
a probability distribution p%� n

in F that minimizes the estimated model discrepancy
2� n=2( p̂n* , p%� n

). The distribution p%� n
is called (in this paper) the estimated best

approximating distribution for F with respect to Xn . A model selection criterion Cn

is an estimator of the true model discrepancy. The general form for a model selec-
tion criterion is Cn=2� n+kn where kn is a penalty term. Examples of typical model
selection criteria will be discussed shortly.

Uniqueness assumption. It will be implicitly assumed throughout this paper that
the observed data Xn and probability model F have the property that the estimated
parameter vector %� n for F given Xn is always unique. This is a common assumption
in statistical inference and simply means that there is sufficient information content
in the data to select a particular distribution in F. For example, if F is a linear
regression model with two free parameters and Xn consisted of only one data point,
then the estimated best approximating distribution would not be unique because
the linear regression model's free parameters are not uniquely determinable from
the observed data. Bamber and van Santen (2000) provide a detailed discussion of
these issues.

Examples of Model Selection Criterion Functions

Gauss model selection criterion. Using the Gauss discrepancy function (Linhart
and Zucchini, 1986; Zucchini, 2000), a Gauss model selection criterion is defined by
the formula:

Cn= :
n

i=1

( p̂n*(x(i ))& p%� n
(x(i )))2.

Kolmogorov model selection criterion. An alternative to the Gauss discrepancy
function is the Kolmogorov discrepancy function (see Linhart and Zucchini, 1986,
p. 18) which gives rise to a Kolmogorov model selection criterion,

Cn=max[ | p̂n*(x(1))& p%� n
(x(1))|, ..., | p̂n*(x(n))& p%� n

(x(n))|],
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where the quantity max S denotes the largest element in S. Almost all of the
theoretical results in this paper are not applicable to the Kolmogorov discrepancy
function since this discrepancy function is not a smooth function of its arguments.

Log-likelihood model selection criterion. The log-likelihood discrepancy function
(e.g., White, 1982; Golden, 1996) results in a model selection criterion corresponding
to the probability model whose estimated best approximating distribution maxi-
mizes the likelihood of the observed data. The log-likelihood model selection
criterion is defined as:

Cn=&(1�n) :
n

i=1

log( p%� n
(x(i )).

Note that the minimum discrepancy parameter estimate %� n in this case is called a
maximum likelihood estimate when the model is correctly specified.

Penalized log-likelihood model selection criterion. A number of researchers (e.g.,
Akaike, 1973; Schwarz, 1978; Sin and White, 1996) have proposed various
modifications to the log-likelihood discrepancy function that effectively penalize
models containing excessive free parameters. Such penalties are typically introduced
using the model selection criterion,

Cn=&(1�n) :
n

i=1

log( p%� n
(x(i ))+kn ,

where %� n is a q-dimensional minimum discrepancy parameter vector estimate. The
number kn is an optional penalty term. For example, if kn=q�n, then kn is called
the AIC (Akaike information criterion) penalty term. If kn=(q�2)(log(n)�n), then
the SIC (Schwarz information criterion) penalty term is obtained. The BIC (Bayes
information criterion) penalty term, which is also widely used, is effectively equiv-
alent to the SIC penalty term (Kass and Waterman, 1995). Note that the parameter
estimate %� n is the minimum discrepancy estimator as usual.

As the sample size n becomes large, the large sample distribution of the random
variable estimated by Cn becomes less dependent upon the penalty term kn . On the
other hand, for a fixed sample size, important advantages of the bias introduced by
the penalty term kn are obtained. The other papers in this special issue (e.g.,
Bozdogan, Forster, Myung, Zucchini) discuss some of those advantages (also see
Akaike, 1973; Bozdogan, 1987; Kass and Wasserman, 1995; Schwarz, 1978; Sin and
White, 1996, for relevant discussions).

Discrepancy risk model selection criterion. The above model selection criteria
can be represented in a more general unified framework by introducing the concept
of a discrepancy risk model selection criterion. The discrepancy risk model selection
criterion results in a model selection criterion where the probability model is chosen
whose best approximating distribution minimizes expected loss.

A discrepancy loss function c% is a function that maps a particular probability dis-
tribution, p% , and an observation, x(i ), from the data sample into a real number.
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The quantity c% (x(i )) is defined as the true discrepancy loss for choosing the prob-
ability distribution p% as the best approximating distribution in the probability
model given the data point x(i ) is observed.

In practice, the true discrepancy loss is not directly observable because the best
approximating distribution, p% , in the probability model is not known. Thus, the
true discrepancy loss must be estimated. Accordingly, the quantity c%� n

(x(i )) is
defined as the estimated discrepancy loss for choosing the estimated best
approximating distribution in the probability model given that data point x(i ) is
observed.

Given the above definition of a discrepancy loss function, the discrepancy risk
model selection criterion is defined by the formula

Cn=2� n+kn ,

where the estimated model discrepancy is

2� n=(1�n) :
n

i=1

c%� n
(x(i ))

and where kn is an optional penalty term. The penalty term kn is a realization of
the random variable k� n which is assumed to have the property that - n k� n con-
verges to zero in probability as n � �. The parameter estimate %� n is the minimum
discrepancy estimator as usual.

The MSC Procedure

Given a set of probability models and an environmental distribution p*, one
would ideally like to select the probability model with the smallest true model dis-
crepancy with respect to p*. In practice, however, p* is not observable and the
researcher usually only has the observed data Xn . Thus, the researcher uses a model
selection criterion to select the probability model which has the smallest estimated
model discrepancy with respect to Xn . The estimated model discrepancy will usually
be a good approximation to the true model discrepancy if the sample size is suf-
ficiently large (see Appendix A of Linhart and Zucchini, 1986, for specific details).

Using the notation of the previous sections, let 2� F be the estimated model dis-
crepancy for some probability model F. Let 2� G be the estimated model discrepancy
for some probability model G. Let CF

n =2� F+kF
n and CG

n =2� G+kG
n . Let

$� n=CF
n &CG

n =(2� F&2� G)+(kF
n &kG

n )

be defined as the estimated average between-model discrepancy error. The MSC pro-
cedure chooses probability model F if the estimated average between-model dis-
crepancy error $� n<0 and chooses probability model G if $� n>0. If (in the extremely
rare event) $� n=0, then neither probability model is selected.

Note that quantity $� n is actually the observed value of a random variable $� n . The
random variable $� n will take on a different value for a fixed sample size n depending
upon the particular sample of size n generated from the environmental distribution.
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Using the Strong law of large numbers, it follows that $� n converges almost surely
to the true average between-model discrepancy error. Thus, for large sample sizes,
the MSC procedure (which is based upon the estimated model discrepancy) is
approximately equivalent to choosing the probability model whose model has the
smallest true model discrepancy as the sample size n becomes large.

II. A LARGE SAMPLE PAIR-WISE MODEL SELECTION TEST

As the sample size becomes large, the MSC procedure selects the probability
model with a smallest true model discrepancy. For a given fixed sample size, the
estimated average between-model discrepancy error is a random variable with a
particular probability distribution. In this section, a large sample MST is intro-
duced for testing, at some chosen significance level, the MST null hypothesis that
the true average between-model discrepancy error is zero. If the MST null
hypothesis is rejected, then one concludes that at the chosen significance level there
is sufficient evidence to conclude that the probability model with the smallest
estimated model discrepancy (i.e., the MSC procedure rule) also has the smallest
true model discrepancy for a fixed sample size. If the MST null hypothesis is not
rejected, then one concludes that at the chosen significance level there is not
sufficient evidence to conclude one probability model has a smaller true model
discrepancy than the other.

This section is organized into two subsections. In the first subsection, a relatively
simple large sample MST for comparing two (possibly misspecified) probability
models which are strictly nonnested is described based upon the methods of Linhart
(1988) and Vuong (1989). This MST for strictly nonnested probability models is
then noted to be inappropriate for situations where the probability models are not
strictly nonnested. In the second subsection, a relatively complex large sample MST
for comparing possibly misspecified and nonnested probability models under a wide
variety of conditions is described based upon the method of Vuong (1989; see
Golden, 2000, for further details).

The Strictly Nonnested Models Case

A MST for strictly nonnested models. Linhart (1988; also see Shimodaira, 1997)
and Vuong (1989) have proposed the following strictly nonnested MST for testing
the null hypothesis that two strictly nonnested probability models have the same
true model discrepancy. Let c%F

(x(i )) be the true discrepancy loss for probability
model F given observation x(i ). Similarly, let c%G

(x(i )) be the true discrepancy loss
for selecting probability model G given observation x(i ). Let the quantity

=~ i=c%F
(x~ (i))&c%G

(x~ (i ))

be called the true between-model discrepancy observation error.
In practice, c%F

must be estimated using the estimated best approximating
distribution for model F since the environmental distribution which generated
the observed data is not directly observable. Accordingly, the estimated value of
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c%F
(x(i )), c%� F, n

(x(i )), is used to compute the estimated between-model discrepancy
observation error, êi . An explicit formula for the estimated between-model
discrepancy error is given by:

êi=c%� F, n
(x(i ))&c%� G, n

(x(i)). (1)

Note that

$� n=(1�n) :
n

i=1

e~ i+(k� F
n &k� G

n )

is approximately the average of all n between-model discrepancy observation errors
(since - n (k� F

n &k� G
n ) � 0 in probability as n � �). The central limit theorem states

that the square root of n multiplied by the average of a set of n i.i.d. zero-mean ran-
dom variables and common positive variance _2 will converge in distribution to a
Gaussian random variable with mean zero and variance _2. Assume that the
variance of =~ i which will be denoted as _2

= is strictly positive. The assumption _2
= >0

is referred to as the variance assumption. Vuong (1989, Lemma 4.1) showed for the
log-likelihood case that an equivalent way of stating the variance assumption is that
F & G=< (i.e., the probability models F and G are strictly nonnested).

Given the variance assumption and noting that the random variables e~ 1 , ..., e~ n are
asymptotically i.i.d. (because the observations are i.i.d. and e~ i � =~ i almost surely), it
follows3 from the central limit theorem that - n $� n converges in distribution to a
Gaussian distribution with mean zero and variance _2

= if the MST null hypothesis
is true. Note that if the MST null hypothesis is false then |- n $� n | � � almost
surely as the sample size n � �.

The above observations can be used to construct a slightly more general MST for
some chosen significance level : provided that one assumes that the variance
assumption is true. First, estimate the (presumably strictly positive) variance _2

= by
the quantity

_̂2
= =(1�n) :

n

i=1

ê2
i &(E[=~ i])2, (2)

where E denotes the expectation operator. Equation (2) then reduces to,

_̂2
= =(1�n) :

n

i=1

ê2
i (3)

given the null hypothesis E[=~ i]=0 (i.e., that the true model discrepancies are
equal). Second, compute

Zobs=
- n $� n

_̂=
. (4)
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Third, use either a table of Z-scores or a computer software program to compute
Z: which is the probability : that the magnitude of a normally distributed random
variable exceeds the value of Z: . Fourth, if |Zobs |>Z: , reject the MST null
hypothesis at the : significance level. Otherwise, if |Zobs |�Z: , do not reject the
MST null hypothesis at the : significance level.

Example nonnested MST problem. To illustrate these concepts, consider the
following nonnested model selection test example. Suppose that the observed data
set of sample size n=4 is defined as [2, 3, 10, 3] (i.e., x(1)=2, x(2)=3, x(3)=10,
and x(4)=3). Let F be the set of all univariate Gaussian density functions whose
variance is equal to 1. Let G be the set of all univariate Gaussian density functions
whose variance is equal to 2. The problem which is to be solved is to construct a
MST using a log-likelihood model selection criteria for deciding whether or not to
reject the null hypothesis H0 : 2F=2G . Or, in other words, the problem involves
testing the null hypothesis that the best approximating distribution from the prob-
ability model F or the best approximating distribution from the probability model
G are equally distant from the environmental distribution.

Solution to example nonnested MST problem. Since F & G=<, this means that
the models are strictly nonnested so the model selection test for strictly nonnested
models is appropriate.

Since F is the set of univariate Gaussian density functions and the log-likelihood
discrepancy function will be used, then the formula for c%� F, n

(x(i )) is given by the
expression

c%� F, n
(x(i ))=&log( pF (x(i )), (5)

where

pF (x(i ))=
exp(&(x(i)&m̂n)2�2)

- 2?

is the univariate Gaussian probability density function with a known variance equal
to 1. The large sample maximum likelihood estimate m̂n is simply the average of the
observations and is given by the formula m̂n=(2+3+10+3)�4=4.5.

Similarly, the formula for c%� G, n
(x(i )) is given by the expression

c%� G, n
(x(i ))=&log( pG(x(i )), (6)

where

pG(x(i ))=
exp(&(x(i)&m̂n)2�4)

2 - ?
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is the univariate Gaussian probability density function with a known variance equal
to 2. The large sample maximum likelihood estimate m̂n is simply the average of the
observations and is given by the formula m̂n=(2+3+10+3)�4=4.5.

Now, evaluate Eq. (5) at each of the four data points to obtain the estimated
discrepancy loss for each data point under model F. For the data points
[2, 3, 10, 3], these estimated discrepancy losses are [4.04, 2.04, 16.04, 2.04], respec-
tively. Similarly, using Eq. (6), the estimated discrepancy losses for [2, 3, 10, 3] are
[2.83, 1.83, 8.83, 1.83], respectively. Thus, using Eq. (1), the estimated between-
model discrepancy errors for [2, 3, 10, 3] are [1.22, 0.22, 7.22, 0.22], respectively.

The mean and the standard deviation of the estimated between-model
discrepancy errors are m=2.21 and s=2.53, respectively. Thus, using Eq. (4),
Zobs=(2.21�2.53) - 4=1.75. Using :=0.05, from a table of Z-scores, it follows that
Z:=1.96. Since Zobs=1.75, it follows that |Zobs | is less than Z: so the null
hypothesis that 2F=2G is not rejected. The researcher would conclude that: (i)
either the two probability models provide equally effective fits to the environmental
distribution using a log-likelihood model selection criteria, or (ii) the nonnested
MST has insufficient statistical power to reject the null hypothesis for the given
data sample. Note that CF

n =6.04 and CG
n =3.83 but according to the nonnested

MST at the :=0.05 significance level, there is not sufficient evidence to reject the
null hypothesis H0 : 2F=2G . This differs from a MSC conclusion based upon the
same log-likelihood model selection criteria which would select model G instead of
model F since CG

n <CF
n .

Could the variance assumption ever be incorrect? The variance assumption
presented in the previous section cannot be taken lightly since in many important
and typical situations where the MST might be applied, the variance assumption is
incorrect ! Both Vuong (1989) and Shimodaira (1997) have emphasized very clearly
that, in general, the variance assumption is incorrect when the two probability models
are not strictly nonnested. In particular, Vuong (1989) explicitly showed this by
characterizing the distribution of $� n for log-likelihood discrepancy functions under
very general conditions.

For example, using Wilk's (1938) GLRT, it follows that (when two probability
models are nested, the full model is correctly specified and a log-likelihood dis-
crepancy risk function is used) the distribution of - n $� n is not Gaussian. Rather,
2n$� n has a chi-square distribution with degrees of freedom equal to the difference
in free parameters between the two probability models (see Vuong, 1989, or
Golden, 1995, 1996, for relevant reviews).

What does the variance assumption really mean? The variance of _2
= given by the

formula

_2
= =E[=~ 2i ]&(E[=~ i])2,

where E denotes expectation taken with respect to the environmental distribution
which generated the observed data. Under the null hypothesis that the true model
discrepancies are equal and using the definition of =i we have:

_2
= =E[(c%F

(x~ (i ))&c%G
(x~ (i))2].
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Inspection of this expression for _2
= reveals that _2

= =0 if and only if c%F
and c%G

are
almost surely identical (see Lemma 4.1 of Vuong, 1989, for a similar argument for
the specialized log-likelihood discrepancy function case).

In other words, the true between-model discrepancy observation error is equal to
zero for all possible observations if and only if the variance assumption is false (i.e.,
_2

= =0). It should be emphasized that the researcher will only observe the estimated
between-model discrepancy observation error for every possible observation and
these estimated between-model discrepancy errors will typically not be exactly equal
to zero. Thus, even if _̂2

= is strictly positive, the quantity _2
= (which is estimated by

_̂2
= ) may be exactly equal to zero.
To illustrate these ideas, consider the typical situation where a probability model

F is fully nested within a probability model G. Also assume that the data is
generated from some environmental probability distribution p* which is an element
of model F. Also assume that log-likelihood discrepancy functions are used. Since
the best approximating distribution is shared by both probability models, the true
between-model discrepancy observation error will be exactly equal to zero for every
observation (i.e., the variance assumption is false).

The DRMST

Overview of the DRMST. The Discrepancy Risk Model Selection Test is a two
stage MST designed to extend the simple large sample MST for strictly nonnested
model comparison to the more general case where the two probability models are
possibly misspecified or nonnested.

In the first stage of the DRMST, one uses a statistical test called the variance test
in order to decide whether or not to reject the null hypothesis that the variance
assumption is false (i.e., _2

= =0). If one rejects the null hypothesis that the variance
assumption is false (i.e., the assumption that _2

= is strictly positive holds), then the
second stage MST for strictly nonnested models can be used to decide whether or
not to reject the null hypothesis that the true average between-model discrepancy
error is equal to zero. It can be shown (see Vuong, 1989, p. 321 for a discussion of
the log-likelihood case; the more general case is based upon similar arguments) that
if the significance levels of the two component statistical tests of the DRMST
(i.e., the variance test and the MST for strictly nonnested models) are both equal
to :, the resulting two-stage statistical test will asymptotically have a significance
level less than or equal to :. Figure 1 illustrates the basic concept and logic of the
DRMST.

Golden (2000) introduces and describes the DRMST in greater detail using the
method of Vuong (1989). Golden's (2000) analysis is best viewed as an almost
immediate extension of the method of Vuong (1989) which is applicable to
comparing possibly misspecified and nonnested models using a log-likelihood risk
discrepancy function. Vuong's (1989) research, in turn, was largely inspired by
work in the area of hypothesis testing in the presence of model misspecification
(White, 1982, 1994; see Golden, 1995, for a review).

How does one implement the DRMST? Although the large sample MST for
strictly nonnested models is easily implemented using most standard statistical
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FIG. 1. DRMST overview. If the first stage null hypothesis variance assumption is false is rejected
using the variance test, then test the second stage null hypothesis both models have the same true model
discrepancy using nonnested MST. If the second stage null hypothesis is rejected, select a model using
the MSC procedure. If either the first or the second stage null hypothesis is accepted, do not select either
model.

software packages, the variance test is relatively complicated. Implementation of the
variance test requires explicit computation of the matrix first derivatives and matrix
second derivatives of the discrepancy loss function with respect to the probability
model parameters for both probability models in order to compute the weights for
a special random variable called a weighted chi-square random variable. Critical
values of the weighted chi-square random variable must then be computed using
specialized computer software. Golden (1995) reviews in detail Vuong's (1989)
implementation of the DRMST for log-likelihood discrepancy risk functions, while
Golden (2000) provides explicit formulas for a much more general class of
discrepancy functions. For the special case of linear, logistic, and multinomial logit
regression modeling with weighted and unweighted log-likelihood discrepancy
functions, easy-to-use documented commercial software tools are now becoming
available (e.g., see the CCR Modeling System software under development by
Martingale Research Corporation, 1998).

Properties of the DRMST. The DRMST has a number of key properties. First,
it is applicable to a large class of sufficiently smooth discrepancy functions which
includes most (but not all) popular probability models and discrepancy functions.
Second, the DRMST can only be used to compare two probability models at a
time. Third, the DRMST can be used as a tool for using a given MSC procedure
to decide which of two probability models best fits the underlying data generating
process and transforming that MSC procedure into a large sample statistical test
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for deciding if the observed differences in goodness-of-fit are statistically significant.
Fourth, the DRMST is a natural generalization of the classical Wilk's (1938)
GLRT (see Vuong, 1989, for specific details). Fifth, unlike the GLRT, the models
may be nonnested, partially nested, or (as in the GLRT) fully nested. Sixth, unlike
the GLRT, it is not required that at least one of the probability models is correctly
specified with respect to the underlying data generating process. And seventh, like
the GLRT, the DRMST is a large sample statistical test whose behavior for small
samples has not been investigated and is likely to vary considerably in different
applications for a given sample size. This latter point implies that the large sample
approximations should be checked when the DRMST is applied to new situations
against an alternative simulation method such as the large sample nonparametric
boot strap methodology (see Golden, 1995, and Zucchini, 2000).

III. SIMULATION STUDIES: COMPARISONS OF MSC AND MST METHODS

In order to illustrate the ideas presented in the previous sections, this section
discusses some simulation studies. In Simulation Study 1, the MSC and MST
procedures were used to decide if a particular probability model fits the data better
than the model within which it is fully nested. Simulation Study 2 compared the
MSC procedure to the MST procedure in the case where the two probability
models are nonnested.

Common Features of the Simulation Studies

Logistic regression models and discrepancy loss functions. The outcome random
variable x~ for a logistic regression model is assumed to take on only two possible
values: zero or one. The notation p(x) will be used to denote the probability the
outcome variable is equal to one given an observed value x of the predictor
variable. In a simple logistic regression model,

p(x)=S(mx+b),

where S(x)=1�(1+exp(&x)), m is the slope parameter and b is the intercept
parameter. All simulation studies were based upon the log-likelihood discrepancy
loss function which is defined for a simple logistic regression model by the formula:

c(x)=&[x log( p(x))+(1&x) log(1& p(x))].

Data generating process. The data in all of these simulation studies were
generated from a particular environmental probability distribution which will be
referred to as p*. The predictor variable value was a random number uniformly
distributed on the interval [&0.5, +0.5]. The binary outcome variable was
constrained to take on the value of 0 with probability 0.4 and 1 with probability
0.6 (i.e., p*(x~ =1)=0.6 and p*(x~ =0)=0.4).

Note that the outcome variable's value was generated independent of the value of
the predictor variable. In most modeling problems, a parameter of the probability
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model may have an estimated value that is not significantly different from zero.
Such an irrelevant model parameter is usually eliminated from the probability
model because there is no reason to reject the null hypothesis that its optimal value
is equal to zero. Accordingly, the environmental distribution p* in this simulation
study is designed to model the situation where the null hypothesis that an optimal
model parameter is zero is in fact true. In such a situation, the large sample prob-
ability distribution of the parameter estimate about the value of zero can be
estimated for a given sample size. More specifically, in the simulation studies
reported here, it is assumed that p* is defined by a simple logistic regression model
whose slope parameter m is exactly equal to zero.

Data samples. Data samples of three different sizes were generated from p* in
order to explore how the performance of the MSC and MST procedures discussed
here varied as the sample size n becomes large. This is an important issue since the
MSC and MST procedures described here are all large sample methods. The sample
sizes were n=10, n=100, and n=1000 so that a sample of size n=10 consisted of
10 data records such that each data record consisted of the value of a predictor
variable value and an outcome variable value. For each of the three sample sizes,
100 samples of size n were generated.

Simulation Study 1: Nested Models

In this simulation study, two nested probability models were compared with
respect to data samples generated from an environmental distribution which is an
element of the full probability model. The data were generated from an environ-
mental distribution common to both probability models. Thus, the reduced model
provides the most parsimonious explanation of the data (see Myung, 2000). On the
other hand, if one is interested in the related (but distinct) problem of identifying
situations where both models appear to provide approximately equally well fits to
the underlying data generating process, then it would be desirable to have a
methodology such as the MST methodology specifically designed to test the null
hypothesis that both models are equally effective.

Methodology. In the first set of simulation studies, parameters for two nested
logistic regression models were estimated using maximum likelihood estimation. In
particular, the full logistic regression model F was defined by

F=[ p: p(x)=S(mx+b), m # R, b # R],

while the reduced logistic regression model G was defined by:

G=[ p: p(x)=S(mx+b), m=0, b # R].

Or, in other words, the full model F consisted of probability distributions of the
form p(x)=S(mx+b), while the reduced model G consisted of probability dis-
tributions of the form p(x)=S(b). Also note that the true model discrepancy for
G must always be less than or equal to the true model discrepancy for F since every
distribution in G can be represented by some distribution in F.

166 RICHARD M. GOLDEN



A log-likelihood MSC procedure was used to select either the full or the reduced
probability model for the three sample sizes of n=10, n=100, and n=1000. The
number of times the full probability model was chosen by the MSC was recorded.
Similarly, the number of times the reduced probability model was chosen by the
MSC was recorded. In addition to a log-likelihood MSC procedure, two other
MSC procedures (log-likelihood MSC with an AIC penalty term and log-likelihood
MSC with a BIC�SIC penalty term) and the GLRT MST procedure (with an
:-significance level) were used.

Note that the GLRT MST procedure is formally equivalent to the variance test
(see Vuong, 1989, Corollary, 7.5; see Golden, 1995, for a review). However, since
the models were fully nested and the full model is correctly specified, the calcula-
tions were considerably simplified and Wilk's (1938) original GLRT chi-square
statistic could be used. In particular, let /2

:(1) be defined such that the probability
that a chi-square random variable with one degree of freedom obtains a value
greater than /2

:(1) is equal to :. Then, at the :-significance level, reject the null
hypothesis both models are equally effective if 2n |$� n |>/2

:(1). When the null
hypothesis is in fact rejected, one concludes that the full model provides a
significantly better fit to the data than the reduced model.

Results and discussion. Table 1 shows the simulation results for the three MSC
procedures and the GLRT MST procedure. For example, Table 1 shows that out
of 100 computer generated samples of size n=1000, the MSC procedure selects the
least parsimonious model for 78 out of 100 samples (and never selects the most
parsimonious model). The remaining 22 samples generated ties in the sense that the
estimated average between-model discrepancy error $� n was exactly equal to zero
(because parameter estimates and model discrepancy estimates in all simulations
were rounded to six digit precision).

Note that the MSC procedure without a penalty term tends to select the less
parsimonious full model because of an overfitting phenomenon. This problem is
partially corrected through the use of the MSC procedures involving the penalty
terms with the BIC�SIC penalty term showing an advantage over the AIC penalty

TABLE 1

Simulation Comparisons of MSC and MST (Nested Case)

Methodology Model selected Sample size

n=10 n=100 n=1000

MSC Full 97 90 78
Reduced 0 0 0

MSC+AIC Full 25 9 11
Reduced 75 91 89

MSC+BIC�SIC Full 14 2 1
Reduced 86 98 99

MST Full 7 4 4
Reduced 0 0 0
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term in this particular set of simulation runs. The nonnested MST has a strong
tendency to select neither probability model and thus indicates both probability
models fit the underlying data generating process equally effectively.

Simulation Study 2: Nonnested Models

The previous simulation study considered the fully nested and correctly specified
case. Simulation Study 2 considered a situation where the two probability models
are nonnested and one of the probability models is misspecified. Thus, there
is a correct and wrong model selection decision in Simulation Study 2 (unlike
Simulation Study 1 where both probability models contained the environmental
distribution).

Methodology. In Simulation Study 2, one logistic regression model F was
assumed to have a slope parameter m but no intercept parameter b, so that a
distribution in F was assumed to have the form: p(x)=S(mx). The other logistic
regression model G was assumed to have an intercept parameter b but no slope
parameter m, p(x)=S(b). The two logistic regression models are therefore
nonnested.

Note that both models have exactly the same number of free parameters (each
model has exactly one free parameter); thus, standard methods such as the AIC or
BIC model selection criteria have no effect in this situation upon the model selec-
tion process. However, other types of penalty terms based upon the functional form
of the approximating probability model can have effects in this type of situation.
For example, Zucchini (2000; also see Linhart and Zucchini, 1986, Appendix A1)
discusses a generalization of the AIC model selection criteria appropriate in the
presence of model misspecification which will have an effect on the MSC model
selection process even when both models have the same number of free parameters.

Results and discussion. Table 2 compares the results of a log-likelihood MSC
procedure with a log-likelihood MST procedure for this nonnested model selection
problem. The MSC procedure tends to select the wrong probability model because
both models have the same numbers of free parameters and the model with the
slope parameter (i.e., the probability model which does not contain the environ-
mental distribution) has a tendency to fit the noise in the data set in this special
situation. Note that when the slope parameter is set equal to the value of zero, the

TABLE 2

Simulation Comparisons of MSC and MST (Nonnested Case)

Methodology Model selected Sample size

n=10 n=100 n=1000

MSC Wrong 97 90 78
Correct 0 0 0

MST Wrong 7 4 4
Correct 0 0 0
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resulting probability distribution p(x~ =1)=0.5 is very close but still distinct from
the environmental distribution p(x~ =1)=0.6. The MST procedure, on the other
hand, behaves very conservatively and refuses to reject the null hypothesis that
both models fit the underlying data generating process p(x~ =1)=0.6 equally well.

SUMMARY

This paper has discussed a particular large sample MST for testing the null
hypothesis that two models have the same true model discrepancy. Or, less
formally, the MST may be used to decide if an observed difference in estimated
goodness-of-fit between two probability models is significantly different from zero.
The MST described here is a natural extension of the well-known GLRT but is also
applicable in situations where one or both of the models may be misspecified and
the models may or may not be nested.

Illustrative simulation studies of both the MSC and MST in the presence and
absence of penalty terms (such as the AIC and BIC�SIC terms) emphasized that the
MST results in a relatively conservative decision rule where the option of deciding
that one model fits the underlying distribution better than the other model is not
invoked until a threshold (determined by the significance level of the MST) has
been reached.

Finally, explicit formulas for using the MST described here for log-likelihood dis-
crepancy functions may be found in Vuong (1989; also see Golden, 1995). Golden
(2000) provides explicit formulas for a wide class of smooth discrepancy functions
by exploiting the methods of Vuong (1989). Commercial computer software for
implementing the large sample MST for linear, logistic, and multinomial logit
regression models is also available (Martingale Research, 1998). In conclusion, the
MST approach described here is an accessible and useful large sample statistical
test that can be applied in a great variety of important situations.
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