Effect of stopper size on squaraine rotaxane stability

Na Fu, Jeremiah J. Gassensmith and Bradley D. Smith*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA

(Received 16 July 2008; final version received 9 September 2008)

A series of new squaraine rotaxanes have been synthesised with a tetralactam macrocycle and stopper groups of varying sizes and functionalities. In chloroform, the relative size of the stopper group appears to have little influence on the high mechanical stability of the rotaxane structure. There is no evidence of unthreading (sometimes referred to as deslipping), even in the presence of competing chloride salts or elevated temperatures. A difference in rotaxane stability emerges as the polarity of the organic solvent is increased. Squaraine rotaxanes with small stopper groups undergo unthreading in the polar aprotic solvent DMSO. However, a water-soluble tetracarboxylic acid derivative was found to be highly stable in aqueous solvents containing serum.

Keywords: fluorescence; rotaxane; synthesis; hydrogen bonding

Introduction

Near-infrared (NIR) organic fluorophores are increasingly used in modern bioimaging technologies, and are especially promising as probes for studies in living animals (1–4). This latter application requires the fluorescent dyes to possess certain characteristics. First, they must emit in the region 650–850 nm (approximately the NIR), where background autofluorescence from biomolecules and undesired absorption by tissue is reduced (5–7). Second, the dyes must be non-toxic and chemically inert in biological environments. Finally, the dyes must be amenable to conjugation with targeting ligands to produce imaging probes with high target selectivity (8, 9).

The squaraines are a well-known class of NIR dyes with intense and narrow emission bands that are quite suitable for bioimaging. However, there are some technical drawbacks: they are susceptible to nucleophilic attack and, like many organic dyes, they undergo self-quenching upon aggregation (10, 11). We have discovered that both problems are eliminated by encapsulating the dye inside a macrocycle to form a squaraine rotaxane (12). The macrocycle protects the C$_4$O$_2$ core of the squaraine thread from attack by nucleophiles and prevents interchromophore energy transfer upon aggregation. At the same time, the rotaxanes preserve the favourable photophysical properties of the precursor squaraines. The next step in our research is to determine how squaraine rotaxanes can be converted into high-performance fluorescent probes for bioimaging (13).

Our initial studies used rotaxanes such as 1a (Figure 1) with large N,N-bisbenzyl stopper groups on the squaraine to ensure that unthreading (sometimes referred to as deslipping) did not occur (12). However, large hydrocarbon stopper groups are not desired for bioimaging probes, where the goal is to produce water-soluble compounds with low molecular weight. Additionally, we need to develop stopper groups that can be conjugated to targeting ligands using standard coupling reactions. Here, we report that squaraine rotaxanes 1b–1f can be prepared with smaller and more flexible stopper groups. Spectroscopic studies in various solvents, in the presence of ions, and in biological solution, reveal exceptional mechanical stability even when using stopper groups that are relatively small compared to the macrocyclic cavity.

Result and discussion

Synthesis and structure

The precursor aniline derivatives, 2b, 2d and 2e, were obtained by the straightforward synthetic methods shown in Scheme 1; whereas 2a and 2c are commercially available. In each case, the aniline compound was added to a benzene/butanol solution of squaric acid and heated under azotropic distillation condition to afford squaraine dyes 3a–3e in a yield of 35–45%. The dyes were converted into squaraine rotaxanes with yields around 20% by conducting Leigh-type clipping reactions (Scheme 2) (14). Rotaxane 1d was hydrolysed by trifluoroacetic acid (TFA) to afford the water-soluble tetracarboxylic acid rotaxane 1f (Scheme 3).
The rotaxane structures were characterised by standard spectrometric methods. The 1H NMR spectra exhibited the expected changes in chemical shift due to anisotropic shielding by the interlocked rotaxane components. Another signature of rotaxane formation is a 10–20 nm red shift in absorption and emission maxima for the squaraine dye upon encapsulation inside the phenylene-containing tetralactam macrocycle. The bis(azacrown) squaraine rotaxane 1c was obtained as single crystals that were suitable for analysis by X-ray diffraction. The molecule is located around a crystallographic inversion centre. As shown in Figure 2, the macrocycle

![Scheme 1. Synthesis and structures of aniline precursors.](image-url)
adopts a *chair*-like conformation in the solid state. The four macrocyclic NH residues form bifurcated hydrogen bonds with the two squaraine oxygen atoms. The lengths and angles of the NH⋯O hydrogen bonds are 2.16(3) Å, 168.2(2)° and 2.22(3) Å, 174.7(3)°, respectively, for the centrosymmetric molecule. The parallel 1,4-xylylene units are stacked directly over both faces of the electron-deficient C₄O₂ core of the squaraine thread. The centroid-to-centroid distance between the two parallel phenyl rings in the macrocycle is 7.20 Å.

Stability in a non-polar solvent

Since the encapsulating phenylene-containing macrocycle is highly insoluble when it is a free molecule (15), it seemed that a moderate amount of unthreading might manifest itself as an irreversible process that is driven by macrocycle precipitation. However, we do not see this phenomenon in chloroform solution. We find that rotaxanes 1a–1e are quite soluble and completely stable with no spectroscopic evidence for unthreading. Even samples that were stored in CDCl₃ at 50°C for one week showed no changes in their ¹H NMR spectra. Furthermore, unthreading of 1e could not be induced by the addition of chloride anions that potentially could form competing hydrogen bonds with the NH residues (16, 17). The addition of excess lithium chloride in CDCl₃ or tetrabutylammonium chloride in CH₃CN did not induce any sign of unthreading as judged by ¹H NMR or absorption spectroscopy. We conclude that in a non-polar solvent, the surrounding macrocycle is held tightly to the squaraine thread by a combination of favourable aromatic stacking interactions between the electron-poor C₄O₂ core of the squaraine and the electron-rich 1,4-xylylene units in the macrocycle, and strong hydrogen bonds between the four macrocyclic NH residues and the two squaraine oxygen atoms.

Stability in the polar aprotic DMSO

Polar aprotic organic solvents are known to greatly weaken the non-covalent association of host/guest complexes when the principal stabilising forces are hydrogen bonding (18, 19), dispersion forces or aromatic stacking (20). Thus, it was not surprising to find that the highly polar DMSO promotes unthreading of squaraine rotaxanes. ¹H NMR spectroscopy was used to monitor the structural integrity of 1a and 1e in three solvent systems: pure CDCl₃; DMSO-d₆/CDCl₃ (1:9); and pure DMSO-d₆. For rotaxanes 1e, with its slender alkyne stopper groups, there was no ¹H NMR evidence after 50 days at 23°C for unthreading in CDCl₃; however, unthreading was observed when the solvent was DMSO-d₆/CDCl₃ (1:9) and pure DMSO-d₆ with half-lives of 50 days and 12 h, respectively (Table 1). The same NMR experiments with squaraine rotaxane 1a revealed the anticipated enhancement of mechanical stability afforded by the larger N,N-bisbenzyl stopper groups (21). In the highly disruptive DMSO-d₆, the half-life for squaraine rotaxane 1a is approximately 40 days, which is 80 times longer than the half-life for squaraine rotaxane 1e.
Stability in water
The tetracarboxylic acid 1f was synthesised and tested as a highly water-soluble squaraine rotaxane. In 10% serum solution, 1f absorbs strongly at 651 nm (log ε ~ 5.4) and emits at 679 nm with a quantum yield of 0.17 (Table 2). Not surprisingly, the quantum yield increases when THF is included as an organic co-solvent because squaraines are quenched by protic solvents (19). Previously, we have shown that biological nucleophiles can attack the electrophilic C₄O₂ core in squaraine dyes and bleach the dye’s colour in a few minutes, but squaraine rotaxanes are highly resistant to this chemical attack (12). Thus, the loss of squaraine colour in biological solution is a convenient indicator of rotaxane unthreading. Figure 3 shows a comparison of the colour stability of water-soluble rotaxane 1f, and the corresponding precursor squaraine dye 3d in the presence of serum. As expected, the bleaching half-life for dye 3d is only 1 min. Remarkably, the colour for rotaxane 1f in 10% serum is unchanged after standing for many hours. Furthermore, there is no colour change when 1f is in the more non-polar solvent mixture of 10% serum/THF (1:1). It appears that the mechanical stability of squaraine rotaxane 1f, whose stopper groups each contain two ethyleneoxy chains, is extremely high in aqueous biological solution. This is a pleasing result for us because good water solubility and high stability are essential features for high-performance fluorescent bioimaging probes.

Table 1. Half-lives for rotaxane unthreading at 23°C.

<table>
<thead>
<tr>
<th>Compound (5 mM)</th>
<th>Solvent</th>
<th>t½ (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>CDCl₃</td>
<td>>50</td>
</tr>
<tr>
<td></td>
<td>DMSO-d₆/CDCl₃ (1:9)</td>
<td>>50</td>
</tr>
<tr>
<td></td>
<td>DMSO-d₆</td>
<td>40</td>
</tr>
<tr>
<td>1e</td>
<td>CDCl₃</td>
<td>>50</td>
</tr>
<tr>
<td></td>
<td>DMSO-d₆/CDCl₃ (1:9)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>DMSO-d₆</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2. Absorption and emission properties in different solvent mixtures.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Compound</th>
<th>λabs (nm)</th>
<th>λem (nm)</th>
<th>Φf</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>1f</td>
<td>651</td>
<td>679</td>
<td>0.15</td>
</tr>
<tr>
<td>10% serum</td>
<td>1f</td>
<td>651</td>
<td>679</td>
<td>0.17</td>
</tr>
<tr>
<td>10% serum/THF</td>
<td>1f</td>
<td>646</td>
<td>673</td>
<td>0.34</td>
</tr>
<tr>
<td>THF</td>
<td>1d</td>
<td>640</td>
<td>665</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>3d</td>
<td>633</td>
<td>652</td>
<td>0.74</td>
</tr>
<tr>
<td>10% serum/THF</td>
<td>1d</td>
<td>648</td>
<td>674</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>3d</td>
<td>645</td>
<td>673</td>
<td>–</td>
</tr>
</tbody>
</table>

Samples were excited at 580 nm and emission monitored in the region 600–850 nm. All quantum yields are relative to a standard solution of bis[4-(N,N-dimethylamino)phenyl]squaraine in CHCl₃ (Φf = 0.70) and have an error of 5%.

Conclusion
The very high host/guest complementarity between squaraine dyes and the encapsulating tetrалactam macrocycle provides excellent mechanical stability and little propensity for unthreading. In a non-polar organic solvent, the rotaxanes are stabilised by strong hydrogen bonds and in water by hydrophobic aromatic stacking interactions. Only in high polar aprotic solvents such as DMSO is there evidence for rotaxane unthreading, which can be countered by employing sterically large stopper groups. The high rotaxane stability in aqueous solution means that the size of the stopper group is not a major design constraint, and it should be possible to attach a wide range of targeting groups to these dyes and produce a diverse portfolio of bioimaging agents.

Experimental section
Unless otherwise stated, all starting materials and reagents were purchased from commercial suppliers and used without further purification. ¹H and ¹³C NMR spectra were recorded by using Varian Unity Plus spectrometers. Fast atom-bombardment (FAB) mass spectra (MS) were recorded on a double sector JEOL JMS-AX 505 HA instrument. Electron spray ionisation (ESI)-MS were recorded on a Micromass Quattro LC triple quadrupole mass spectrometer (Waters).

Synthesis of tosylate 5. Tri(ethylene glycol) monomethyl ether (16.4 g, 0.1 mol) and pyridine (15 ml) were added to a round bottom flask, which was cooled in an ice bath. p-Toluenesulphonyl chloride (22.8 g, 0.12 mol) was slowly added into the flask. The solution was allowed to warm to room temperature, and stirred for 8 h. The solution was neutralised with 1M hydrochloric acid to pH 7.
The solution was extracted with dichloromethane (3 × 100 ml); the combined organic layers were washed with water (3 × 100 ml), dried with anhydrous Na2SO4 and concentrated in vacuo to afford the product quantitatively as a yellow oil. 1H NMR (300 MHz, CDCl3, TMS): δ 7.72 (d, 2H, J = 9.3), 7.27 (d, 2H, J = 9.3), 4.14 (t, 2H, J = 4.8), 3.45–3.64 (m, 10H), 3.30 (s, 3H), 2.45 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 145.0, 133.1, 130.0, 128.1, 72.0, 70.8, 70.7, 69.5, 68.8, 59.1, 21.8; FAB-MS, calculated for C14H23O4S+ (M + H)+ 319, found 319.

Aniline 2b. N-Phenyldiethanolamine (2 g, 0.011 mol), excess KOH (8 g, 0.14 mol) and compound 5 (8.1 g, 0.025 mol) in THF (100 ml) were refluxed for 24 h. Excess solvent was removed and the residue obtained was dissolved in water and extracted with dichloromethane (3 × 100 ml). The organic layer was separated and dried over anhydrous Na2SO4. The crude product was purified by column chromatography using a silica column that was eluted with a mixture of ethyl acetate/hexane (1:2) to afford a yellow oil (3.5 g, 67% yield). 1H NMR (300 MHz, CDCl3, TMS): δ 7.19 (m, 2H), 6.71 (m, 3H), 3.65 (m, 32H), 3.38 (s, 6H); 13C NMR (75 MHz, CDCl3): δ 148.0, 129.5, 116.2, 111.9, 72.1, 70.9, 70.8, 70.7, 68.7, 59.2, 51.1; FAB-MS, calculated for C24H44N2O2S (M + H)+ 474, found 474.

Aniline 9. Aniline (10 g, 0.1 mol), 2-(2-chloroethoxy) ethanol (37.2 g, 0.3 mol) and excess CaCO3 (15 g, 0.15 mol) were heated in water under reflux with stirring until the mixture turned transparent after about 4 days. The liquid was cooled and extracted with ether (3 × 100 ml). The ether solution was collected and the solvent was removed in vacuo to give the crude product. The crude product was purified by column chromatography using a silica column that was eluted with a mixture of methanol/chloroform (1:1) to afford a yellow oil (3.5 g, 67% yield). 1H NMR (300 MHz, CDCl3, TMS): δ 7.20 (m, 2H), 6.73 (m, 3H), 3.53–3.68 (m, 16H), 3.23 (4H), 1.47 (s, 18H); 13C NMR (75 MHz, CDCl3): δ 169.8, 147.9, 129.5, 116.2, 111.9, 81.8, 70.9, 70.8, 69.3, 68.7, 51.1, 28.4; FAB-MS, calculated for C26H50N2O6+ (M + H)+ 498, found 498.

Aniline 2e. 2-(N-Ethylamino)ethanol (3 g, 0.018 mol) and propargyl chloride (4.9 g, 0.066 mol) were dissolved in benzene (60 ml). Tetrabutylammonium bisulphate (0.6 g, 1.77 mmol) was dissolved in 50% NaOH solution (60 ml) and the solutions were combined and stirred for 48 h at room temperature. The organic layer was isolated and washed with saturated NaCl solution (100 ml) and dried over anhydrous Na2SO4 and concentrated to give a light yellow oil. The crude product was purified by column chromatography using a silica column that was eluted with a mixture of ethyl acetate/hexane (1:49) to afford a yellow oil (3.18 g, 86% yield); 1H NMR (500 MHz, CDCl3, TMS): δ 7.21 (m, 2H), 6.70 (m, 3H), 4.17 (d, 2H, J = 2.0), 3.69 (t, 2H, J = 6.5), 3.53 (t, 2H, J = 6.5), 3.42 (q, 2H, J = 7.0), 2.43 (t, 1H, J = 2.0), 1.16 (t, 3H, J = 7.0); 13C NMR (125 MHz, CDCl3): δ 147.5, 129.1, 115.7, 111.7, 79.5, 74.4, 67.5, 58.2, 49.7, 45.2, 12.0; FAB-MS, calculated for C13H18NO2+ (M + H)+ 204, found 204.

General procedure to synthesise squaraine dye

Aniline derivatives 2a–2e (1.83 mmol) were added to a solution of squaric acid 13 (0.92 mmol) in a mixture of n-butanol (15 ml) and benzene (30 ml) in a 100 ml round bottom flask equipped with a Dean–Stark apparatus. After refluxing for 12 h at 95°C, the solvent was removed in vacuo and the crude product was obtained. The crude product was purified by column chromatography using a silica column that was eluted with a mixture of methanol/chloroform (1:49).

Squaraine dye 3b. (0.33 g, 35% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 8.35 (d, 4H, J = 9.0), 6.80 (d, 4H, J = 9.0), 3.54–3.76 (m, 64H), 3.37 (s, 12H); 13C NMR (75 MHz, CDCl3): δ 188.9, 183.4, 154.2, 133.5, 120.3, 112.9, 72.2, 71.1, 70.9, 70.8, 70.7, 68.7, 59.2, 51.6, 29.9; ESI-MS, calculated for C52H68N2O18+ (M + H)+ 1025, found 1025.

Squaraine dye 3c. (0.25 g, 40% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 8.38 (d, 4H, J = 9.0), 6.77 (d, 4H, J = 9.0), 3.63–3.82 (m, 40H); 13C NMR (75 MHz, CDCl3): δ 188.9, 183.5, 153.9, 133.5, 120.4, 112.9, 71.5, 70.7, 70.3, 68.5, 53.6; FAB-MS, calculated for C36H49N2O10+ (M + H)+ 669, found 669.

Squaraine dye 3d. (0.45 g, 45% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 8.36 (d, 4H, J = 9.0), 6.81 (d, 4H, J = 9.0), 3.99 (s, 8H), 3.66–3.77 (m, 32H), 1.47 (s, 36H); 13C NMR (75 MHz, CDCl3): δ 188.8, 183.4, 169.7, 154.2, 133.4, 120.4, 112.9, 81.9, 71.1, 71.0, 69.2, 68.7, 51.8, 28.4; ESI-MS, calculated for C56H68N2O18+ (M + H)+ 1074, found 1074.

Squaraine dye 3e. (0.2 g, 44% yield): 1H NMR (500 MHz, CDCl3, TMS): δ 8.37 (d, 4H, J = 9.3),
6.77 (d, 4H, J = 9.3), 4.16 (d, 4H, J = 2.3), 3.75 (t, 4H, J = 5.5), 3.69 (t, 4H, J = 5.5), 3.59 (q, 4H, J = 7.0), 2.43 (t, 2H, J = 2.3), 1.25 (t, 6H, J = 7.0); 13C (125 MHz, CDCl3): δ 188.8, 183.3, 154.3, 133.3, 119.9, 112.3, 79.1, 75.0, 67.3, 58.6, 50.3, 46.4, 12.3; FAB-MS, calculated for C30H33N2O7 (M + H)+ 485, found 485.

General procedure to synthesise squaraine rotaxanes

Clear solutions of the corresponding 2,6-pyridinedicarboxyl dichloride/isophthaloyl dichloride (2.56 mmol) and p-xylylenediamine (2.56 mmol) in anhydrous chloroform (20 mL) were simultaneously added dropwise using a mechanical syringe pump apparatus over 5 h to a stirred solution of squaraine dyes 3a–3e (0.32 mmol) and triethylamine (6.4 mmol) in anhydrous CHCl3 (40 mL). After stirring overnight, the reaction mixture was filtered through a pad of celite to remove any precipitation. The crude product was purified by column chromatography using a silica column that was eluted with a mixture of methanol/chloroform (1:49).

Squaraine rotaxane 1b. (99 mg, 20% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 10.03 (s, 4H, J = 6.0), 8.50 (d, 4H, J = 7.5), 8.16 (t, 2H, J = 8.5), 8.06 (d, 4H, J = 9.0), 6.60 (s, 8H), 6.20 (d, 4H, J = 9.0), 4.51 (d, 8H, J = 6.0), 3.53–3.66 (m, 64H), 3.37 (s, 12H); 13C (75 MHz, CDCl3): δ 188.4, 184.9, 164.3, 153.9, 149.6, 138.8, 136.4, 136.3, 129.0, 125.0, 119.5, 111.5, 71.9, 70.8, 70.7, 70.6, 70.5, 68.3, 59.0, 51.3, 43.5; ESI-MS, calculated for C32H11N4O22 (M + H)+ 1559, found 1559.

Squaraine rotaxane 1c. (111 mg, 29% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 9.39 (s, 2H), 8.31 (d, 4H, J = 9.0), 8.23 (t, 4H, J = 6.0), 7.65 (m, 6H), 6.70 (s, 8H), 6.40 (d, 4H, J = 9.0), 4.43 (d, 8H, J = 9.0), 3.63–3.79 (m, 40H); 13C (75 MHz, CDCl3): δ 185.5, 181.8, 166.4, 154.6, 136.6, 134.3, 133.1, 129.5, 125.1, 118.4, 116.5, 113.0, 71.4, 70.7, 69.9, 68.3, 53.9, 50.4, 44.6; ESI-MS, calculated for C68H77N6O14+ (M + H)+ 1201, found 1201.

Squaraine rotaxane 1d. (77 mg, 15% yield): 1H NMR (300 MHz, CDCl3, TMS): δ 10.03 (s, 4H, J = 5.6), 8.52 (d, 4H, J = 8.5), 8.17 (t, 2H, J = 8.5), 8.09 (d, 4H, J = 8.5), 6.62 (s, 8H), 6.25 (d, 4H, J = 8.5), 4.53 (d, 8H, J = 8.5), 4.00 (s, 8H), 3.69 (m, 32H), 1.48 (s, 36H); 13C (75 MHz, CDCl3): δ 186.3, 185.1, 169.5, 163.6, 153.9, 149.6, 138.9, 136.7, 133.3, 128.7, 125.3, 119.5, 111.5, 81.7, 70.8, 69.0, 68.4, 51.3, 43.4, 28.1; ESI-MS, calculated for C86H111N6O32+ (M + H)+ 1607, found 1607.

Squaraine rotaxane 1e. (71 mg, 22% yield): 1H NMR (500 MHz, CDCl3, TMS): δ 10.02 (t, 4H, J = 6.0), 8.51 (d, 4H, J = 8.0), 8.14 (t, 2H, J = 8.0), 8.08 (d, 4H, J = 9.0), 6.60 (s, 8H), 6.20 (d, 4H, J = 9.0), 4.52 (d, 8H, J = 6.0), 4.17 (d, 4H, J = 2.0), 3.67 (t, 4H, J = 6.0), 3.57 (t, 4H, J = 6.0), 3.46 (q, 4H, J = 7.0), 2.51 (t, 2H, J = 2.0), 1.18 (t, 6H, J = 7.0); 13C (125 MHz, CDCl3): δ 185.2, 184.5, 163.6, 153.5, 149.5, 138.7, 136.6, 133.6, 128.9, 125.2, 119.0, 111.6, 79.1, 75.2, 67.1, 58.6, 50.1, 46.3, 43.4, 12.2; ESI-MS, calculated for C60H59N8O4+ (M + H)+ 1019, found 1019.

Squaraine rotaxane If. The precursor 1d (20 mg) was dissolved in dichloromethane (3 mL) and TFA (1 mL) was added. The solution was stirred at room temperature for 6 h, and then the solvent was removed. The residue was taken up in chloroform (100 mL) and washed with water (2 x 50 mL), dried with anhydrous Na2SO4 and concentrated to give If quantitatively as a blue solid that was dried in vacuo. 1H NMR (300 MHz, DMSO): δ 9.89 (t, 4H, J = 6.0), 8.30–8.42 (m, 5H), 7.89 (d, 4H, J = 9.0), 6.46 (s, 8H), 6.26 (d, 4H, J = 9.0), 4.38 (d, 8H, J = 6.0), 4.02 (s, 8H), 3.39–3.62 (m, 32H); 13C (75 MHz, DMSO): δ 184.6, 182.7, 171.7, 162.5, 153.9, 148.9, 139.9, 136.4, 132.6, 128.2, 124.9, 118.3, 111.8, 69.9, 67.6, 67.5, 50.4, 42.3, 40.4; ESI-MS, calculated for C70H79N8O32+ (M + H)+ 1383, found 1383.

Crystallography

Crystal data for 1c. C32H28N4O4; C36H48N2O10. 2.46 CHCl3, 1.54 C2H5N, Mr = 1558.22, T = 100 K, monoclinic, P21/c, a = 15.1808(3) Å, b = 13.1032(3) Å, c = 19.7252(4) Å, β = 106.479(1)°, V = 3762.51(14) Å3, Z = 2, R1 = 0.0856, wR2 = 0.1819. Crystals were grown by slow diffusion of hexane into acetanilide/chloroform solution. The structure was solved with three unique elements in the asymmetric unit, two components as the wheel and thread of the rotaxane and four crystallisation solvents with partial occupancy between 2.46 molecules of chloroform and 1.54 molecules of acetanilide. The X-ray data can be retrieved free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/ retrieving.html and quoting CCDC 700171.

Quantum yields

All quantum yields were determined using a previously described method with an optically matched standard solution of bis-[4-(N,N-dimethylamino)phenyl]squaraine in CHCl3 (22).

Acknowledgements

We are grateful for funding support from the NIH (USA) and the Elsa U. Pardee Foundation.

References