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Abstract

Recent micropillar experiments have shown strong size effects at small pillar diameters. This “smaller is stronger” phenomenon is
widely believed to involve dislocation motion, which can be studied using dislocation dynamics (DD) simulations. In the present paper,
we use a three-dimensional DD model to study the collective dislocation behavior in body-centered cubic micropillars under compres-
sion. Following the molecular dynamics (MD) simulations of Weinberger and Cai, we consider a surface-controlled cross-slip process,
involving image forces and non-planar core structures, that leads to multiplication without the presence of artificial dislocation sources
or pinning points. The simulations exhibit size effects and effects of initial dislocation density and strain rate on strength, which appear to
be in good agreement with recent experimental results and with a simple dislocation kinetics model described here. In addition, at the
high strain rates considered, plasticity is governed mainly by the kinetics of dislocation motion, not their elastic interactions.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

As the technology of microscale devices evolves to smal-
ler dimensions, plasticity at small scales is attracting
increasing attention. This is driven by the knowledge that
many mechanical properties at the sub-micron scale differ
from those at the continuum scale. From recent micropillar
compression experiments [1–3], it is now known that the
flow stress of metallic micropillars increases with decreas-
ing sample size even in the absence of significant hardening
by geometrically necessary dislocations or strain gradients
[4,5]. Recent review articles have summarized the current
state of this research [6,7]. To understand the “smaller is
stronger” phenomenon in metals, several models have been
proposed, most notably the dislocation starvation model
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[2,8,9] and the single-arm source model [10–12]. In the dis-
location starvation model, the small number of mobile dis-
locations present in sub-micron pillars is expected to
annihilate at the nearby free surfaces during plastic flow,
so that nucleation of new dislocations is required for fur-
ther plastic deformation to occur. In general, higher stres-
ses are required for dislocation nucleation than for
activating existing dislocation sources. Since dislocations
in smaller pillars might move out of the sample more
quickly than they multiply, smaller samples are expected
to have higher flow stresses. Recent in situ transmission
electron microscopy (TEM) observations of Ni pillars
under compression show that mechanical annealing can
occur in sub-micron-sized pillars [9]. In the single-arm
source model, the radius of the truncated Frank–Read
source is smaller in smaller samples, so that the stress
needed to activate the source is higher. As a result, smaller
samples are predicted to have higher flow stresses. Support
for the single-arm source model can be found in the in situ
TEM observations [13,14].
rights reserved.
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Although in situ TEM is a powerful tool for exploring
the microscopic behavior of materials directly, it has sev-
eral limitations. For example, it requires a very thin elec-
tron-transparent section of material and the dislocations
often move too fast to be observed clearly [15]. To contrib-
ute to a better understanding of small-scale plasticity, it
helps to delve more deeply into the details of dislocation
behavior, as dislocation motion is the primary mechanism
for plastic deformation. In this sense, dislocation dynamics
(DD) simulation provides a unique opportunity to explore
the motion of individual dislocations, and allows us to
develop a better microscopic understanding of the mechan-
ical behavior of micropillars [16–18].

For metals with the face-centered cubic (fcc) crystal
structure, DD simulations have provided significant insight
into understanding the mechanical behavior at small scales
in terms of the collective behavior of dislocations [12,19–
24]. The same approach can be taken for body-centered
cubic (bcc) metals, provided changes are made to account
for the different dislocation mobilities and multiplication
mechanisms. For bcc metals, dislocation plasticity is
thought to be governed mainly by the motion of screw dis-
locations, which have a low mobility, attributed to a non-
planar core structure and a high Peierls barrier [25–28].
In addition, from molecular dynamics (MD) simulations
of plasticity of bcc nanopillars, multiplication is expected
to occur by a process of surface induced cross-slip, wherein
isolated screw dislocations, aided by image stresses, can
self-multiply and generate sources of dislocations [29,30].

In this paper, we implement an algorithm that accounts
for surface cross-slip in bcc metal pillars under uniaxial
loading in DD models and explore its effect on the macro-
scopic deformation behavior. Moreover, we compare our
simulation results with recent experiments, which have
shown that mechanical annealing and exhaustion harden-
ing are also possible in bcc metals [31,32]. To better under-
stand the results of these simulations, a simple dislocation
kinetics model is developed, based on the competition
between surface controlled multiplication and loss of dislo-
cations by glide out of the micropillar. The DD simulation
results and the kinetics model show similar effects of sam-
ple size and strain rate on the stress–strain curve.

2. Simulation methods

2.1. Three-dimensional dislocation dynamics in a cylinder
geometry

The dislocation dynamics simulations were performed
using a modified version of ParaDiS, a DD code originally
developed at the Lawrence Livermore National Labora-
tory [18]. In ParaDiS, dislocations are described as straight
perfect dislocation segments connected by nodes. Based on
the stress fields of the segments and the loading conditions,
dislocation movements are computed and updated. In an
effort to make the model conform to a micropillar com-
pression experiment, the traction-free surface should be
taken into account. Modifications to the ParaDiS code
have been made to account for the presence of the cylinder
surface [33]. It considers dislocation motion only in the pre-
defined cylinder region and deletes any dislocations outside
of this cylinder region. A spectral method has been devel-
oped to compute the image stress field in order to satisfy
the traction-free boundary condition on the cylinder sur-
face. However, in this work, we include the effect of the
image stress only for the surface nodes by specifying image
stresses on them, because they play a critical role in the
selection of slip planes and the activation of the surface
cross-slip multiplication process. We have seen that ignor-
ing the image stress for all other segments does not make a
significant qualitative change in the simulations. Using the
surface cross-slip algorithm, we performed DD simulations
to explore the effects of sample size, initial dislocation den-
sity and strain rate on the stress–strain behavior under uni-
axial loading.

2.2. Surface cross-slip mechanism

Recently, Weinberger and Cai [29], using MD, found
that even a single, isolated screw dislocation in a bcc nano-
pillar could multiply by a process involving cross-slip near
the surface. They found that the image forces on a straight,
inclined, screw dislocation act in opposite directions on
either end of the dislocation, causing the two ends of the
dislocation to move on different slip planes: the primary
plane and the cross-slip plane. The pinning point so created
serves as an anchoring point on the glide dislocation,
which, above a critical stress, can spiral about that point
and create multiple dislocations. Here, we develop a simple
algorithm to implement surface-induced cross-slip in the
ParaDiS cylinder code. For simplicity, we allow for slip
to occur only on the 1/2h111i/{1 10} type slip systems.
Since only screw dislocations can cross-slip, here we con-
sider a pure screw dislocation in the cylinder geometry,
as shown in Fig. 1A. The main task is to determine the slip
planes of surface nodes. In Fig. 1B, Peach–Koehler forces
due to dislocation interaction and external loading are
computed for each surface node. In addition, the image
forces are specified at the surface nodes. The image forces
act to move the surface nodes in opposite directions, as
shown in Fig. 1C. This may be understood by noting that
dislocations tend to shorten their length to minimize their
energy by rotating. By adding up these forces, the slip
planes of the surface nodes are chosen so that the projected
force is maximum on the chosen slip plane. In Fig. 1D, the
slip plane of the front surface node (A) is the (101) plane,
while the slip plane of the back node (B) is the (0�11) plane.
Initially, the dislocation is on a single slip plane, but it
would move on two different slip planes due to the surface
cross-slip mechanism. Because of the surface cross-slip, the
dislocation would form a cusp with two arms on different
slip planes and evolve into a spiral loop. Afterwards,
because the edge dislocation segments move much faster
than the screw segments, the loop expands mainly by edge
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Fig. 1. (a) Single screw dislocation and its slip planes in a cylinder, and (b) Peach–Koehler forces, (c) image forces and (d) total forces on front and back
nodes.
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motion. For the DD simulation, the mobility of the edge-
character segments is set to be 100 times larger than that
of the screw segments [29], and dislocation motion is lim-
ited to glide in specified slip planes, except for surface dis-
location segments. Detailed information on the anisotropic
mobility law is given in Ref. [25]. When the edge disloca-
tion segments meet the surface, the one dislocation will
have evolved into three dislocations. As a result, a single
dislocation can self-multiply (see Supplementary Movie
1A). However, if the stress is lower than a critical stress
for a given sized pillar, the cusp will move along the dislo-
cation line and escape from the pillar so that surface mul-
tiplication will not occur (see Supplementary Movie 1B).
Since the critical stress needed to cause the cusped disloca-
tion to bow and multiply is controlled by an Orowan bow-
ing-like process, the critical stress for multiplication is
roughly inversely proportional to the diameter of the pillar.

2.3. Initial dislocation structure

Since the initial dislocation configuration affects the sta-
bility of pinning points, it is expected to have a significant
effect on the mechanical response of the micropillars [23].
For the modeling of fcc metals, several initial configura-
tions have been suggested: a Frank network relaxed from
randomly distributed straight and jogged dislocations
[20], randomly distributed Frank–Read sources with pin-
ning points [24] and randomly distributed loops with
cross-slip allowed [23]. However, these structures are not
especially relevant to bcc metals because of the different
edge/screw dislocation mobilities. Moreover, the physical
origin of potentially permanent pinning points has
remained unknown in sub-micron pillars, based on MD
simulations [34].

In the MD study of bcc nanopillars by Weinberger and
Cai [29], if a single dislocation is placed in a cylinder, it
tends to rotate into a screw orientation to reduce its energy.
Because only a few dislocations would exist in sub-micron
sized pillars, dislocations would rarely interact with others
without external loading. Moreover, since the mobility of
the screw orientation is much lower than that of edge, plas-
ticity in bcc micropillars is expected to be governed by
screw dislocation motion. As a result, our DD simulation
starts with a configuration of randomly distributed pure
screw dislocations prior to loading.

3. Simulation results

3.1. Size-dependence of flow stress

To investigate the effect of sample size, simulations were
performed with different pillar diameters ranging from
150 nm to 1 lm under periodic boundary conditions along
the cylinder axis. For these simulations, a constant axial
strain rate of 105 s�1 was imposed. This is very much higher
than typical experimental strain rates of 10�3 or 10�4 s�1.
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Due to time scale limitations, we have not yet been able to
model experimental strain rates. The initial dislocation
density was 1013 m�2, which amounts to just a few disloca-
tions in the smallest pillars and a much higher line content
in the largest pillars. With these conditions, the DD simu-
lation predicts that the stress–strain curve clearly depends
on pillar diameter, as shown in Fig. 2. As the sample size
decreases from 1 lm to 150 nm in diameter, the flow stress
increases from roughly 600 MPa to 1.6 GPa. In addition,
smaller samples show “jerky” flow behavior while the
stress–strain curves for larger samples are relatively
smooth, consistent with experiment [31,32]. The evolving
dislocation densities for differently sized pillars have also
been calculated and are plotted against strain in Fig. 3A–
D. Interestingly, the dislocation density for the largest
diameter sample (1 lm) increases continuously, while the
dislocation density for the smallest sample (150 nm diame-
ter) shows significant fluctuation but overall remains
roughly constant with increasing plastic deformation. Sup-
plementary Movies 2A and 2B show the evolution of the
dislocation structure, the corresponding stress–strain
curves and the evolving dislocation density for both the
smallest (150 nm) and the largest (1 lm) diameters, respec-
tively. The colors of the segments indicate the Burgers vec-
tors of the various dislocations, among which the red
segments indicate newly created dislocation junctions,
formed through reactions of the type a=2½1�11�þ
a=2½11�1� ¼ a½100�, while the green segments indicate glide
dislocations with Burgers vectors of the type a/2h111i. As
shown in Supplementary Movie 2A, dislocations in the
smallest pillar escape the pillar so easily that the dislocation
density never rises to a high value, with the consequence that
few dislocation junctions are formed. On the other hand, as
shown in Supplementary Movie 2B, dislocation multiplica-
tion is prolific in the largest pillar, spreading dislocations over
the entire volume of the cylinder and causing a high density
of junctions to form.

To see the size dependence clearly, the flow stresses for a
plastic strain of 0.6% were determined and plotted against
the corresponding pillar diameters in Fig. 4. To make this
plot, we take the flow stresses over seven or nine simula-
Fig. 2. Stress–strain curves for the 150 nm, 250 nm, 350 nm and 1 lm
sized pillars with random initial configurations.
tions with random initial conditions for a given sized pillar.
The log–log plot gives a size dependence exponent of about
�0.48, which is roughly consistent with experimental expo-
nents for bcc metals: �0.24 to �0.48 [28,30,35,36].

3.2. Effect of initial dislocation density

To study the effect of the initial dislocation density, we have
performed simulations with different initial densities ranging
from 1013 to 8� 1013 m�2. For these simulations, a constant
strain rate of 105 s�1 was imposed and the pillar diameter
was 150 nm. Stress–strain curves for three different initial dis-
location densities are shown in Fig. 5. We see that the flow
stress decreases with increasing initial dislocation density,
which is not consistent with the Taylor hardening relationship.
However, it can be understood by the fact that the higher dis-
location density would result in a softer response by increasing
the plastic strain rate, through the Orowan formula, and con-
sequentially decreasing the flow stress rate. These results sug-
gest that Taylor hardening effects are smaller than the
softening effects of dislocations as carriers of plasticity.

These results are in good agreement with the microcom-
pression experiments of Bei et al. on Mo pillars [37],
wherein pre-straining results in a softer response. Because
more highly pre-strained pillars would be expected to have
a higher initial dislocation density, the inverse proportion-
ality between initial density and the flow stress predicted by
the DD simulation is in accord with experimental results.

3.3. Effect of strain rate

We have also performed simulations for different high
strain rates, ranging from 105 to 106 s�1. Here, the initial dis-
location density is again taken to be 1013 m�2 and the pillar
diameter is 150 nm. The stress–strain curves for different
strain rates are plotted in Fig. 6. At the initial stage of load-
ing, the pillar subjected to a higher strain rate starts to
deform plastically at a higher stress (strain), so that the yield
stress increases with increasing strain rate. However, the
steady-state flow stresses all converged to about 1.6 GPa after
around 1.5% strain. As a result, the DD model shows a rate-
insensitive steady-state flow stress. However, it must be
repeated that the strain rates for the simulations are much
higher than those used in experiments, so that a direct com-
parison with experiments is not yet possible.

4. Dislocation kinetics model for micropillar plasticity

controlled by self-multiplication

In an effort to better understand plasticity controlled by
the surface cross-slip mechanism, we have developed a sim-
ple dislocation kinetics model similar to the one suggested
by Nix and Lee [38] for the case of surface nucleation con-
trolled plasticity. A basic assumption of this model is that
a fraction of dislocations will self-multiply after it has
traveled a distance ‘, which is approximated by the diame-
ter of a curved dislocation segment under the given stress.



Fig. 3. Dislocation density evolution for the (a) 150 nm, (b) 250 nm, (c) 350 nm and (d) 1 lm sized pillars from DD simulation (solid lines) and the kinetics
model (dashed lines).

Fig. 4. Stress at 0.6% plastic strain as a function of pillar diameter. The
table shows the average stress among 7–9 DD models with corresponding
sized pillars.

Fig. 5. Stress–strain curves with various initial dislocation densities (1013,
4 � 1013 and 8 � 1013 m�2).

I. Ryu et al. / Acta Materialia 61 (2013) 3233–3241 3237
The dislocation density is naturally controlled by the
competition between the multiplication rate from the sur-
face cross-slip mechanism and the depletion rate associated
with dislocations moving out of the surface. Thus the den-
sity evolution can be expressed by

_q ¼ _qþ þ _q� ð1Þ
where _qþ stands for the multiplication rate and _q� is the
depletion rate. Adapting the expression for _q� given by
Nix and Lee [38], _q� may be approximated by the current
dislocation density divided by the lifetime of the disloca-
tion, tlife ¼ D=�v, where D is the diameter of the sample
and �v is the average velocity of dislocations. Using a linear
mobility law, the dislocation depletion rate is

_q� ¼ �b
q

tlife
¼ �bq

Msb
D
¼ �b0q

Mrb
D

ð2Þ

where q is the current dislocation density, r the stress along
the loading axis and b and b0 are constants.

For the multiplication rate, we take the frequency of the
dislocation multiplication to be approximated by the aver-



Fig. 6. Stress–strain curves with various strain rates (1 � 105, 5 � 105 and
1 � 106 s�1).

Fig. 7. Numerically solved stress–strain curves from the kinetics model
with various sized pillars (150 nm, 250 nm, 350 nm, 500 nm and 1 lm)
(solid lines). The steady-state values without hardening effect are plotted in
dashed lines. The banded plot corresponds to the DD simulation results
for different sized pillars.
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age velocity of the screw dislocation divided by the size of
the dislocation loop that can be supported by the given
stress. Using the expression for the critical bowing stress
for a Frank–Read source, the size of the loop can be
approximated by

‘ ¼ lb
s

ð3Þ

where s is the resolved shear stress. For simplicity, we omit
the logarithmic term usually included in this relation. To-
gether with a linear mobility law, the multiplication rate
can then be expressed by

_qþ ¼ aq
�v
‘
¼ aqMs2

l
¼ a0qMr2

E
ð4Þ

where E is the elastic modulus and a, a0 are constants which
describe the fraction of dislocations which will self-multi-
ply. Then the dislocation density evolution law is

_q ¼ _qþ þ _q� ¼ qM a0
r2

E
� b0

rb
D

� �
ð5Þ

To compare the dislocation kinetics model with our DD
simulations, a constant strain rate needs to be imposed.
Thus, the axial stress can be computed as follows:

_r ¼ Eð_eapplied � _eplÞ ð6Þ
Using Orowan’s formula for the plastic strain rate and a

linear mobility law, the resolved shear stress is then

s ¼
_�epl

qb2M
ð7Þ

where _�epl is the shear strain rate. Considering the Taylor
hardening effect, we modified the expression for the re-
solved flow stress as follows:

s ¼
_�epl

qb2M
þ clb

ffiffiffi
q
p ð8Þ

where c is the Taylor hardening coefficient. Finally, the rate
of change in the stress is then
_r ¼ Eð_eapplied � S _�eplÞ
¼ E _eapplied � Sqb2MðrS� clb

ffiffiffi
q
p Þ

� �
ð9Þ

where S is the Schmid factor in the typical bcc slip system.
To assess the validity of the dislocation kinetics model,

the dislocation density (Eq. (5)) and the stress (Eq. (9))
were numerically solved and are plotted in Figs. 7 and 8.
For comparison, DD simulation results were also plotted
as shaded bands. For the plot, a0, b0 and c are chosen to
be 0.096, 0.264 and 0.3 respectively, and M is set to be four
times higher than the pure screw mobility in the DD model.
In Fig. 7, in order to check if the size effect could be pre-
dicted by the kinetics model, the diameter varies from
150 nm to 1 lm, with a constant strain rate of 105 s�1

and an initial dislocation density of 1013 m�2, which are
the same conditions used for the DD simulations. The
kinetics model clearly shows the size effect on the flow
stress: as the sample size decreases, the flow stress increases.
Moreover, flow stresses and dislocation densities of various
sized pillars are within the range of the DD simulation
results, as shown in Figs. 3 and 7.According to the kinetics
model, without Taylor hardening both the flow stress and
the dislocation density eventually reach steady-state values.
By setting _q, _r and c equal to zero, steady-state values of
qSS and rSS are found as follows.

rSS ¼
b0

a0
Eb
D

ð10Þ

qSS ¼
a0

b0
_eappliedD

S2b3ME
ð11Þ

These steady-state values for the stress are plotted for
each pillar diameter as horizontal dashed lines in Figs. 7
and 8. The stress–strain curves from the kinetics model
with Taylor hardening converge to these steady-state val-
ues asymptotically, except for the largest pillar, where Tay-
lor hardening becomes significant. The contribution of
Taylor hardening for the largest pillar is to be expected
from the sharp increase in the dislocation density for that
pillar, as shown in Fig. 3D.



Fig. 8. (a) Numerically solved stress–strain curves (solid line) from the
kinetics model with various strain rate (1 � 105, 5 � 105 and 1 � 106 s�1).
The steady-state value without hardening effect is plotted in dashed lines.
The banded plot corresponds to the DD simulation results for different
sized pillars. (b) Dislocation density–strain curves (solid lines). DD
simulation results are plotted in red (1 � 105 s�1), blue (5 � 105 s�1) and
black (106 s�1) lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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In addition to the size effect, the kinetics model clearly
shows a rate insensitivity of the steady-state flow stress,
similar to the DD simulations, as shown in Fig. 8A. That
is to say, the steady-state flow stress, as predicted by the
DD simulations, is independent of the strain rate. As a con-
sequence, the dislocation density remains roughly constant
within the range of the DD simulations during further
deformation, as shown in Fig. 8B.

5. Discussion

In bulk fcc metals, plastic flow is strongly influenced by
junction formation through the elastic interactions of dislo-
cations. The critical stress to bow dislocations between
obstacles often plays a dominant role in plastic flow and
hardening. Dislocations are assumed to glide quickly from
one obstacle to the next so that the kinetics of dislocation
motion plays a relatively minor role. By contrast, for the
bcc micropillars studied here, the results of the DD simula-
tions as well as the predictions of the kinetics model suggest
that at the high strain rates being considered, the size effect
on the flow stress arises mainly from dislocation mobility
and mobile dislocation density effects. This is also indicated
by the simulations, which show that the yield stress
decreases with increasing initial dislocation density. This
is broadly consistent with the findings of Bei et al. [37],
who showed that pre-straining of Mo alloy pillars leads
to softening. Consistent with this picture, both the DD sim-
ulations and the kinetics model show a strain softening
effect associated with the multiplication of dislocations.
This is reminiscent of the kind of plastic flow studied by
Johnston and Gilman [39]. Thus, neither the dislocation
starvation/nucleation model nor the single-arm source
model provides a good account of the size dependence of
the strength of bcc micropillars at the high strain rates
under this study.

The conclusion that the single-arm source model does
not describe the simulated flow behavior well might seem
to be at odds with some of the features included in the
modeling. In both the DD simulations and the kinetics
modeling, Orowan bowing effects, with lengths that scale
with the size of the pillars, play a key role. In particular,
a critical stress for multiplication, which depends inversely
on the pillar diameter, is a central feature of this modeling.
This might seem to be identical to the single-arm source
model wherein the strength of the micropillar is directly
related to the critical stress needed to bow a dislocation
segment with a length that scales with the pillar diameter.
However, in the present modeling, critical stress does not
determine the flow stress directly. Rather, it controls the
flow stress indirectly through the multiplication of disloca-
tions. In spite of this indirect relation, the steady-state flow
stress predicted by the kinetics model (Eq. (10) – without
strain hardening) still takes a form that is reminiscent of
the predictions of the single-arm source model. The finding
that the yield stress of the simulated micropillars increases
dramatically with decreasing initial dislocation density
(Fig. 5) is the best way to see this distinction. If the sin-
gle-arm source model were controlling the strength
directly, the yield strength would not be expected to
increase so dramatically with decreasing initial dislocation
density.

As shown in Fig. 8A, both the DD model and the kinet-
ics model predict a strong strain rate sensitivity of the yield
stress. This is broadly consistent with experiment, as recent
microcompression experiments on sub-micron Mo pillars
[27] have shown the flow stress to be strain rate sensitive.
However, the rate sensitivity of the yield stress in the pres-
ent modeling is greater than that observed in the experi-
ments. This is caused by the very high strain rates in the
present simulations and the associated linear mobility law
we have used. At larger plastic strains the predicted flow
stresses for different strain rates tend to converge and lead
to a smaller strain rate sensitivity. Eventually, at least for
the case of no Taylor hardening, steady-state flow condi-
tions are predicted, wherein the steady-state flow stress is
completely independent of strain rate. This is caused by
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the fact that the steady-state flow stress is completely deter-
mined by the competition between a stress-dependent mul-
tiplication rate and a stress-independent loss rate. Thus the
steady-state flow stress and associated velocity become
independent of the strain rate, making the dislocation den-
sity directly proportional to the strain rate though the Oro-
wan relation. In the presence of Taylor hardening, such
steady states are not predicted. Finally, we note that the
compression experiments on sub-micron Mo pillars [27]
were conducted under load-controlled conditions. Under
these conditions, the strain softening effects shown in the
modeling and which eventually lead to steady states could
not have been observed. Once strain softening begins, a
plateau in the load-controlled stress–strain curve would
be observed. The flow stresses reported in Ref. [27] should
then correspond to the peak stresses in the simulated
stress–strain curves, which do show a strong strain rate
sensitivity.

Most existing DD simulations use a simple linear mobil-
ity law, in which the velocity of the dislocation segment is
proportional to the resolved stress. However, in bcc metals,
it is known that the velocity of a screw dislocation is not
linearly proportional to the resolved stress due to lattice
resistance [40]. Since screw dislocation motion could play
an important role in plasticity of bcc metals, it would be
useful to modify the mobility law using empirical forms
[41,42]. With a nonlinear mobility law, a smaller size
dependence exponent might be expected for lower, more
realistic strain rates, based on the findings of Lee and
Nix [43]. They showed that smaller exponents are expected
when the size-independent friction stress is large compared
to the flow stress. Further work is needed to account for
nonlinear mobility behavior, especially at low stresses in
bcc metals.

In the DD simulations, dislocation multiplication occurs
intermittently so that the dislocation density shows high
fluctuations. This stochastic flow behavior is especially pro-
nounced in the smallest pillars. Since the kinetics model is
based on the collective behavior of dislocations, this kind
of “jerky” flow behavior cannot be predicted, so that the
dislocation density in the kinetics model evolves smoothly,
as shown in Figs. 7 and 8. In the DD simulations, the fre-
quency of the fluctuation in the dislocation density is very
high, especially for the smallest pillars. Because there is no
direct link between the dislocation density and the flow
stress, as in the simple kinetics model, the flow stress in
the DD simulations is not as sensitive to those abrupt
changes in dislocation density. As a consequence, the pre-
dicted flow stress in the kinetics model, where there is a
direct link between the flow stress and the dislocation den-
sity, shows much higher oscillations than those found in
the DD simulations, as seen in Figs. 7 and 8. As we have
pointed out several times, the present modeling of plasticity
of bcc micropillars is limited in the sense that it applies to
very high strain rates, much higher than those used in
experiments. Further work is needed to extend this analysis
to experimental strain rates.
6. Conclusions

In this research, three-dimensional DD simulations have
been performed in order to investigate the effects of sample
size, initial dislocation density and strain rate on the stress–
strain relations of bcc sub-micron metal pillars under uni-
axial loading. The DD simulations including a surface
cross-slip multiplication mechanism show that the flow
stress increases with decreasing pillar size, decreasing initial
dislocation density. They also show that yield stress is
strongly strain rate sensitive. These findings lead us to the
notion that, at the high strain rates considered, plasticity
is governed mainly by dislocation mobility and mobile dis-
location density effects, not their elastic interactions. We
also develop a dislocation kinetics model, based on the
competition between multiplication due to the surface
cross-slip mechanism and depletion by glide out of the
micropillar. Results from both the DD model and kinetics
model are in good agreement with recent experiments in
bcc metal pillars.

Acknowledgements

Support of this work by the Office of Science, Office of
Basic Energy Sciences, of the US Department of Energy
under Contract No. DE-FG02-04ER46163 in gratefully
acknowledged. This work is partially supported by the
NSF Career Grant CMS-0547681. We would like to thank
Dr. S.W. Lee of California Institute of Technology for use-
ful discussions.
Appendix A. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.actamat.2013.02.011.
References

[1] Uchic MD, Dimiduk DM, Florando JN, Nix WD. Science
2004;305:986.

[2] Greer JR, Oliver WC, Nix WD. Acta Mater 2005;53:1821.
[3] Volkert CA, Lilleodden ET. Philos Mag 2006;86:5567.
[4] Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Acta Metall

Mater 1994;42:475.
[5] Nix WD, Gao H. J Mech Phys Solids 1998;46:411.
[6] Kraft O, Gruber P, Monig R, Weygand D. Annual Rev Mater Res

2010;40:293.
[7] Greer JR, De Hosson JTM. Prog Mater Sci 2011;56:654.
[8] Greer JR, Nix WD. Phys Rev B 2006;73:245410.
[9] Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM. Nat Mater

2008;7:115.
[10] Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR.

Scr Mater 2007;56:313.
[11] Rao SI, Dimiduk DM, Parthasarathy TA, Uchic MD, Tang M,

Woodward C. Acta Mater 2008;56:3245.
[12] Rao SI, Dimiduk DM, Tang M, Parthasarathy TA, Uchic MD,

Woodward C. Philos Mag 2007;87:4777.
[13] Oh SH, Legros M, Kiener D, Dehm G. Nat Mater 2009;8:95.
[14] Kiener D, Minor AM. Nano Lett 2011;11:3816.



I. Ryu et al. / Acta Materialia 61 (2013) 3233–3241 3241
[15] Williams DB, Carter CB. Transmission electron microscopy: a
textbook for materials science. New York: Plenum Press; 1996.

[16] Devincre B, Kubin LP. Mater Sci Eng A 1997;234–236:8.
[17] Schwarz KW. J Appl Phys 1999;85:120.
[18] Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G,

et al. Model Simul Mater Sci Eng 2007;15:553.
[19] Espinosa HD, Panico M, Berbenni S, Schwarz KW. Int J Plast

2006;22:2091.
[20] Tang H, Schwarz KW, Espinosa HD. Phys Rev Lett 2008;100:185503.
[21] El-Awady JA, Wen M, Ghoniem NM. J Mech Phys Solids

2009;57:32.
[22] Liu ZL, Liu XM, Zhuang Z, You XC. Scr Mater 2009;60:594.
[23] Motz C, Weygand D, Senger J, Gumbsch P. Acta Mater 2009;57:1744.
[24] Senger J, Weygand D, Motz C, Gumbsch P, Kraft O. Philos Mag

2010;90:617.
[25] Cai W, Bulatov VV. Mater Sci Eng A 2004;387:277.
[26] Brinckmann S, Kim JY, Greer JR. Phys Rev Lett 2008;100:155502.
[27] Schneider AS, Clark BG, Frick CP, Gruber PA, Arzt E. Mater Sci

Eng A 2009;508:241.
[28] Schneider AS, Kaufmann D, Clark BG, Frick CP, Gruber PA, Monig
R, et al. Phys Rev Lett 2009;103:105501.

[29] Weinberger CR, Cai W. Proc Natl Acad Sci 2008;105:14304.
[30] Greer JR, Weinberger CR, Cai W. Mater Sci Eng A 2008;493:21.
[31] Chisholm C, Bei H, Lowry MB, Oh J, Asif SAS, Warren OL, et al.

Acta Mater 2012;60:2258.
[32] Huang L, Li QJ, Shan ZW, Li J, Sun J, Ma E. Nat Commun

2011;2:547.
[33] Weinberger CR, Cai W. J Mech Phys Solids 2007;55:2027.
[34] Weinberger CR, Cai W. Scr Mater 2011;64:529.
[35] Kim JY, Greer JR. Acta Mater 2009;57:5245.
[36] Kim JY, Jang D, Greer JR. Acta Mater 2010;58:2355.
[37] Bei H, Shim S, Pharr GM, George EP. Acta Mater 2008;56:4762.
[38] Nix WD, Lee SW. Philos Mag 2010;91:1084.
[39] Johnston WG, Gilman JJ. J Appl Phys 1959;30:129.
[40] Gilbert MP, Queyreau S, Marian J. Phys Rev B 2011;84:174103.
[41] Gilman JJ. Aust J Phys 1960;13:327.
[42] Prekel HL, Lawley A, Conrad H. Acta Metall Mater 1968;16:337.
[43] Lee SW, Nix WD. Philos Mag 2011;92:1238.


