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Making Correct Statistical Inferences Using a Wrong Probability Model

RicHArRD M. GOLDEN

University of Texas at Dallas

Large sample methods for estimating the variance of parameter
estimates for hypothesis-testing purposes and statistical test for model
selection when the statistical mode! is wrong {i.e., misspecified ) are
reviewed. A parallel distributed processing (PDP} statistical model for
analyzing categorical time series data is then proposed, and a theorem
establishing when the quasi-maximum likelihcod estimates of the
model are unigue is stated and proved, Analysis of Golden et al.’s
(1993, in the Proceedings of the 14th Annual Conference of the
Cognitive Science Society (pp. 487-491). Hillsdale, NJ: Eribaum)
categorical time-series data with respect to the proposed PDP model
showed that White's asymptotic statistical theory yielded results which
were more consistent with boot-strap estimates than classical methods
of statistical inference.  © 1995 Academic Press, Inc.

Ideally, a statistical analysis should be as “model-
independent” as possible, making a minimal number of
assumptions about the nature of the data generating pro-
cess. Such an analysis is exemplary of the classical data
analysis approach. Unfortunately, however, such “ideal”
analyses are usually not practical because (i) the data may
be too “messy” to uniquely identify the nature of the data
generating process, (i} the experimenter may not be able to
“adequately control” critical factors influencing the data
generating process, and (iii) it is impractical for the
experimenter to collect a sufficient amount of data.

In addition, consider the case of the experimenter who
already has formulated a highly restricted class of alter-
native psychological theories regarding how the data were
generated. The experimenter acknowledges that each theory
in this class may not be correct in its entirety, but is simply
interested in which theory is “closest” to the truth.
Such models presumably reflect the experimenter’s biases
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regarding the data and naturally incorporate those biases
directly into the data analysis. Thus, the statistical model is
a formal instantiation of the experimenter’s psychological
theories. Some examples of this strategy include the multi-
nomial models discussed by Riefer and Batchelder {1988),
linear causal path analysis models (e.g., Bentler, 1980}, item
response theory (e.g, Lord, 1980) for assessing latent
subject ability parameters, categorical time-series analysis
models for analyzing social interaction data (Aliison &
Liker, 1982), hidden Markov models for speech recognition
(e.g., Levinson ef al. 198%), or the learning model described
by Falmagne ez al. (1990).

The classical approach to hypothesis testing in complex
statistical models is traditionally a two step procedure.
First, the null hypothesis that the assumed statistical model
could have generated the observed data is tested. If this null
hypothesis is accepted, then the experimenter proceeds to
the second step of the analysis. In the second step, specific
planned comparisons involving relations among the
estimated parameters are tested. Because the classical
approach is based upon estimating the “true” parameters
and their associated vartances and covariances, tests of
specific planned comparisons are permitted only if the
model “fits” the data.

The two step classical approach to hypothesis testing is
problematic because the first step is based upon accepting
the nuli hypothesis that the assumed statistical model
actually generated the observed data. If, for example, the
data were simply random noise, then the null hypothesis
would be accepted because of the large standard errors
associated with the parameter estimates of the model. On
the other hand, if the model was a truly superb model of the
data generating process with negligible minor structural
defects, the null hypothesis could be rejected if “too much
data” is collected.

A probability model is a collection of probability dis-
tribution functions which are indexed by the probability
model’s parameters. If the data generating process is not
contained in a particular probability model, then that prob-
ability model is referred to as a “misspecified model.” To
avoid the presence of some forms of model misspecification,
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additional parameters may be introduced into the model.
The addition of such parameters is helpful since this
increases the “flexibility™ of the model to fit the data, but
usually has the unfortunate consequences of (i) decreasing
the power of model-based statistical tests and (1) increasing
the difficulty of developing simple, insightful models with
small numbers of interpretable parameters.

Recently, methods of hypothesis testing (White, 1982,
1989, in press) and model selection (Vuong, 1989) have
been developed which are applicable in cases where a given
statistical model iz misspecified in particular ways. Such
methods provide a mechanism for testing statistical
hypotheses directly without requiring the assumption that
the proposed statistical model is correctly specified with
respect to the data generating process. Thus, the researcher
can “separate” the model building and evaluation problem
from the hypothesis testing problem. Another way to think
about this approach to statistical inference is that issues of
“model validity” and “model reliability” are separated. In
the classical hypothesis testing framework, reliable
estimates of the sampling variance of a model parameter
cannot be obtained in the presence of model misspecifica-
tion. Hypothesis testing in a model misspecification
framework, however, permits reliable estimates of the sam-
pling variance of a model parameter to be obtained even if
the model itsell is not completely correct! In fact, il the
experimenter has two competing models (each of which is
misspecified), Vuong’s (1989) statistical framework may be
used to decide which of the two competing models is most
consistent with the data.

One important limitation of these methods which should
be kept in mind is that these methods are based upon “large
sample” approximations which are only valid for large data
sets. The question of “how large,” however, is an empirical
question which is discussed in greater detail later by con-
sidering alternative “checks” on the asymptotic approxima-
tions using Efron’s (1982} “boot-strap” methodology.
Another important limitation of the proposed model mis-
specification framework is that the process which generates
the data must satisfy certain mild restrictions. For example,
both the proposed statistical model and the data generating
model are assumed to generate independent and identically
distributed (1.i.d.) observations from the same sample space
(see White, in press, for less restrictive conditions). The
proposed probability model and data generating model
must aiso satisfy additional technical restrictions which
usually are satisfied in practice. A third important limitation
of the model misspecification framework is that it only
addresses the “reliability” issue regarding data analysis, and
it cannot be assumed to apply to issues of model “validity.”
That is, the problem of developing good parsimonious
mathematical models which fit the data certainly does not
disappear within the model misspecification framework.
Rather, the medel misspecification framework provides a

mechanism for model improvement and data analysis even
when the “best” model 1s not completely accurate in all its
details.

This article is organized into two major sections. The pur-
pose of the first part of this article is to select, review, and
discuss tssues associated with evaluating probability models
and consiructing asympiotic statistical tests within a
framework of mode!l misspecification. In the second part of
this article, a parallel distributed processing (PDP) model
for analyzing categorical time series data is proposed. A
theorem is then stated and proved concerning the unique-
ness of the parameter estimates of the PDP modegl. The
PDP model is then used to examine temporal regularities in
human free-recall data of short stories (Golden et al., 1993)
in order to show (i} explicitly how Vuong’s and White’s
asymptotic statistical theories may be applied to derive new
statistical tests for the proposed PDP model and (ii)
evaluate the asymptotic statistical theory proposed by
Vuong and White with respect to both boot-strap simula-
tions and the classical asymptotic statistical theory.

A REVIEW OF THE MISSPECIFIED
MODEL FRAMEWORK

White’s (in press) book (also see White, 1982, 15989}
provides a comprehensive introduction to the literature of
making correct statistical inferences in the presence of
maodel misspecification. To simplify the presentation of the
important ideas behind a model misspecification framework
approach, the discussion is limited to probability mass func-
tions defined on finite sample spaces. The generalization to
the case of probability density functions is straightforward
and is thoroughly discussed by White (1982, 1989, in press).
White {in press) also shows to relax considerably many of
the assumptions made for expository reasons in this review.

Hypothesis Testing in the Presence of Model
Misspecification

DerimiTion 1. A probability mass function, p, on a
finite sample space £ whose elements are real-valued vec-

tors satisfies (i) for xe@, 0<p(x)<l, and (i)
Yeeoplx)=1L
Dermviion 2 (Adapted from Vuong (1989)). Let a

sample space £2 be a finite set of real-valued vectors. A prob-
ability mass model, ¥, 1s a set of probability mass func-
tions on £2. In addition, the elements of F - are indexed by
the real-valued parameter vector we W so that a given ele-
ment of W refers to the specific probability mass function

q(-,w)e Fy.

Note that unlike the classical approach to statistical
inference, twe types of distinct probability mass functions
are defined right from the beginning. The unobservable
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environmental distribution, p., which is the data generating
process, and the model probability mass function, g{-, w),
which is an element of a specific probability model. If the
environmentai distribution is contained in the probability
model, then this corresponds to the classical case. In
general, however, the environmental distribution is not con-
tained in the probability model and this is the common case
of using a “wrong” or “misspecified” probability model.
When working in a model misspecification framework, it is
extremely important to be clear about the distinction
between the probability model whose parameters are being
estimated and the probability distribution which is generat-
ing the observations. For this reason, the concept of model
misspecification is now formally defined.

DermvTION 3. Let F . be a probability mass model. Let
p. be an environmental probability mass function. Then Fy,
is correctly specified with respect to p, if p. e Fyy., and Fy. i3
misspecified (i.e., incorrectly specified) with respect to p, if
Pty

Let x,, x5, .., x, be un iid. observations from p,. The
likelihood of the ith observation, x,, is g(x;; w) for model
probability mass function ¢(-; w). Moreover, since the =
observations are i.1.d., the likelihood of the set of observa-
tions, X, .., X, is given by

(1

since the observations are assumed to be statistically inde-
pendent. In order to maximize L, with respect to w, it is
often convenient to define a monotonically decreasing func-
tion of L,, £, (w), given by

E.(w)y= —{(1/m)ilog[L,]

— —(1jm) ¥ loglg(xw)] 2)

i=1

White (1982) shows that £, converges with probability one
to a fixed function, E, of w as n becomes sufficiently large
under certain regularity conditions. In particular, the func-
tion E is called the Kullback—Leibler (1951} information
criterion (KLIC}, and is given by

E(w)=— 3 p.(x)log[g(x;w)].

Y e

(3}

In this article, (2} is referred to as the sample loss function,
while (3) is referred to as the true loss function.

In classical maximum likelihood estimation, the maxi-
mum likelihood estimates (MLEs) are those parameters
which maximize L, in (1) or equivalently minimize £, in

{2). Maximum likelihood estimates can be shown (under
fairly general conditions) to be asymptotically consistent
and efficient (Manoukian, 1986; Van Trees, 1968).
Moreover, it can be shown that maximum likelihood
estimates converge to maximum a posteriori (MAP) (ie,
most probable) estimates under fairly general conditions
{Van Trees, 1986).

If a probability mass model F,. is misspecified with
respect to an environmental probability mass function, p,,
then the concept of a “true” parameter vector w has no
meaning. It is therefore convenient to define the goal of the
statistical inference process so that a parameter vector w is
sought such that an appropriate measure of the distance
between the misspecified probability mass model Fy,. and
the environmental probability mass function p, is mini-
mized. In addition, the distance measure should be
“automatically” consistent with the classical theory so that
if in fact the probability mass model £, is correctly specified
with respect to p., then the global minima of the distance
measure should yield maximum likelihood estimates.

Given these considerations, it seems natural to consider
the KLIC function in (3) as an appropriate measure of the
distance between the environmental distribution, p,, and
the probability model F ;.. Following Kullback and Leibler
{1851}, the following points must be made about the KLIC
as a distance measure. First, the KLIC is not a metric on
probability mass functions since it is not symmetric with
respect to the environmental and model probability dis-
tributions and does not satisfy the triangle inequality.
Second, the KLIC distance measure in (3) is never directly
observable since p, is never directly observable. The third
and most relevant property is that if the envircnmental
probability distribution, p., and probability model, ¢( -, w),
are equivalent, then the KLIC distance betwgen these two
distributions obtains its minimum value (Kullback &
Leibler, 1951). On the other hand, the KLIC distance func-
tion has the following very important property. If the model
is correctly specified, minimizing the sample KLIC distance
measure in (2) is equivalent to maximizing the log
likelihood function (ie., classical maximum likelihood
estimation).

In classical maximum likelihood estimation, it can be
shown that the maximum likelihood estimates are normally
distributed about the true parameter values with covariance
matrix equal to the inverse of the Fisher information matrix
{Manoukian, 1986; Van Trees, 1986). White’s (1982, 1989,
in press) theorems provide a natural generalization of these
results to the case where the true parameter values do not
exist! In particular, White demonstrates that what he
defines as quasi-maximum likelihood estimates {ie.,
parameter estimates that obtain a global minimum of the
sample loss function £,) are both consistent (also see
Huber, 1967) and asymptoticaily normally distributed with
respect to the global minimum of the KLIC, E, with a
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covariance matrix which is closely related (but not identi-
cal) to the inverse of the Fisher information matrix. It is also
important te note that if the probability model happens to
be correctly specified, then White’s results reduce to the
classical maximum likelihood estimation case.

The following two theorems by White (1989; also see
White, 1982, in press) summarize these important theoreti-
cal results and also provide an explicit procedure for
estimating the asymptotic distribution of quasi-maximum
likelihood estimates. Again, simplified versions for finite
sample spaces of the relevant theorerms of White are presen-
ted for expository reasons. Generalizations of these results
to other important cases such as continuous-valued random
variables { White, 1982, 1989) or observations which are not
independently distributed (White, 1982, 1989, in press) are
available,

THEOREM 1 (White, 1989, Theorem 1). Let the observa-
tions, {x,..,x,} with x;e ®° be iid according to an
environmental probability mass function, p,, defined on a
finite sample space £2. Let

Fo={g(-,w): Q=R weW} {4)
be a probability mass model where W is a compact subset of
a finite-dimensional Euclidean space and g( -, w) is a probabil-
ity mass function on § for each we W. Let E,, and E(w) be
defined respectively as in (2) and (3} with respect to F,, and
p.. Let w, be a strict global minimum of E (w) on W. Then
Jor each n=1,2, .., W, exists and has the property that
W, — I'* with probability one, where I'* is the set of global
minima of E{(w) on W.

This theorem ( White {1989, Theorem 1)} states that given
an environmental probability distribution, p., which
generates a set of independently and identically distributed
vectors {x,, .., x,}, one can counstruct a sample loss func-
tion, £(w), which gradually approximates the true loss func-
tion, E{w), more and more accurately with high probability
as the number of observations, », becomes large. Moreover,
White’s (1989) Theorem 1 says that any strict local mini-
mum of the sample loss function converges with probability
one to a set of strict local minima of the true loss function
as the number of observations becomes large. Note that the
concept of “converge with probability one to a set” means
that either (i) the stochastic process will converge to a mem-
ber of the set or (i1} the stochastic process may oscillate
among the members of the set. It is also important to note
that although g(-; w) can be misspecifted with respect to
probability model F,,, Eq. (4) requires that F;;. be defined
on the same sample space as p,.

The next theorem (a special case of White’s (1989)
Theorem 2; also see White, 1982, in press} shows how the
asymptotic distribution of the parameter estimates may be
derived from a differentiable probability model.

THEOREM 2 (White, 1989, Theorem 2). Let the observa-
tions {x,,..,x,} with x;e ®¢ be iid. according to an
environmental probability mass function, p,, defined on a
finite sample space Q. Let

Fp={q(;w):2->R, we W} {5)

be a probability mass model where W is a compact subset of
a finite dimensional Euclidean space and g(-;, w) is a probabil-
ity mass function on Q for each we W. Assume that w,, con-
verges with probability one as n increases to an isolated strict
global minimum in W, w¥, of the KLIC function in (3) with
respect to gl -; w)e Fy and p.. In addition, let g(x; - ) for each
x € £ have continuous first and second partial derivatives on
W. Also assume that

A* =3 p.(x)Vlloglgix; w*)]

xef2

and

B*= 3% p.(x)V, loglg(x;w*)] V, log[g(x; w*)]T

xe42

are Hon-singular marrices, where V,log[g(x; w*)] and
V2 log{ g(x; w*)] are the first and second derivatives of
log[ g(x; -)] evaluated at w* and a” indicates the transpose of
vector a.

Then as n increases, ﬁ(ﬁf,, —w*) converges in distribu-
tion to a multivariate normal distribution with zero mean and
covariance matrix C*, where

C* = A%~ 1B+ g+, (6)
In addition, as n increases,
C,=A7'B A" (7)
converges with probability one to C*, where
A,=n7" Y Vilog[g(x;:,)] (8)
i=1
and
B,=n""Y V, loglg(x;w, )1V, log[g(x;%,)]". (9

i=1

This theorem says that given an environmental probabil-
ity distribution which generates a set of independently and
identically distributed vectors {x[,n..., X,}, then one can
construct a sample loss function, £, (w), as before. Now
assume that a strict local minimum, W, of the sample loss
function 1s in fact converging 1o a specific strict local mini-
mum, w*, of the true loss function, E{w* ), as the number of



MAKING CORRECT STATISTICAL INFERENCES 7

observations, n, becomes large. Given this critical assump-
tion and assuming that n is sufficiently large, then this
theorem shows that the asymptotic distribution of w, is
Gaussian with mean w* and covariance matrix C*jn. Note
that C* is never directly observable, but White shows that
the estimator C, in {7) converges with probability one to the
true value C* Also note that according to the classical
theory of maximum likelihood estimation {(e.g. Van Trees,
19%6; Wilks, 1962}, if the model is correctly specified then
the Fisher information matrix equality {4,= — £&,) holds.
Using this equality in (7), we obtain €, = —A-'=8"".
Thus, White’s (1982, 1989) asymptotic statistical theory
reduces to the well-known result that the maximum
likelihood esiimates are asymptotically distributed about
their true values with covariance matrix —A4;'=8"
{Riefer & Batchelder, 1988; Van Trees, 1968; Wilks, 1962).

The first detivative of the sample loss function (i.e., the
gradient) should be empirically checked to assess whether
the parameter estimates, w:,, are sufficiently close to their
true values, w*. If —A* is positive definite, then w* is a
strict local minimum and “locally unique.” If B* is also non-
singular, then the covariance matrix C* is non-singular as
well. The non-singularity of C* is a necessary condition for
hypothesis-testing. Note that the non-singularity of 4* and
B* can be empirically checked by examining the rank of A4,
and B,. Finally, it is helpful to note that if the number of
parameters of the model is greater than the number of
observations, then 8, will always be singular.

To understand why White’s (1989) Theorem 2 works, a
heuristic proof of White’s (1989) Theorem 2 is now pre-
sented following the discussion in White (in press, Chap. 6).
The first step is to do a mean value (Taylor series) expan-
sion of the gradient of the sample loss function about w*
and evaluate the gradient of the sample loss function at w,,.
This can be done since it is assumed that w, is sufficiently
close to w¥, and the gradient of the sample loss function has
continuous first derivatives. Let 4, = |W, —w*|, then

VIVEH('I’J{)" ) = V‘VE”(‘V*) + [V?VEH(W* )](wﬂ - ‘1/‘* ) + O(Ai)’
and since V£, (#, ) vanishes,
VWEM(W*) = - [ViEH(W* )](ﬁ)n —w* ) + O(Ai )

Also since — V2 £, (w*) » A* with probability one by the
strong law of large numbers,

Vu'En(w* ) =A4* (ﬁ;n —w* ) -+ O(Ai)!
with probability one for » sufficiently large. Note that A* is

non-singular so the inverse of 4* always exists. Now,
premultiply each side by [ A* ]! to obtain

Wy w*=[A4*] 'V, E, (w*) + 0(4}), (10)

which may be written as

Byt = —[A*17 a3 V, loglglxs; w)] + O(42),
i=1
(1)

Inspection of (11} shows that V,E,(w*) has been
expressed as the average of independent and identically
distributed random vectors, so /n V,,E,(w*) is asymp-
totically normally distributed with mean vector zero
and covariance matrix 8* by the central limit theorem
(see Appendix 3 of White, in press, for an overview of such
central limit theorems). Also, since \/1; V., E (w*) is
asymptotically normally distributed and A*~! is a full rank
symmetric linear transformation, ﬁ(»fr,,—w*) is also
asymptotically normally distributed with mean vector zero
and covariance matrix C* = A* ~! B¥ 4* ! by (10).

Model Selection in the Presence of Model
Misspecification

This section deals with the problem of deciding which of
two probability models is most consistent with a particular
set of data. Currently most researchers in the field of mathe-
matical psychology (e.g., Allison & Liker, 1982; Bentler,
1980; Falmagne ef al,, 1990; Lord, 1980} have used Wilk’s
(1938) generalized likelihood ratio test (GLRT) for making
decisions of this type.

To review the GLRT, the following notation 1s intro-
duced following Vuong (1989). Let F, and G, be two
probability models. If Fy; © G, then we say that Fy, is fully
nested within G, and refer to G4 as the full model. In order
to correctly use the GLRT to compare two alternative
probability models it is absolutely necessary that (1) one
probability model be fully nested within the other prob-
ability model, and (i) the full probability model must
be correctly specified with respect to the environmental
probability distribution (i, the data generating process)
{e.g., White, 1982; Voung, 1989). In general, it is unrealistic
to expect that assumption (ii) will be satisfied for sub-
stantiative statistical models of complex psychological
phenomena containing small numbers of interpretable
parameters. In addition, assumption (i) is rather restrictive
since one could imagine many situations where the
experimental psychologist would want to decide which of
two alternative non-rested probabilistic models “best fits” a
specific data sample.

Vuong (1989) has introduced a general asymptotic
statistical theory for probability model selection which
allows one to compare two alternative probability models
which (i) are not necessarily nested and (ii) may be mis-
specified with respect to the environmental probability dis-
tribution, Mereover, Yuong (1989) shows how his general
asymptotic statistical theory for probability model selection
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is formally equivalent to GLRT in the special case where
probability distribution - is fully nested in probability dis-
tribution G, and G 1s correctly specified.

The basic idea behind Vuong’s (1989) theory is to com-
puie the KLIC distance of each of the two probability
models with respect to the environmental probability dis-
tribution. The model whose KLIC distance to the environ-
mental distribution is shortest is considered to be the better
model. Or in other words, the likelihood of the data is com-
puted using probability model - and then computed using
probability model Gy, The model which makes the data
most likely is then chosen.

More formally, let g;(-;wie Fy and q,(-;y)eGy be
probability mass (or density) functions on a particular
sample space. Let p, be the environmental probability mass
{or density) function which generates the observations
{x\,.,x,}. Let w* be a strict local minimum of the KLIC,
E7(w), between g (-; w) and p,. Let y* be a strict local min-
imum of the KLIC, E#(y}, between g,.(-; y) and p.. Now
following Wilk’s (1938) generalized likelihood ratio test and
Vuong's (1989) statistical theory, form the log likelihood
ratio

D=E*f(y*)-— E/(w*) (12)
and choose model Fy. if D> 0 and model G, if I <0. In
practice, D is not directly observable so the asymptotic dis-
tribution of an appropriate estimate of D is required for
hypothesis testing purposes.

Note that Vuong's {1989) model selection theory is still
applicable if the parameter vectors are globally identifiable
{ie., w* and »* are merely strict local minima). In this
“locally identifiable” case, however, the set Fy contains
only probability mass {or density) functions of the form
gr(-, w) such that w is in a sufficiently small neighborhood
of w*. Similarly, the set Gy contains only probability mass
{or density) functions of the form g, (-, y) such that y is in
a sufficiently small neighborhood of y*. From a practical
perspective, this means that the algorithm used to search for
w* and y* is implicitly involved in the model identification
process. This issue is relevant to certain types of connec-
tionist models, such as the back-propagation algorithm
(Rumelhart et al, 1986), which are usually not globally
identifiable.

The goal of this section is to informally review Vuong’s
{1989) asymptotic statistical theory. Readers interested in
additional details are urged to consult Vuong {1989)
Towards this end, this section of the article is divided into
three parts. In the first part, Wilk’s (1938} GLRT is briefly
and informally reviewed. [n the second part, Vuong’s (1989)
statistical test for comparing two probability models which
are known to be strictly non-nested is briefly and informaity
reviewed. The probability models are not required to be
correctly specified in this case. The third part of this section

reviews Yuong’s { 1989) general asymptotic statistical theory
which is applicable to situations where (i) the probability
models are not necessarily fully nested and (i) it is not
required that either of the probability models is correctly
specified,

Finally, the following notation is used throughout the
next several sections. Let #, -3 and w,->w* as n—-
with probability one. The estimated KLIC distance of
g, w¥) to p.is given by

EN(w,)=—n"" ¥ log[qp(x;#,)]

i=1

(13)

and the estimated KLIC distance of g, (-; y*) to p, is given
by

Eﬁ(j}n)z _n_l Z 10g['?g(xi;j}n)}' (14)

=1
The estimated log likelihood ratio is given by
Dn = Eﬁ( ﬁn) - Eﬁ(‘an)

The Fully Nested and Correctly Specified Case
(GLRT). When the two probability models F,, and G
have the properties that (i) £, Gy and {i1) G, is correctly
specified, then the GLRT is applicable given that some
additional “regularity” conditions are satisfied ( Wilks, 1938,
see Vuong, 1989, for a presentation using modern notation).
These additional “regularity” conditions essentially assume
that certain expectations (taken with respect to the environ-
mental probability distribution) of the probability distribu-
tions associated with Fy and G, exist and are suffictently
smooth. According to Wilk’s (1938) generalized likelihood
ratio test (also Vuong, 1989), —2nD, has an asymptotic
chi-square distribution with p — g degrees of freedom where
p is the dimensionality of the full model parameter vector, y,
and g is the dimensionality of the reduced mode! parameter
vector w.

To use the GLRT, one therefore follows the following
procedure. First, compute quasi-maximum likelihood
estimates 7, and W, for each of the two probability models
Gy and Fy.. Second, check that the full model G, provides
a good fit to the data. Third, use a standard cumulative chi-
square distribution table to compute the critical value,
#2{ p— q), which has the property that a chi-square random
variable with p — ¢ degrees of freedom will exceed ¥2(p —¢)
with probability (significance level) «. Fourth, reject the null
hypothesis that F,, and G, are equally distant from p_ if the
statistic

S, = ‘211[5,,

exceeds the critical value y2(p —q).
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The Strictly Non-nested Case. Now consider the strictly
non-nested case where g, -, w*) and ¢g,(-; y*) are not iden-
tical functions on Q. In addition, this section allows either
Fy or G  to be misspecified with respect to the environmen-
tal probability distribution, Again, specific regularity condi-
tions concerned with the existence and smoothness of cer-
tain types of expectations of the probability functions in Fp
and G, with respect to the environmental distribution are
assumed to be satisfied.

Define

ér,=(l/n) Z (log[qp(x;1%,)] —toglg, (x| $,) ™

i=1

(16)

Also let D, be defined as in (15). For the strictly non-nested
case, Vuong (1989) proved that as » increases, the model
selection statistic

V,=D,/[8,/m"] (17)

converges in distribution to a normally distributed random
variable with mean zero and variance one in the case that
F,. and G, are equally distant from the environmental dis-
tribution, p,. The derivation of the asymptotic distribution
of ¥, is based upon the idea that (15) is the average of
independent and identically distributed random variables.
Thus, D, has a Gaussian distribution with variance as in
(16} by the central limit theorem (see White, in press, for a
review of such theorems).

Thus to decide which of two strictly non-nested probabil-
ity models “best fits” the data, the following computa-
tionally simple hypothesis-testing procedure may be used,
First, compute quasi-maximum likelihood estimates #, and
w, for each of the two probability models G, and Fy.
Second, let Z, be defined such that the probability that a
normally distributed random variable with mean zero and
variance one has a magnitude greater than Z, is «. Third,
compute ¥, as in (17). Then decide F - and G, are equally
distant from p, (ie., H,: D=0)if |F,| < Z,. Decide Fj; is
closer to p, than G (ie, Hp: D>0)if ¥, > Z_. And finally,
decide Gy is closer to p, than Fy (ie, H;: D<0) if
V.<-2Z,.

The General Case. This section considers the most
general case where the probability models Fj;, and G may
be either (i) correctly specified or misspecified, and (i) the
nesting relationship between the two probability modelis is
unknown. Again certain regularity conditions concerned
with the existence and smoothness of certain expectations of
the probability functions in F,,. and G, are assumed (see
Vuong, 1989, for additional details).

Vuong’s (1989) hypothesis-testing procedure for the
general case is organized into two distinct stages. In the first
stage, a statistical test called the “variance test” (reviewed in
Appendix 3) is done to decide if the two probability models,
F, and G, are strictly non-nested (ie., decide if
H,: D=10)}. If the null hypothesis of the variance test is
rejected, then conclude that F. and G, are strictly non-
nested and proceed to the second stage of the analysis where
the statistical test for strictly non-nested models is then
done. The second stage of the analysis is then used to decide
whether (i) model F, is better than model G, (ii) model
G , is better than F ., or {iii) the information in the data set
is not sufficient for deciding which model is better.

Two important additional comments also need to be
made. First, Vuong (1989) shows that if the significance
level for the variance test is a and the significance level for
the strictly non-nested test is «, then the significance level for
the entire two-stage procedure is no larger than a. And
second, it should be emphasized that the variance test is a
complex statistical test which requires more computational
resources than the second stage of Vuong’s (1989) analysis.
Fortunately, the variance test can be replaced with any
alternative statistical test or analysis to decide if q,(.; w*)
and g,(-; y*} are equivalent (Vuong, 1989, Lemma 4.1).

Validity of the Asymptotic Approximations

Both White’s (1982, 1989, in press} theory of covariance
matrix estimation and Vuong’s {(1989) theory of model
selection are based upon approximations which are only
valid for sufficiently large numbers of observations. In this
section, a computer simulation methodology is introduced
for empirically checking the validity of these proposed
asymptotic approximations for specific probability models
and specific data sets.

The typical approach to checking the wvalidity of
asymptotic approximations is to choose some “true”
parameters for the assumed probability distribution,
generate sample observations from that distribution, and
select one sample of size # from the generated data. Then,
for that sample of size n, the parameters and their
asymptotic variance are estimated using either the
asymplotic approximations proposed by White {1982, 1989,
in press) or Vuong (1989). From this information, the
parameter estimates and their standard errors can be com-
puted from the data sample using classical asymptotic
statistical theory and compared to the original “true”
parameters,

This typical Monte Carlo approach will not work,
however, when one assumes that the parameterized prob-
ability model may be misspecified because the typical
Monte Carlo approach automatically guarantees that the
probability model is correctly specified! An alternative to
the typical Monte Carlo approach is the boot-strap
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approach proposed by Efron (1982}, The basic idea of the
boot strap approach is to use actual data, xq, .., x,, to
empirically estimate the environmental probability distribu-
tion by assuming that the probability of x; (j=1, .., n} is
equal to 1/n. For example, if the data consisted of the obser-
vations 2, 3, 3, 3, then the probability of an observation
with value 3 would be estimated to be

+i+

ENE
=
B
g

since observations Xx,, ¥, and x, have the same value, 3.
More generally, suppose the environmental probability dis-
tribution has the parametric form p(x;)=p, (/=1, .., M)
where the free parameters p, satisfy (i) 0< p, <1 and (ii)
M p,=1 Let x' denote the /th value of the random
variable of interest. Then it is not difficult to show that the
quasi-maximum likelihood estimate, 5;, of p, is given by the
relative frequency of occurrence of x' in the data sample.

Given an estimated environmental probability distribu-
tion, one then generates sample observations and selects K
samples of size # from the generated data. Then, with respect
to the ith sample (i = 1, ..., K) of size n, the quasi-maximum
likelihood estimates W are computed. Thus, the parameters
associated with the ith sample are denoted by Wi . Let W, be
the boot-strap estimate of w. Let €, be the boot-strap
estimate of the covariance matrix of w (ie,, an estimate of
C* in (6)).

Then, as K — oo,

K .
(1K) 2w, =,

i=1

and

K
(UK) Y, o), —w, (W), —w,17 - C,.

i=1

Note that the boot-strap method is also based upon
asymptotic (large sample) approximations since the
esfimated environmental probability distribution only
approaches the actual environmental probabily distribution
as the number of observations, #, in the original data set
becomes large. The boot-strap estimates can then be com-
pared to the parameter and covariance matrix estimates
derived by White (1982, 1989, in press) for the original sam-
ple of size #n. An agreement between the two very different
asymptotic approximations for estimating the covariance
matrix of the parameter estimates would provide some
reassurance that the sample size, n, is sufficiently large.
Efron (1982) provides a good review of the boot-strap algoe-
rithm. The fundamental problem with the boot-strap
method is that it is very computationally intensive.

The Parameter Estimation Problem

The practical application of the asymptotic model mis-
specification theory reviewed here depends upon finding a
strict local minimum, W,, of the sample KLIC function,
Numerical methods for finding such minima of the sample
KLIC function are well-known in the optimization and
neutral network literature (e.g., Golden, 1988a, 1988b,
1988c; Luenberger, 1984; White, 1989).

For example, a gradient descent type scheme may be used
which has the form

Wil =i —y, VE,(%1), (18)

where W is an initial guess about the parameter vector
values and W’ is the estimate of the parameter values at
iteration i of the algorithm. The sequence of step constants,
Y1, V2, -, is determined at each step of the algorithm so that
v, is a global minimum of £, (%' ). The quantity VE, (') is
the derivative of the loss function E,(w) with respect to the
parameter vector w evaluated at the current estimate, w’, of
the parameter vector w. Of course the problem with any
numerical scheme is that there will always be an intrinsic
error associated with the parameter estimation process
which is a source of error in the resulting parameter
estimates. It should be clear at this point that this intrinsic
numerical error due to computational limitations in exactly
computing v, has been assumed to be significantly smaller
in magnitude than the sampling error (ie., the error
associated with minimizing the sample KLIC function
rather than the true KLIC function}.

Correlations among Parameter Estimates

One important virtue of methods such as balanced
analysis of variance (ANOVA) 1s that the models are con-
structed so that the factors are orthogonal and thus the
correlations among the parameters are zero. A similar issue
arises in multiple linear regression analysis where the
problem of multicollinearity is considered (Montgomery &
Peck, 1982). All of the above issues can be reformulated in
a more general setting by considering the following key
question: To what extent are the parameters of a probability
model correlated? Note that the issue of parameter correla-
tion is relevant for correctly specified as well as misspecified
models.

A model with highly correlated parameters will have two
undesirable properties. First, it is much more difficult to
mterpret the effects of individual parameters on the model’s
behavior. Second, highly correlated parameter estimates
imply that the “true” Hessian of the error function may be
ill-conditioned in the vicinity of the parameter estimates
which 1s a violation of one of the key critical assumptions of
White’s (1982, 1989, in press) theory, Vuongs (1989)
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theory, classical theories based upon using the Fisher infor-
mation matrix for estimating the covariance matrix, and
Wilk’s (1938) generalized likelithood ratio test.

For these reasons, it is useful to examine the correlations
among the model parameter estimates. This calculation is
easily done by inspection of the asymptotic covariance
matrix €, which is computed using (7). Let # (i) be the ith
element of the strict local minimum, w,, of the sample
KLIC loss function such that W, approaches the strict local
minimum, w*, of the true KLIC loss function as 7 increases.
Let &, be the jjth element of the aﬂsymptotic covariance
matrix of the parameter estimates ,. Then an estimate,
.4, j), of the correlation between W, (/) and w () is given
by

A test of statistal significance of the quantity #,{i, j) can be
constructed by estimating the asymptotic variance of #,(i, f)
using boot-strap techniques.

Within-Groups Hypothesis Testing

Define a witfin-groups comparison to be based upon a
single set of observations (measurements), {x,, .., x,, }. If W,
is the parameter estimate of the unobservable parameter w*,
then a Wald test as suggested by White (1982, in press) may
be constructed to decide whether to reject the null
hypothesis,

Hy o Sw* =0,

where § is a constant selection matrix, and 0 is a vector
of zeros. Let the rank of the selection matrix S be r. The
quantity

W, =ndTST(SC,ST17' S, 2 2, (19)

where 2 is a chi-square random variable with r degrees of
freedom, and the notation #,< y2 indicates that #; is
asymptotically distributed according to a chi-square dis-
tribution with r degrees of freedom.

The mechanics of the test are thus straightforward. Com-
pute the statistic #,. Then, if %, > z2(r), reject the null
hypothesis H;: Sw* = 0. Note that if w* is not a unique strict
global minimum and is merely a strict local minimum, then
w* is only locally identifiable. This means, as previously
noted in the discussion on mode! selection statistical tests,
that the parameter estimates are substantive only if charac-
teristics of the parameter estimation procedire are taken into
account ay well.

480739712

If the null hypothesis is not rejected but the experimenter
believes that the source of the problem is due to a choice of
n which was too small, it is possible to estimate the sample
size, /', necessary for a future replication of the original
experiment. A % is desired so that

Wy =AWEST[SC ST Sy > x2(r) (20}
at the desired significance level, a, and where r is the rank of

the selection matrix S. Using C, and 1, as estimates of C;
and W, respectively, and solving (20) for #',

it > n[ 2]

Bertween-Groups Hypothesis Testing

A between-groups comparison is based upon two or more
sets of independent measurements. For example, these
measurements could be obtained by measuring the perfor-
mance of one group of subjects at two different points in
time. Or alternatively, these measurements could be
obtained by measuring the performance of two groups of
subjects at the same point in time. That is, the terminology
“within-groups” and “between-groups” which is used here
should not be confused with the terminology “within-sub-
Jects” and “between-subjects” since the concept of a “subject
factor” is not relevant here (at least not in the usual sense).

For a between-groups comparison, the asymptotic dis-
tribution of the parameter estimates of the first data set is
computed using model F\,,.. Let the estitnated mean and the
covariance matrix of these parameter estimates be denoted
as #i1; and ¢é,, respectively. The asymptotic distribution of
the parameter estimates of the second data set is then com-
puted using exactly the same probabilistic model Fy,. Let
the estimated mean and the covariance matrix of the
parameter estimates derived from the seccond data set be
denoted as #i, and é,, respectively.

Now since the estimates 7, and #1, from the two groups
are statisticaily independent and normally distributed, their
joint distribution s normally distributed with mean #r and
covariance matrix ¢ given by the formulas wi = [, 11, ]

and
s[4 0}
o &)

where 0 is a d-dimensional submatrix of zeros. A large selec-
tion matrix, S, may then be constructed for the between-
groups hypothesis-testing problem in exactly the same man-
ner as such a matrix was constructed for the within-groups
case considered in the previous section. Note that these
ideas are easily generalized to the case of G independent
groups. In this latter case, £ will have G submatrices along
its main diagonal.

(21)
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Multiple Wald Tests on the Same Data Set

Typicaily the experiment-wise significance level {i.e., the
probability of a Type I error), «,, is chosen to be 0.05 or 0.01
in the psychology literature. Note that non-independent
planned or post-hoc comparisons are known as non-
orthogonal contrasts in the analysis-of-variance literature.
Multiple Wald tests on the same data set usually have (o be
treated as multiple non-independent comparisons for non-
lincar statistical models.

If multiple non-independent comparisons using the Wald
test need to be made on the same data set, then the experi-
ment-wise probability of a Type I error, a,, must be
property controlled. Let a, denote the probability of a Type
I error (i.e., the significance level) associated with a specific
statistical test on a data set. Let «, be the probability that for
a set of K non-independent comparisons, one of more com-
parisons resulted in a Type I error. It then follows from the
Bonferroni inequality (Manoukian, 1986), p. 4) that

o, < Ko,

c o (22)
where K is the number of non-independent statistical tests.
The Bonferroni inequality suggests that a conservative
significance level, «,, for each indijvidual test may be chosen
50 that «,=a./K to guarantee that the experiment-wise
significance level does not exceed a.

A PDP MODEL FOR CATEGORICAL TIME SERIES
PATH ANALYSIS

In this section a new PDP model for analyzing data from
categorical {nominal) time series is introduced. In addition,
it is shown that under certain conditions, which are usually
satisfied in practice, the quasi-maximum likelihood
estimates of this new model are unique. Explicit formulas for
the asymptotic variance of the parameter estimates and
methods for model selection using White’s and Vuong’s
asymptotic statistical theory are also derived and used.
Finally, an empirical comparison between some aspects of
White’s (1982, 1989, in press) and Vuongs (1989)
asymptotic statistical theories, Efron’s (1982} boot-strap
approach, and more classical approaches to estimating the
variance of the parameter estimates is made.

Consider a complex system which can enter into only one
of d states, f7, f>, ... f4, at each instant in time. For example,
the states of the system might correspond to a set of d “con-
cepts” in a story. A particular subject’s recall of the story
from memory would be represented by an ordered sequence
of these concepts such as

{flﬂfofSEfSaflaf‘}}- (23)

That is, the “trajectory” in {23) would indicate that concept
J1 was recalled first, then concept f5 was recalled, then f; was
recalled twice, then f, was recalled, and finally f, was
recalled. The number of concepts recalled by the subject is
in this case equal to six. Thus, the “trajectory length” is
equal to six. Note that the trajectory length may be con-
sidered to be a random variable as well. Categorical time-
series stochastic processes occur in many areas of cognitive
science and experimental psychology. For example, Allison
and Liker {1982) have used categorical time-series models
to study social interactions between individuals. As another
example, hidden Markov models of speech recognition
(Levinson et al., 1988) are based upon categorical time-
series stochastic processes.

A third example of the application of the categorical time-
series analysis approach is described by Golden er al
{1993). Golden er al. (1993} used a categoerical time-series
analysis model described to analyze the temporal structure
in story recall data. Furthermore, the proposed categorical
time-series analysis model was shown to be formally equiv-
alent to a special type or highly constrained paralle] dis-
tributed processing network.

This section is organized in the following manner. First,
the basic statistical model for categorical time-series
analysis 1s proposed and the PDP interpretation of the
model is briefly noted. Second, a theorem is stated and
proved which provides explicit conditions for guaranteeing
the uniqueness of the quasi-maximum likelihood estimates
of the model (Appendix 2). Third, explicit formulas for
hypothesis testing and model selection relating the
asymptotic statistical theory developed in the previous sec-
tion of this article to the model are derived {(Appendix 1).
And fourth, simulation results of the proposed PDP model
are discussed in order to empirically evaluate the
applicability of White’s and Vuong’s asymptotic statistical
theories with respect to the proposed PDP model and the
data set of Golden er al. (1993).

The Probabilistic Model

It is assumed that each observation or trajectory
corresponds to a point in some sample space €. The
proposed probability mass model is defined with respect to
2. The form of the ith observation, x', is a d~dimensional by
T'-dimenstonal matrix of the form

=[x, x(2), .. x{(TH],

where T is a positive integer and x'(1) = K where K is a
constant vector. The 7th column of x* is a d-dimensional
column vector, x'(¢), which can only take on the values
{u,, ... u } where u, is a d-dimensional vector with the /th
element equal to one indicating that category label / was
observed at time ¢. The remaining ¢ — 1 elements of u, are set
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to zero. Note that aithough it is assumed that each observa-
tion (trajectory) has a definitive starting peint, the trajec-
tory length of the ith observation (trajectory) is assumed to
be the value, T/, of a random variable, T.

For example, the seven-dimensional by four-dimensional
observation

.\:3 = [Ks o, Uy, HG]

indicates that observation or data point number three is
identified as the categorical time series where category u,
is observed after initial condition K, then category u, is
observed, and finally category ug is observed. The value, 77,
of the random variable, T, associated with observation
number three has the value of four.

Let x'=[x(1).--x(T")] be the ith observation of N
observations. Let y*(1) be a d-dimensional vector of zeros.
Definefor t=2tot =T,

Y=0(x(t=1), )" (1= 1)), (24)
where @: #9x % — %’ has continuous second partial
derivatives.

Define the d-dimensional by h-dimensional matrix, v'{1),
as

() =[w' Y- w0,

where w' is a d-dimensional matrix of constants which is
referred to as a “digraph” matrix.
Let
Hity=rv'(t)a, (25)
where the jth element of 4(r} is h(#) and the /th element of
o is a;. Then, for t=2te t = T, define

d

q;i(z)=exp(h;<t))/ S exp(hi(0).

k=1

(26)

Finally, let the prior distnibution of 7 be a Poisson dis-
tribution of the form

g(T'y= AT exp(—1)/T", {27)

where T' is the ith positive integer value of random
variable T.

Then the probability of trajectory observation x* is
defined as

g(x' | X'(1)y=q(T") [] [¥(07 ¢'(D)],

r=2

(28)

where g'(1) is a d-dimensional vector whose jth element is
q;(1).

Xy(t-1)

Xo(t-1)

FIG. 1. PDP model interpretation of the categorical time-series
analysis probabilistic model. The activation of the ith input unit, y,(r), is
updated as a weighted sum of its past value and the current input to that
unit, x;{7}, using the x constant. Connections from the input units to jth
hidden unit, A;(r), are constrained such that a smaller number of free
parameters, &, ..., &, completely specifly all connection sirengths. In this
example with A =2, the solid connections have strength «, and the dashed
connections have strength «,. The pattern of connection from the hidden
units to the kth probability unit, g,(1), is not modifiable and effectively
implements a forward lateral inhibition network.

Figure 1 shows this probability model is formally equiv-
alent to a special type of highly constrained connectionist
network. For expository reasons, consider a Jordan style
connectionist network {Jordan, 1992) with an exponentially
decaying memory, For networks of this type, the @ function
in (24) can be defined recursively as

Y =o(x'(t=1), ¥ (i-1))

=x"(t =D +py'(t=1), (29)

where (1) is a vector of zeroes.

The ith activation pattern over the input units at time ¢ is
specified by y'(1) which is updated according to (24} using
incoming activation pattern x'(f—1) and memory buffer
y'(t—1). The /th matrix, w’, can be interpreted as corre-
sponding to a set of connections from the input to the hidden
units in Fig. 1 which are constrained so that all connections
in that set have some value «,. The activation pattern over
the hidden units at time ¢ specified by the vector A'(¢). And
finally, the mapping from the hidden unit activation pattern
h'(t) to the activation pattern over the output units,
q'(t), specified by (26) can be interpreted as a type of
forward lateral inhibition network of fixed (non-modifiable)
connections.
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Estimation of Model Parameters and Their Asympiotic
Variance

The sample loss function, £,(«, 2), is derived by sub-
stituting (28) into (2) to obtain

E (@, 2= —(/n) ¥ loglg(x'| x(1))],
i=1
where g(x’ | x'(1)) is defined by Eqs. (24)-(28). The quasi-
maximum likelthood estimates (&, 2) are the critical points
of £,(«, 1). Appendix 1 shows that the critical points (&, £}
are the solutions to the system of equations

dE (8, H)/dx=0,, (30)

where
n

I=(/m) ¥ T

i=1

(31)

Appendix | also provides an explicit formula for (30) and
shows how the asymptotic covariance matrices which are
required for White’s (1982, 1989, in press) and Vuong's
{1989) asymptotic statistical theories may be computed.
Finally, the following theorem regarding the uniqueness
of the parameter estimates is proved in Appendix 2.
TueoreM 3. Let E, («, 1) be the Hessian of the sample
loss function defined by (38) in Appendix 1. Let (&, 1) be a
critical point of E,(x, 1) which is computed using (30) and
(31). If the eigenvalues of the Hessian of E, (a, ) evaluated
at (&, E:) are strictly positive, then (&, j:) is the unique quasi-
maximum likelihood estimate (i.e., strict global minimum of

E, (o, A)).

Empirical Evaluation of the Asymptotic Approximations

In this section, the adult recall data collected by Golden
et al. (1993) is used to empirically evaluate the validity of
the proposed asymptotic approximations with respect to (1)
a boot strap Monte Carlo method of estimating the
variance of the parameter estimates and (ii) classical
asymptotic statistical methods for estimating the variance of
the parameter estimates. The model Golden er al. (1993)
considered was of the form of (28) with a parameter vector
of dimension 4 and 24 observations. The covariance
matrices for eight different independent data sets (four dif-
ferent texts recalled in an immediate recall and delayed
recall condition) were then combined to form a single
32-dimensional covariance matrix as previously discussed.

Using the formulas derived in Appendix 1, the asymptotic
covariance matrices — 47, 8!, and C, were evaluated at
the parameter estimates obtained from solving (30) and
{31). As previously noted, if the model is correctly specified

with respect to the data then White’s asymptotic covariance
matrix C, should have roughly the same value as the
asymptotic covariance matrices (— A" and B ') derived
from classical asymptotic statistical theory. On the other
hand, if —A4;! differs from B!, then this signals the
presence of model misspecification and it is not correct to
use either — A4, ' or B, ' as estimates of the asymptotic
covariance matrix of the parameter estimates. Rather, in
this latter case, one should use White’s formula which com-
bines the information in both A4, ' and B’ correctly to
vield the estimated asymptotic covariance matrix C,,.

Using a Sparc 10 workstation, these parameter estimates
and their asymptotic variances were obtained within an
hour or two of CPU time. Next, boot-strap estimates of the
parameter values and their respective covariance matrices
were computed. This latter calculation required several days
of CPU time. The eigenvalues of the 32-dimensional asym-
pototic covariance matrices were compared with the eigen-
values of the covariance matrices calculated from boot-strap
simulations. Rather than plot the cigenvalues directly, the
negative natural logarithm of each eigenvalue was plotted in
order to compress the eigenspectrum.

As can be seen in Fig. 2, although the eigenspectrum
derived from the boot-strap covariance matrix estimates
using 20 samples (dashed line with crosses} differ con-
siderably from the other asymptotic estimates, after 300
samples (open circles) the boot-strap covariance matrix
estimates converge to the predictions of White's asymptotic

61

LOGIEIGENVALUE]

0 8 16 24 az
EIGENVALUE NUMBER

FIG. 2, Comparison of negative logarithm of the eigenspectrums of
alternative asymptotic covariance matrix estimates (see text for additional
details). Eigenspectrum estimated from White’s theory {solid circles} is
consistent with boot-strap estimates computed from 300 boot-strap sam-
ples (open circles). Also note the two eigenspectrums estimated using
classical asymptotic statistics (open squares and dashed lines without
crosses) are not only inconsistent with the boot-strap estimates (open cir-
cles) but they are inconsistent with each other as well. The eigenspectrum
represented by dashed lines with crosses is the boot-strap eigenspectrum
computed from only 20 beot-strap samples.
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statistical theory (solid circles). Moreover, the observed dif-
ference in Fig. 2 between the negative logarithm of the
eigenspectrum of —A ' (open squares) and B! (dashed lines
without crosses) indicates the failure of the Fisher information
matrix equality (—A,=B,) and suggests the presence of
model misspecification. The presence of model misspecifica-
tion explains why the asymptotic covariance matrices, —A4 '
and B!, associated with classical asymptotic statistical
theory do not agree as effecively with the boot-strap
covariance matrix estimates (see Fig. 2) relative to the predic-
tions of White’s asymptotic statistical theory.

These simulation results indicate that, at least for the
application considered by Golden ez af. (1993), reliable
statistical inferences in the presence of model misspecifica-
tion can be successfully made using White’s statistical
theory. These simulation results also indicate that the use of
the inverse of the classical Fisher information matrix (i.e.,
—A7"or B ') can lead to wrong statistical inferences in
the presence of model misspecification.

GENERAL DISCUSSION

The tools and techniques proposed in this article should
prove useful to researchers for at least four specific reasons.
First, such methods can provide principled and disciplined
guidance to approaching the model selection problem in the
early stages of mathematical mode] building. Second, such
methods provide a mechanism for making explicit statistical
predictions {rom a probabilistic psychological theory which
may only be partially correct. Third, Vuong’s (1989) model
selection theory is not limited to comparing nested statisti-
cal models as in the Wilk’s (1938) generalized likelihood
ratio test {(also known as the ¥ test), but can be used to
compare models which have equal numbers of parameters,
And fourth, such methods provide a mechanism for making
correct statistical inferences from correctly specified models
which might suffer from trivial flaws,

Indeed, it is possible some researchers who are currently
using GLRT are making wrong statistical inferences
because the assumed full model is not an entirely accurate
representation of the true data generating process.
Sirmlarly, it is 2 common assumption among researchers
that the assumed statistical model fits the data well enough
that the Fisher information matrix equality is valid. In situa-
tions where the parametric model does not contain the data
generating process, however, this assumption is not
justified. In addition, without this assumption, classical
expressions for asymptotic covariance matrices of maxi-
mum likelihood estimates result in formulas which are
simply incorrect. White (1982, 1989, in press) has provided
formulas for asymptotic covariance matrices which are valid
even when extreme violations of the Fisher information
matrix equality oceur (i.e., when the parametric model is not
correct).

Like the GLRT and classical asymptotic methods for
estimating the covariance matrix of the parameter
estimates, the theory presented here is only valid for large
samples. If the assumed statistical model is correctly
specified, then the validity of the large sample assumptions
can be evaluated by simulation experiments designed to
examine if the model’'s “true” parameters ({ie., the
parameters which actually generated the test data) can
actually be recovered by a “typical” sample size. Unfor-
tunately, the assumption of correct specification is not
appropriate in many situations. Indeed, one suspects that if
many rescarchers were to bother to check the validity of (i)
large sample assumption and (ii) the correctly specified
assumption of the GLRT with respect to their applications,
it would not be surprising to this author if many applica-
tions of the GLRT were not technically appropriate (ie.,
wrong). This paper has suggested a possible solution to the
problem of checking the reliability of large sample statistical
inferences by exploiting Efron’s (1982) boot-strap method.
The basic idea of this procedure is to use the data as the
basis for an asymptotic non-parametric model of the
statistical environment and then evaluate parametric
asymptotic approximations with respect to the asymptotic
non-parametric model.

The difficulty of deriving and programming the new
statistical tests only requires slightly more work than the
derivation of statistical tests based upon classical methods.
For example, White’s {1982, 1989, in press) method for
estimating the asymptotic covariance matrix of the
parameter estimates is essentially a way of combining both
the first and second derivative information derived from the
assumed statistical loss function. It is usually not difficult to
derive, program, and compute both the first and second
derivatives of the loss function. On the other hand, a little
more work is required to derive and program the first part
of Vuong’s (1989} theory. Nevertheless, one can avoid this
portion of the theory by either (i) making the possibly inap-
propriate assumption that the population variance of the
model error difference between the two non-nested models
is different from zero or (ii) proving that the two models are
strictly non-nested. The second part of Vuong’s (1989)
theory is then computationally trivial: Use the mean and
standard error of the model error difference across data
samples to decide if the model error difference is
significantly different from zero.

Of course the boot-strap calculations are computa-
tionally expensive but those calculations are designed to
empirically validate the large sample approximations. The
computational expense of the boot-strap calculations
should not be considered to be a particular problem
associated with the theoretical framework described here.
Any researcher proposing a new large sample statistical
tests should eventually exploit such computer techniques to
investigate the validity of the large sample assumptions.
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Indeed, if such computations are computationally
prohibitive, the statistical theory described in this article is
even more applicable since it generalizes classical large
sample methods by making fewer assumptions about the fit
of the model to the data generating process.

Finally, the key analytical calculations associated with
White’s (1982, 1989, in press) and Vuong’s (1989) theories
were done to illustrate the steps required to apply their
methods. To illustrate these techniques, these methods were
applied to the model of Golden e al. (1993; also see Golden,
in press). This model is misspecified because it is highly con-
strained by psychologically justifiable constraints deter-
mined by modern theories of text knowledge representation.
Analysis of the computer simulation results for this par-
ticular data set and nonlinear model indicate that (i) clas-
sical formulas for the asymptotic covariance matrices
provided incorrect estimates (i.¢., not internally consistent
or consistent with the boot-strap estimates), and {ii) White’s
(1982, 1989, in press) method provided estimates which
were correct (l.e., consistent with the boot-strap estimates).

In conclusion, the methods of making correct statistical
inferences in the presence of model migspecification which
have been reviewed in this article are important for the
following reasons. First, it is likely that the asymptotic
approximations of White (1982, 1989, in press} and Vuong
{1989) will yield more accurate formulas for deriving
between-treatment statistical tests and model selection than
classical tests. Second, by not requiring models to satisfy a
goodness-of-fit test, the model builder can focus upon the
two essential issues of model reliability and model validity
in a sequential fashion rather than be forced to consider
these issues in parallel as dictated by classical statistical
methods. Finally, the general theory of White (1982, 1989,
in press) and Vuong (1989) reviewed in this article provides
an elegant unified framework for the evaluation and
development of new and appropriate statistical tests for
nonlinear models of complex phenomena.

APPENDIX 1

The purpose of this section is to provide explicit formulas
linking the probability model specified by Eqgs. {24)-(28)
with White’s and Vuong’s asymptotic statistical theories.

Notation

Consider the vector-valued quantity f(x) and the scalar-
valued quantity g(x) where f: #9— #“ and g: % — %*.
The quantity df/dx 1s a matrix whose jjth element is the par-
tial derivative of the i/th element of f with respect to the jth
element of x. The quantity dg/dx is a vector whose ith ele-
ment is the partial derivative of the /th element of g with
respect to x. The quantity d2g/dx® = df /dx where f= dg/dx.

Sample Loss Function

The sample loss function, E,(«, 1) for the probability
model specified by Eqs. (24)—(28) is given by the formula

Eﬂ;(“: ’1) = i Eft(a’ );')’

i=1

{32)

where

Efa, 2)=—(1/n) log[ g(x"| x'(1))]. (33)

Substituting (28) into (33),
Ei(a, 4)=—(1/n) log[¢(T")]

Tl
—(1/n) 3 log[x*(1)" q'(2}]. (34)
=2

Parameter Estimates

The quasi-maximum likelihood estimate is a critical point
of (32). Any critical point of (32) is a parameter vector (d, A)
that satisfies (30) and (31). To see this, note that (30) is
simply dE, (a, A)/dx set equal to a vector of & zeros, and Lis
obtained by setting the derivative of the error function with
respect to A equal to zero and solving for A. By the Unigue-
ness Theorem in Appendix 2, if the Hessian of the error
function evaluated at a critical point has only positive eigen-
values, then the obtained critical point is the unique quasi-
maximum likelihood estimate.

The first derivative of the sample loss function, £, (a, 1),
with respect to 4 is given by the formula

dE, (o, 2)jdh =Y dE'(a, 1)/dA,

i=1
where
dE (a, A)dA = —(1/m(1=T/3). (35)
Now (31) is obtained by substituting £ into the equation
dE, («, 2)/di.=0
and solving for 4. The first derivative of the sample loss func-

tion, £, {a, A), with respect to the A-dimensional « vector is
given by the formula

dE, (a, A)/de=Y dE!(a, 1)/da,

i=1
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where

7t

dE: (o, A)fdn= —(1/m) 3 (x'(1) =g ()" v'(1).

=2

(36)

Asymptotic Covariance Matrices of the Parameter
Estimates

Let (4, £) be a critical point of the sample loss function
defined according to (30) and (31). Let 2* be the column vec-
tor z' defined by

f=[dE (o, A)fdx  dE! (o, 2)/dA]T (37)

and evaluated at (&, £). Let the matrix Z, =[2'£%...2"].
Then matrix £, as in (9) is then

B,=n272,

Moreover, let E7 be the sample loss function associated
with probability model = {g,(-; w)}, and £% be the sam-
ple loss function associated with probability model G, =
{g,(-;»)}. Let the matrix Z, associated with model F, be
indicated by Z,and let the matrix Z, associated with model
Gy be indicated by Z,. Then

Bls=n272,

Let D, be a diagonal matrix whose jth on-diagonal ele-
ment is the jth element of vector ¢'(¢). Let 0, be a A-dimen-
sional column vector of zeros. Then note that d2E, (o, 1)/
dA da=0, for any (a, i)e #**', The Hessian of £, (x, 2),
V2E, («, 4) is then given by the formula

" TdYE!(a, 1)/da? 0,

2 Ay n 2 '

\% En(a! /') - j:;l |: 0;{ dzEf,(a, A)/d/iz
(38)

The quantity d2E’ (a, A)/dx® is now computed. Taking
the derivative of (36) with respect to a,

& Ei (o, 1)fda= —(1jn) Y, (0= [dg'(0)/da]” v'(1)).

- (39)
Then note that
dq' () jdx = [dq' (1)/dh' () ][ dh'(t)/dx]

=[D,—q' (1) g (1) ] v'(1). {40)

Thus,
d*E! (a, 2)/doc?

=(1/n) ¥, [ (D17 [Du—q' (1} ' (D7 1 0'{0)

and
d*E' (a, )di?t=T(nl?).

The matrix — A, is computed as in (8) by evaluating — 1
times (38) at the critical point (&, £) where (&, 4) is com-
puted from (30} and (31). White’s asymptotic covariance
matrix ¢, may then be computed using (7) from A, and B,,.

APPENDIX 2

The purpose of this appendix is to state and prove explicit
conditions for the parameter estimates of the proposed PDP
model to be unique. To prove this theorem, it is first
necessary to prove two lemmas.

LemMa 1. Let A be a real-valued symmetric positive
semi-definite d-dimensional matrix. Let X be a matrix, then
the matrix X7 AX is positive semi-definite.

Proof. Since A4 is a d-dimensional real symmetric
positive semi-definite matrix,

o
A=Y leel

iV
i=1

where ¢, is the real-valued column eigenvector associated
with the ith non-negative eigenvalue A; of 4. The matrix
XTAX is positive semi-definite if and only if for any real-
valued column vector y, ¥ (X7 AX) y = 0. But

o

Y, LlelXy) el Xy)
i=1

d

Y A(elXy)*=0.

i=1

y(XTAX)y

Il

Q.ED.

LemMa 2. Let M be a d-dimensional diagonal square
matrix whose ith on-diagonal element, m is given by

mir:Pi_p?

and whaose ijth off-diagonal element, m;, is given by

i
my= —pl;

where 0 < p; <1 and ¢_ | p,= 1. Then M is positive semi-
definite.
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Proof. By Gershgorin’s circle theorem (Noble and
Daniel, 1977, p. 289) every eigenvalue 4 of M must satisfy at
least one of the inequalities:

[A—myl <

2 Imy).

jei

(41)

Introducing the assumed constraints on m, and ni,, (41)
becomes

Z PiP;=p: 2 pj:pi(l

Ji Fwi

|A—p;+pil< —p.)

Thus, {41) subject to the constraints on M becomes

—pi{l—p,) +Pi*P? <A<p(1—p)+p,—pi,

which simplifies to
0 A<2p,(1 —p)).

Thus, all eigenvalues of M are greater than or equal to zero.
QED.

Tueorem 3. Let E (o, 2} be the Hessian of the sample
loss function defined by (38) in Appendix 1. Let (&, £) be a
critical point of E, (a, ) which is computed using (30) and

(31). If the eigenvalues of the Hessian of E (a, 1) evaluated
at (&, 1) are strictly positive, then (d, 1) is the unique quasi-
maximum likelihood estimate (ie., strict global minimum of

E (o, 2)).

Proof. First note that

d*E'(x, A)di2 = TN =0

for any (a, Ay e "+ . Thus, & £ {«, A)/dA? s non-negative.
Second, it now is shown that d*E™(a, 2)/da” is positive

semi-definite for any («, A)e #*+!. By Proposition 2, the

matrix Dq,-—q" (1) ¢'(r) is positive semi-definite. And this

observation in conjuction with Proposition 1 shows that

d*Ei(a, A)jdn?

=(/N) ¥ O [Du—q (0 g ()] v’

1=2

is positive semi-definite for any («, 2)e®&"*'. Thus,
d*E"(a, A)jdo? is positive semi-definite for any (o, A€
#* " since the sum of a finite number of positive semi-
definite matrices is a positive semi-definite matrix.
Inspection of V2 £, (a, ) in (38) Appendix 1 in conjunc-
tion with the above two results show that for any
(a, 2y e B~ V2E, (a, 1) in (38)is positive semi-definite for
any {«, A)e#"*". Since £, («, A) has continuous second

partial derivatives and is positive semi-definite for all
(a, A)e&" !, then E,(x, 2) is convex on #"*+' (Luen-
berger, 1984, p. 180). Moreover, since £, {a, A) is convex on
2"+, any strict local minimum of E,{a, 1) is the unique
strict global minimum (Luenberger, 1984, p. 181).  Q.E.D.

APPENDIX 3

The purpose of this appendix is to review the basic steps
of the variance test described by Vuong (1989). Let A/ be
the Hessian matrix associated with model F; as in (8). Let
B/ be the matrix associated with model F, as in (9). Let A%
be the Hessian matrix associated with model G, as in (8).
Let B# be the matrix associated with model G as in (9).
Also define a new mairix, 872, so that

e

B=n"1Y V loglgqx;w,)]1V,log[q.{x; 5],

i=1

(42)

where the notation V,log[g,(x;; #,}] indicates that the
gradient of log[ g, (x; y)] with respect to y should be com-
puted and then evaluated at the point ,. Then R, is defined
as follows

YT
R,,:{ —B(ds) _ (43)
(BEYT (A~

The first stage of Vuong’s (1989) model selection proce-
dure may now be reviewed. As previously noted, Vuong
(1989} makes a number of regularity assumptions which are
similar to the regularity assumptions associated with
White’s asymptotic statistical theory (see Vuong, 1989, for
additional details). Given these assumptions, Vuong (1989)
shows that as » increases, ¢2 — o with probability one.
Vuong (1989, Lemma 4.1) also showed that the nuil
hypothesis that F,; and G, are not strictly non-nested (ie,
Hyrq(-;w*)= qg( -; ¥* 1) is formally equivalent to the null
hypothesis that o —0 Vuong (1989) then showed that the
variance statistic 87 has a weighted chi-square distribution
(see Appendix 4 for details regarding this distribution; also
Vuong, 1989). Thus, Vuong (198%9) was able to construct a
statistical test based upon the variance statistic, 62, in
order to decide if two probability models F,- and G, are
strictly non-nested.

This variance test consists of the following three step pro-
cedure. First, compute quasi-maximum likelihood estimates
7, and W, for each of the two probability models G, and
F,.. Second, let ¢ be a vector whose ith element is the
square of the ith eigenvalue of R,. Using the algorithm in
Appendix 4, compute the critical value o2(”) which has
the property that a weighted chi-square random variable
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with parameter vector @ will exceed ¢2(?). And third,
decide the moedels G, and F, are strictly non-nested (i.e.,
reject Hy: D =0)if n2 > o2(H>).

(B

APPENDIX 4

The purpose of this Appendix is to define a cumulative
weighted chi-square distribution following Vuong (1989)
and suggest a numerically efficient way to calcutate this
distribution. The proposed method for calculating this
distribution was suggested by Stuart Golden (personal
communication, December 1992),

Dermition 4. Let Z=[Z,,...Z,, ] be a vector of m
independent and identically distributed Gaussian ran-
dom variables with mean zero and variance one. Then the
random variable U, =%7_,k,Z* has a weighted chi-
square distribution with weighting parameter vector K =
Tk, .k, 1

The probability density function of y;=Z7 where Z,is a
Gaussian random variable with mean zero and variance one
is called a chi-square density function with one degree of
freedom. Let j be the square root of ncgative one. The
characteristic function of y; is defined as the expectation of
exp( jty;) with respect to the probability distribution of y,.
Wilks (1962, p. 183) notes that the characteristic function of
the chi-square random variable y, = Z?2 is given by

@, (1) =[1-2]7"2 (44)

The characteristic function of

Um= Z kl'yi

i=1

1s now computed using a theorem discussed by Wilks (1962,
p. 121). In particular,

by ()= r] D, (k;t), {45)

i=1

where @,(f) i1s the characteristic function of y; since
11 o ¥, are independent random varibles.

Given the characteristic function of U, it is now desired
to compute the cumulative distribution function, F{(U,,), of
U,,. Making use of the fact that U/, is always non-negative
and the “inversion formula” provided by Manoukian {1986,
p. 12), we have

RU)=(122) [ (1= exp( U, Kby, (1)) dr.

(46}

The integral in {46) is then numerically evaluated by
making the substitution of variables

tn=2n/T)(n/N),

where T is the “sampling rate period” and N is the number
of sampling points. The integral in (46) then becomes

FUN=(TN) | (1 —expl—jUn 1)Uy, (1,))t,) .

_— 0

(47)

The motivation for this substitution of variables is based
upon the idea that the integrand of (46) is modelled as a
complex periodic function whose period just happens to be
equal to NT.

The integral in (47) is then approximated as a sum to
obtain

N2
AU, ={1NT) 3}

n= —(N/2)+1

1:] - exp( —ijtn)](QUm([n)/jtn)a

(48)

where ¢, = 2n/(TN),

By choosing K to be a vector of d ones, F{U,,) reduces to
the familiar chi-square cumulative distribution function
associated with a chi-square random variable with d degrees
of freedom. Using N = 50,0000 and T=0.0001, an informal
comparison between this proposed numerical algorithm
and published chi-square tables showed a relative error of
approximately 1%. If desired, the accuracy of this algo-
rithm could be improved by evaluating (46} using more
sophisticated numerical integration methods. The essential
trick is the expression of the cumulative distribution func-
tion F(U, ) as the single integral in (46).
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